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Abstract: The aerial flexible-joint robot (AFJR) manipulation system has been widely used in recent
years. To handle uncertainty, the input saturation and the output constraint existing in the system,
a fixed-time observer-based adaptive control scheme (FTOAC) is proposed. First, to estimate the
input saturation and disturbances from the internal force between the robot and the flight platform,
a fixed-time observer is designed. Second, a tangent-barrier Lyapunov function is introduced to
implement the output constraint. Third, adaptive neural networks are introduced for the online
identification of nonlinear unknown dynamics in the system. In addition, a fixed-time compensator
is designed in this paper to eliminate the adverse effects caused by filtering errors. The stability
analysis shows that all the signals of the closed-loop system are bounded, and the system satisfies
the condition of fixed-time convergence. Finally, the simulation results prove the superiority of the
proposed control strategy by comparing it with the previous schemes.

Keywords: aerial flexible-joint robot; output constraint; input saturation; neural learning;
fixed-time observer

1. Introduction

In recent years, the application of unmanned aerial vehicles (UAVs) has been extended
to active missions by equipping them with robotic arms [1,2], such as picking up and
transporting important materials or reaching hard-to-reach places for emergency repairs [3].
Due to the advantages of being lightweight and having high mobility and low energy
consumption, robotic arms with flexible joints (FJRs) are suitable for application in UAVs [4].
The dynamics model of the aerial flexible-joint robot (AFJR) is a highly coupled system,
which is composed of both the UAV and a robotic manipulator [5]. The AFJR usually works
in a hovering state when grasping a target. Therefore, the challenging work for the control
of the AFJR is to achieve accurate-fast control for the FJR subsystem. At this moment,
the coupling effect of the UAV to manipulation is treated as a disturbance. Moreover,
the nonlinear unknown dynamics of FJR systems [6,7], output constraints, and input
saturation [8,9] are inevitable in actual applications. Therefore, it is valuable to study the
tracking control of the AFJR by considering these issues.

Nonlinear system control approaches are broadly classified as asymptotic stabilization
control and finite-time control. The system with asymptotic stability control has an infinite
stabilization time. In addition, finite-time control can realize system stabilization in a
bounded time. Many researchers have investigated finite-time control for FJR systems
recently [10,11]. The finite-time strategy, on the other hand, determines the stability time
based on the initial conditions. To circumvent this limitation, fixed-time control is proposed,
which allows the system to converge to equilibrium in a finite time regardless of the initial
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conditions. Because of this trait, fixed-time stability is more suitable for engineering
applications. In [12], an adaptive fuzzy event-triggered fixed-time real-tracking control
method was proposed for FJR systems. S. Binazadeh et al. [13] designed a fixed-time
super-torsional sliding mode tracking strategy for nonlinear networked FJRs.

In terms of dealing with unknown dynamics in nonlinear systems, neural network-
based control is an effective solution. In [14], an adaptive neural control method for electri-
cally driven FJRs was studied, applying radial basis function neural networks (RBFNNs) to
approximate the unknown nonlinearity of the system. In [15], an adaptive neural network
control based on integral Lyapunov functions was proposed for task tracking under the
uncertainty of the FJR. In [16], nonlinear functions were approximated by using neural
networks (NN). The authors of [17] proposed an observer-based RBFNN to estimate the
state variables of a normal system. Most of the above NN-based schemes were carried out
in the backstepping framework. However, the computing explosion problem is unavoid-
able for repeated differentiation of virtual control. To solve this issue, a command filtering
method was used in [18–20]. To eliminate the effect of filtering errors, instruction filtering
compensation strategies were proposed in [21,22]. Inspired by the above analysis, this
paper intends to investigate fixed-time stable neural network control schemes to solve the
fast-stability problem of FJR systems when considering the complexity explosion problem
and filtering disturbances.

In the above-mentioned works, disturbances were not considered, such as the internal
force between the arm and the drone, and input saturation. The performance and stability
of the AFJR would significantly degrade [23,24]. Therefore, an AFJR should be able to
tolerate unknown disturbances. The commonly used anti-saturation methods are function
approximation and auxiliary system compensation. The saturation function approxima-
tion methods employ the mean value theorem to handle the unknown function, but the
approximation error cannot be avoided [25,26]. On the contrary, via the auxiliary system ap-
proaches, the errors between the nominal and saturated inputs are treated as disturbances.
By introducing an observer to estimate the disturbances and designing a compensated
controller, the input saturation can be handled precisely to make the system out of the
saturation region [27–29]. For example, the tracking control of a multi-link FJR system
with input saturation was studied in [30], where an auxiliary dynamic system was used
to handle the input saturation. In [31], two auxiliary systems were introduced to handle
the input saturation of a free-flying FJR. A nonlinear perturbation observer was proposed
in [32] for handling the input saturation of the FJR. By disturbance observer techniques,
the disturbances of the aerial manipulation system can be addressed [33,34]. As a result,
combining the fixed-time stability theory and the observer technique to deal with input
saturation and model coupling disturbances in the AFJR is worth investigating.

Furthermore, in some practical areas of work, the outputs of robotic systems are
subject to special constraints, which receive attention from scholars. In [35], the tangent-
type barrier Lyapunov function was used for the system with output constraints. By
designing error bounds, the unknown Euler–Lagrange system satisfies the prescribed
tracking accuracy and output constraints [36]. For unconstrained feedback nonlinear
systems with asymmetric and time-varying output constraints, the barrier Lyapunov
function (BLF) and error transformation techniques was used [37]. The tangent-type barrier
Lyapunov function was used in [38] to handle the state constraints of the FJR. In [39], the
output constraint of RMFJ was implemented to improve the safety of the robot. The authors
of [40] proposed an instruction filter-based backstepping control method for trajectory
tracking control of FJR with full state constraints. Although the above studies successfully
addressed the effect of saturation nonlinearity and output constraints, it is still worth
further research on how to deal with the fixed-time stability of FJR systems with the input
saturation and output constraint.

Inspired by the above analysis, a fixed-time observer-based adaptive tracking control
scheme (FTOAC) is proposed for the Aerial FJR with an input saturation and output
constraint, where the main contributions are:
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i. Unlike the works of [14,41], which requires the approximation of each subfunction
of the nonlinear function sets, this paper cleverly converts the unknown set of
nonlinear functions present in the n-link FJR system into the forms of the norm, so
that the whole controller needs only two neural networks and one adaptive law,
thus saving computational resources.

ii. Through the dynamic surface technique, a command filter is introduced to avoid
the “complexity explosion” problem during backstepping design, and a fixed-time
compensator is designed to handle the influences of the filtering errors.

iii. Different from [42], the input saturation and output constraint are solved simulta-
neously via the proposed FTOAC scheme, where a fixed-time observer is designed
to estimate the input saturation and disturbances existing in the AFJR, and the
tangent-type Lyapunov barrier function is constructed to realize the constraint out
of the system.

2. Problem Statement and Preliminaries
2.1. Problem Statement

The AFJR system can be seen in Figure 1. The system can be decoupled as the FJR
subsystem and UAV subsystem. The AFJR usually works in a hovering state when grasping
a target. Therefore, the main control task of the AFJR is to achieve accurate-fast control
for the FJR subsystem, and the interactions generated by the UAV platform are treated as
disturbances [43]. In combination with [24], the dynamic model of the n-link FJR can be
written as {

M(q)
..
q + C(q,

.
q)

.
q + G(q) + F(

.
q) + Kq = Kϕ

J
..
ϕ + B

.
ϕ + K(ϕ− q) = u + d,

(1)

where the interpretations of the symbols therein are shown in Table 1.
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Table 1. The symbols of the FJR system.

Parameter Denotation Physical Meaning

q
ϕ
J
K
B

M(q)
C(q,

.
q)

G(q)
F(

.
q)

u
dext

q = [q1, q2, · · · , qn]
T

ϕ = [ϕ1, ϕ2, · · · , ϕn]
T

J = diag[J1, J2, · · · , Jn]
K = diag[K1, K2, · · · , Kn]
B = diag[B1, B2, · · · , Bn]

M(q) ∈ Rn×n

C(
.
q, q) ∈ Rn×n

G(q) ∈ Rn

F(
.
q) ∈ Rn

u = [u1, u2, · · · , un]
T

d = [d1, d2, · · · , dn]
n

The vector o f link position
The vector o f motor position

The inertia o f the motor
The damping o f the motor

The elasticity coe f f icient matrix
The inertia–symmetrical matrix

The Coriolis− centripetal f orce matrix
The torque o f gravitational f orce

The f riction term
The input o f system

The disturbances f rom the aerial plat f orm

Moreover, the input voltage range of the motor is limited to certain specific voltages in
practice, i.e., the motor saturation limit [44]. Thus, it is inevitable that the actuator is subject
to input saturation. The i-th control input with saturation nonlinearity can be expressed as

ui =

{
sign(ui)uM, |ui|≥ uM

ui, |ui|< uM
(2)

where uM indicates the saturation value of the control input. In addition, the FJR system
needs to consider obstacles in the motion space when performing the task, so the output is
often constrained. In introducing the variables x1 = q, x2 =

.
q, x3 = ϕ, x4 =

.
ϕ, the system

with input saturation and output constraint can be represented as

.
x1 = x2.
x2 = M−1(x1)(Kx3 − C(x1, x2)x2 − G(x1)− F(x2)− Kx1).
x3 = x4.
x4 = J−1(sat(u)− Bx4 − K(x3 − x1)) + dext
y = x1,

(3)

where sat(u) = [u1, ui, · · · , un]
T , and the output is constrained in the following

compact set
Ωx := {x1(t) ∈ Rn, ‖x1(t)‖ ≤ kc}. (4)

This paper aims to suggest a fixed-time tracking scheme for the FJR system so that the
output x1 can follow the desired trajectory xd, all the signals in the system are bounded, the
output constraint requirements are not violated, and the input saturation can be overcome.

2.2. Preliminaries

To achieve fixed-time tracking control for the Aerial FJR system existing unknown
continuous functions, input saturations, and out constraints, the following definitions,
assumptions, and lemmas are given.

Assumption 1 [38]. The reference trajectory xd satisfies ‖xd‖ ≤ k0 with k0 < kc, and its n-th
order time derivatives are continuously bounded.

Assumption 2. The disturbances di of the AFJR are bounded with di ≤ Di, where Di are positive
constants .

Remark 1. Assumption 1 is the basic requirement of the backstepping control method. Assumption
2 provides that the internal disturbances from the drone are bounded, which is a basic prerequisite
for the stability of the whole control system.
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Definition 1 [45]. Considering a smooth-nonlinear dynamic system
.
x = f (x), x ∈ Rn, assume

that the system is stable at the origin. If ‖x(t)‖ = 0 holds for all t ≥ t∗, in which t∗ is a finite
time constant, the system

.
x = f (x) is stable in a finite-time interval. If the time constant t∗ has an

upper bound, the system
.
x = f (x) is fixed-time stable.

Lemma 1. [46]. For a positive definite function V(x) : Rn → R , if there exists a > 0, b > 0,
℘ > 0, 0 < β1 < 1, and β2 > 1, such that

.
V(x) ≤ −aV(x)β1 − bV(x)β2 + ℘. (5)

Then, the nonlinear system
.
x = f (x) is globally practical fixed-time stable, and the

converging time satisfies

t∗ ≤ Tmax :=
1

a(1− β1)
+

1
b(β2 − 1)

. (6)

Remark 2. Definition 1 provides the definition of the fixed-time stability system. Lemma 1 shows
how to design the Lyapunov function for a fixed-time controller. To achieve the fixed-time control,
the AFJR system should satisfy the conditions of Definition 1 and Lemma 1.

Lemma 2. [47]. For real variables ℵ,=, if σ, g, ρ are positive constants, the relationship holds

|ℵ|σ|=|ρ 6
σ

σ + ρ
g|ℵ|σ+ρ +

ρ

σ + ρ
g−

σ
ρ |=|σ+ρ. (7)

Lemma 3. [48]. Let f ≥ d and ω > 1, then

f ( f − d)ω ≤ ω

ω + 1
( f ω+1 − dω+1). (8)

Lemma 4. [49]. If an unknown continuous function f (X) : Rn → R is defined on a compact
ΩX , f (X) can be approximated by the RBFNN

f (X) = ΨT P(X), (9)

where X ∈ Rn denotes the input vector, W = [W1, W2, . . . , Wl ]
T represents the weight vector,

and P(·) = [ψ1(·), ψ2(·), . . . , ψl(·)]T is the basis function vector in which the Gaussian
functions Pi(X) are chosen as

ψi(X) = exp

[
− (X− zi)

T(X− zi)

bi
2

]
, i = 1, 2, . . . , l, (10)

where zi and bi are the centers and widths, respectively. According to the universal approx-
imation capability of neural networks, f (X) can be approached by f (X) = Ψ∗T P(X) + δ
online to arbitrary precision by RBFNNs, where the error δ can be regulated to extremely
small by selecting the ideal weight vector P∗ = [P1

∗, P2
∗, . . . , Pl

∗]T as

Ψ∗ := arg min
W∈Rl

{
sup

X∈ΩX

∣∣∣ f (X)−Ψ∗T P(X)
∣∣∣}. (11)

Define Ξ = max
{
‖Pi‖2

}
, i = 1, 2, · · · , n, where Pi are the vectors of the i-th neural network.
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Remark 3. Due to the existence of unknown parameters and unknown kinetic functions within the
system, the controller cannot be designed directly. With the help of Lemma 4, RBFNNs are used to
estimate the unknown dynamics of the system.

3. The Design of FTOAC

Combining DSC, backstepping techniques, and neural networks, the FTOAC is de-
signed in this section.

3.1. The Fixed-Time Observer

Unlike the approximated method of [42], we try to compensate for the disturbance,
where the i-th disturbance is defined as

∆i(t) = J−1(Sat(ui)− ui) + di. (12)

Thus, the model of n-link FJR can be rewritten as
.
x1 = x2.
x2 = M−1(x1)(Kx3 − C(x1, x2)x2 − G(x1)− F(x2)− Kx1).
x3 = x4.
x4 = J−1(u− Bx4 − K(x3 − x1)) + ∆,

(13)

where ∆ = [∆1, ∆2, · · · , ∆n]
T .

Design the observer as{ .
z1 = −l1

ε1

‖ε1‖1/2 − l2ε1‖ε1‖p−1 + z2 + J−1(u− Bx4 − K(x3 − x1))
.
z2 = −l3

ε1
‖ε1‖

,
(14)

where {
ε1 = z1 − x4,
p > 1, l1 >

√
2l3, l2 > 0, l3 > 4L1.

(15)

Theorem 1. Consider the saturation system described by(13), and assume that the term ∆satisfies∥∥∥ .
∆
∥∥∥ ≤ L1, where L1 is a known constant. Define z1 and z2 as the states of the designed fixed-time

observers. Then, the terms ∆ can be estimated within a fixed time through z1 and z2.

The proof of Theorem 1 is presented in Appendix A.

3.2. The Dynamic Surfaces

To overcome the problem of “complex explosion”, the first-order filter is introduced as

ϕi
.

ωi = ωi −ωi, i = 1, · · · , 3, (16)

in which ϕi is a positive designed constant, ωi ∈ Rn represents the input vector, and
ωi ∈ Rn denotes the output vector.

Then, a compensated mechanism as follows is designed to eliminate the filtering errors.

.
η1 = −l11

η1

(η1
Tη1)

1−β1
− l12

η1

(η1
Tη1)

1−β2
+ η2 + υ1

.
η2 = −l21

η2

(η2
Tη2)

1−β1
− l22

η2

(η2
Tη2)

1−β2
− η1 + M−1(x1)K(η3 + υ2)

.
η3 = −l31

η3

(η3
Tη3)

1−β1
− l32

η3

(η3
Tη3)

1−β2
−M−1(x1)Kη2 + η4 + υ3

.
η4 = −l41

η4

(η4
Tη4)

1−β2
− l42

η4

(η4
Tη4)

1−β2
− η3,

(17)
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where lij, i = 1, . . . 4, j = 1, 2 are positive constants and υi are the filter errors

υi = ωi −ωi, i = 1, 2, 3 (18)

Remark 4. The backstepping design needs to directly derive the virtual control law. Because the
virtual control law of a nonlinear system is complex, the derivation is sometimes infeasible. By
introducing the filter, the derivation of the virtual control law can be avoided. However, filter
errors have some impact on the system performance. Given this, this paper considers a filter
compensation mechanism convergence to eliminate the filtering error while meeting the fixed-time
stability requirements.

Therefore, the dynamic surfaces are given as{
χ1 = x1 − xd − η1
χi = xi −ωi−1 − ηi, i = 2, 3, 4.

(19)

3.3. The Design Process of the Backstepping Controller

Step 1: To achieve the output constraint, the Lyapunov barrier function [38] is
adopted as

V1 =
k2

b1

π
tan

(
πχT

1 χ1

2k2
b1

)
, ‖χ1(0)‖ < kb1 . (20)

where χ1 ∈ Ωη := {χ1 ∈ Rn, ‖χ1‖ < kb1}, kb1 = kc1 − k0 > 0.
By defining the function ϑ = χ1/[cos2(πχT

1 χ1/2k2
b1), the derivative of V1 can be

obtained as .
V1 = ϑT(χ2 + ω1 + υ1 + η2 −

.
η1 −

.
xd). (21)

Importing (17) into (21) results in

.
V1 = ϑT(χ2 + ω1 + l11

η1

(η1
Tη1)

1−β1
+ l12

η1

(η1
Tη1)

1−β2
− .

xd). (22)

Construct the virtual control law ω1 as

ω1 = −
k11 sin (

πχT
1 χ1

2k2
b1

)
β1

cos (
πχT

1 χ1
2k2

b1

)
2−β1

χ1

χT
1 χ1

−
k12 sin (

πχT
1 χ1

2k2
b1

)
β2

cos (
πχT

1 χ1
2k2

b1

)
2−β2

χ1

χT
1 χ1

−l11
η1

(η1
Tη1)

1−β1
− l12

η1

(η1
Tη1)

1−β2
+

.
xd,

(23)

where k11, k12 are positive design constants.
Taking the first equation of (17), and (23) into (21) generates

.
V1 = −k21 tan

(
πχT

1 χ1

2k2
b1

)β1

− k22 tan

(
πχT

1 χ1

2k2
b1

)β2

+ ϑ1
Tχ2. (24)

Step 2: According to (19), we have

.
χ2 =

.
x2 −

.
ω1 −

.
η2 (25)

Taking the second equation of (13) and (17) into (25) results in

.
χ2 = M−1(x1)(Kx3 − C(x1, x2)x2 − G(x1)− F(x2)− Kx1)

−
.

ω1 + l21
η2

(η2
Tη2)

1−β1
+ l22

η2

(η2
Tη2)

1−β2
+ η1 −M−1(x1)K(η3 + υ2).

(26)
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According to (18) and (19), we know that x3 = χ3 + ω2 + υ2 + η3. Thus, (26) can be
rewritten as

.
χ2 = M−1(x1)(K(χ3 + ω2)− C(x1, x2)x2 − G(x1)− F(x2)− Kx1)

+l21
η2

(η2
Tη2)

1−β1
+ l22

η2

(η2
Tη2)

1−β2
+ η1 −

.
ω1. (27)

Choose the Lyapunov function as

V2 = V1 +
1
2

χ2
Tχ2 +

1
2σ1

Ξ̃
2
, (28)

where Ξ̃ = Ξ− Ξ̂, Ξ̂ is the estimation of Ξ, and σ1 is a positive constant.
Taking the derivative of V2 leads to

.
V2 ≤ −k11 tan

(
πχT

1 χ1
2k2

b1

)β1

− k12 tan
(

πχT
1 χ1

2k2
b1

)β2

+ ϑ1
Tχ2 + χ2

T .
χ2 − 1

σ1
Ξ̃

.
Ξ̂

≤ −k1 tan
(

πχT
1 χ1

2k2
b1

)β1

− k2 tan
(

πχT
1 χ1

2k2
b1

)β2

+ M−1(x1)Kχ2
T(χ3 + ω2)

−
.

ω1 +
∥∥χ2

T
∥∥‖ f1‖ − 1

σ1
Ξ̃

.
Ξ̂,

(29)

where

f1 = M−1(x1)(−C(x1, x2)x2 − G(x1)− F(x2)− Kx1) + l21
η2

(η2Tη2)
1−β1

+ l22
η2

(η2Tη2)
1−β2

+ η1) + ϑ

Based on Lemma 4, a neural network system Ψ1
T P1(X1 ) can be used to approximate

the unknown function ‖ f1‖. For any given ε1 > 0, we have

‖ f1‖ = ΨT
1 P1(X1) + δ1(X1) (30)

where δ1(X1) ≤ ε1, and X1 =
[
x1, x2, qd,

.
qd,

..
qd
]T. Through Young’s inequality, one obtains

∥∥∥χ2
T
∥∥∥‖ f1‖ =

∥∥∥χ2
T
∥∥∥ΨT

1 P1(X1) +
∥∥∥χ2

T
∥∥∥δ2(X1) ≤

Ξχ2
Tχ2PT

1 P1

2a2
1

+
a2

1
2
+

χ2
Tχ2

2
+

ε2
1

2
, (31)

χ2
Tχ3 ≤

1
2

χ2
Tχ2 +

1
2

χ3
Tχ3, (32)

where a1 is a positive design parameter.
By inserting(31) and (32) into (29), one obtains

.
V2 ≤ −k11 tan

(
πχT

1 χ1
2k2

b1

)β1

− k12 tan
(

πχT
1 χ1

2k2
b1

)β2

+ M−1(x1)Kχ2
T( 1

2 χ2 + ω2)

+ 1
2 M−1(x1)Kχ3

Tχ3 +
Ξχ2

Tχ2PT
1 P1

2a2
1

+
a2

1
2 + χ2

Tχ2
2 +

ε2
1
2 −

1
σ1

Ξ̃
.
Ξ̂.

(33)

Design the virtual control law ω2 as

ω2 = K−1M(x1)(−
k21χ2

(χ2Tχ2)
1−γ1

− k22χ2

(χ2Tχ2)
1−γ2

−
Ξ̂χ2PT

1 P1

2a2
1
− 1

2
χ2 +

.
ω1)−

χ2

2
, (34)

where k21 > 0, k22 > 0.
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Taking (34) into (33) generates

.
V2 ≤ −k11 tan

(
πχT

1 χ1
2k2

b1

)β1

− k12 tan
(

πχT
1 χ1

2k2
b1

)β2

− k21(χ2
Tχ2)

γ1 − k22(χ2
Tχ2)

γ2

+ 1
2 M−1(x1)Kχ3

Tχ3 +
Ξ̃χ2

Tχ2PT
1 P1

2a2
1

+
a2

1
2 +

ε2
1
2 −

1
σ1

Ξ̃
.
Ξ̂.

(35)

Step 3: Choose the candidate Lyapunov function as

V3 = V2 +
1
2

χ3
Tχ3. (36)

Taking its derivative leads to

.
V3 =

.
V2 + χ3

T .
χ3. (37)

Based on (19), we have
.
χ3 =

.
x3 −

.
ω2 −

.
ϕ3 (38)

Substituting (13) (17) into the equation (38) generates

.
χ3 = x4 −

.
ω2 + l31

η3

(η3Tη3)
1−β1

+ l32
η3

(η3Tη3)
1−β2

+ M−1(x1)Kη2 − η4 − υ3. (39)

By combining (19) with (18), we have

x4 = χ4 + υ3 + ω3 + η4. (40)

Accordingly, (37) can be rewritten as

.
V3 =

.
V2 + χ3

T(χ4 + ω3 −
.

ω2 + l31
η3

(η3Tη3)
1−β1

+ l32
η3

(η3Tη3)
1−β2

+ M−1(x1)Kη2). (41)

By Young’s inequality, χ3
Tχ4 ≤ χ3

Tχ3/2 + χ4
Tχ4/2. Bringing (35) into (41) results in

.
V3 ≤ −k11 tan

(
πχT

1 χ1

2k2
b1

)β1

− k12 tan

(
πχT

1 χ1

2k2
b1

)β2

− k21

(
χ2

Tχ2

)β1 − k22

(
χ2

Tχ2

)β2

+
1
2

M−1(x1)Kχ3
Tχ3 +

Ξ̃χ2
Tχ2PT

1 P1

2a2
1

+
a2

1
2
+

ε2
1

2
− 1

σ1
Ξ̃

.
Ξ̂ +

1
2

χ3
Tχ3 +

1
2

χ4
Tχ4

+χ3
T(ω3 −

.
ω2 + l31

η3

(η3Tη3)
1−β1

+ l32
η3

(η3Tη3)
1−β2

+ M−1(x1)Kη2).

(42)

Construct the virtual control law ω3 as

ω3 =
.

ω2 − k31χ3

(χ3
Tχ3)

1−β1
− k3χ3

(χ3
Tχ3)

1−β2
− l31

η3

(η3
Tη3)

1−β1

−l32
η3

(η3
Tη3)

1−β2
−M−1(x1)Kη2 − 1

2 M−1(x1)Kχ3 − 1
2 χ3.

(43)

where k31 > 0, k32 > 0.
Therefore, one obtains

.
V3 ≤ −k11 tan

(
πχT

1 χ1
2k2

b1

)β1

− k12 tan
(

πχT
1 χ1

2k2
b1

)β2

− k21(χ2
Tχ2)

β1 − k22(χ2
Tχ2)

β2

−k31(χ3
Tχ3)

β1 − k32(χ3
Tχ3)

β2 +
Ξ̃χ2

Tχ2PT
1 P1

2a2
1

+
a2

1
2 +

ε2
1
2 −

1
σ1

Ξ̃
.
Ξ̂ + 1

2 χ4
Tχ4.

(44)
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Step 4: Because χ4 = x4 −ω3 − η4, we have

.
χ4 =

.
x4 −

.
ω3 −

.
η4 =

.
x4 −

.
ω3 −

.
η4 (45)

According to (13) and (14), we have

.
χ4 = J−1(v− Bx4 − K(x3 − x1)) + ∆ +

.
z2 −

.
ω3 + l41

η4

(η4
Tη4)

1−β2
+ l42

η4

(η4
Tη4)

1−β2
+ η3. (46)

The candidate Lyapunov function is constructed as

V4 = V3 +
1
2

χ4
Tχ4. (47)

Taking the derivative for V4 results in

.
V4 =

.
V3 + χ4

T .
χ4. (48)

According to (46), we have

.
V4 =

.
V3 + χ4

T(J−1(v + f2) + ∆). (49)

where the functions f2 are defined as

f2 = J−1(−Bx4 − K(x3 − x1)) + l41
η4

(η4
Tη4)

1−β2
+ l42

η4

(η4
Tη4)

1−β2
+ η3. (50)

Based on Lemma 4, ‖ f2(X2)‖ can be approximated as

‖ f2‖ = Ψ2
Tψ2(X2) + δ2(X2), (51)

with the estimated error |δ2| ≤ ε2. By performing the same with (31), we have

∥∥∥χ4
T
∥∥∥‖ f2‖ =

∥∥∥χ4
T
∥∥∥ΨT

2 P2(X2) +
∥∥∥χ4

T
∥∥∥δ2(X2) ≤

Ξχ4
Tχ4PT

2 P2

2a2
2

+
a2

2
2
+

χ4
Tχ4

2
+

ε2
2

2
. (52)

Then,
.

V4 becomes

.
V4 ≤

.
V3 + χ4

T J−1v + χ4
Tχ4 + χ4

T∆ +
Ξχ4

Tχ4PT
2 P2

2a2
2

+
a2

2
2
+

ε2
2

2
. (53)

Design the actual controller u as

u = J(− k41χ4

(χ4
Tχ4)

1−β1
− k4χ4

(χ4
Tχ4)

1−β2
−

Ξ̂PT
2 P2χ4

2a2
2

+
.

ω3 +
3
2

χ4 − z2). (54)

Inserting (54) into (53) leads to

.
V4 ≤ −k11 tan

(
πχT

1 χ1
2k2

b1

)β1

− k12 tan
(

πχT
1 χ1

2k2
b1

)β2

−∑4
i=2 ki1(χi

Tχi)
β1

−∑4
i=2 ki2(χi

Tχi)
β2 +

Ξ̃χ2
Tχ2PT

1 P1
2a2

1
+

Ξ̃χ4
Tχ4PT

2 P2
2a2

2
+

a2
1

2 +
a2

2
2 +

ε2
1
2 +

ε2
2
2 −

1
σ1

Ξ̃1

.
Ξ̂1.

(55)

Design the adaptive law
.
Ξ̂1 as

.
Ξ̂ = σ1

χ2
Tχ2PT

1 P1

2a2
1

+ σ1
χ4

Tχ4PT
2 P2

2a2
2

− Ξ̂− Ξ̂2β2−1. (56)
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By combining Ξ̂ = Ξ− Ξ̃ with (56), we have

.
V4 ≤ −k11 tan

(
πχT

1 χ1
2k2

b1

)β1

− k12 tan
(

πχT
1 χ1

2k2
b1

)β2

−∑4
i=2 ki1(χi

Tχi)
β1

−∑4
i=2 ki2(χi

Tχi)
β2 + Ξ̃(Ξ− Ξ̃) + Ξ̃(Ξ− Ξ̃)

2β2−1
+

a2
1

2 +
a2

2
2 +

ε2
1
2 +

ε2
2
2 .

(57)

According to Lemma 2 and Lemma 3, one obtains

.
V4 ≤ −k11 tan

(
πχT

1 χ1
2k2

b1

)β1

− k12 tan
(

πχT
1 χ1

2k2
b1

)β2

−∑4
i=2 ki1(χi

Tχi)
β1

−∑4
i=2 ki2(χi

Tχi)
β2 − 1

2 Ξ̃
2β1 − β2−1

β2
Ξ̃

2β2 + β2−1
β2

Ξ2β2 + 1
2 Ξ2

+β1g +
a2

1
2 +

a2
2

2 +
ε2

1
2 +

ε2
2
2 .

(58)

Step 5: Choose the Lyapunov function as

V5 =
1
2∑4

i=1 ηi
Tηi. (59)

According to (17), we have
η1

T .
η1 = −l11

(
η1

Tη1
)β1 − l12

(
η1

Tη1
)β2 + η1

Tη2 + η1
Tυ1

η2
T .

η2 = −l21
(
η2

Tη2
)β1 − l22

(
η2

Tη2
)β2 − η1

Tη2 + M−1(x1)K
(
η2

Tη3 + η2
Tυ2
)

η3
T .

η3 = −l31
(
η3

Tη3
)β1 − l32

(
η3

Tη3
)β2 −M−1(x1)Kη2

Tη3 + η3
Tη4 + η3

Tυ3

η4
T .

η4 = −l41
(
η4

Tη4
)β2 − l42

(
η4

Tη4
)β2 − η3

Tη4.

(60)

Then,

.
V5 = −∑4

i=1 li1(ηi
Tηi)

β1 −∑4
i=1 li2(ηi

Tηi)
β2 + ∑3

i=1 ηi
T Aiυi, (61)

where A1 = A3 = I, A2 = M−1(x)K.
Similar to [39], ‖υi‖ ≤ ζi can be obtained in a limited time T with ζi > 0.
With the help of Young’s inequality, one obtains

∑3
i=1 ηi

T Aiυi ≤∑3
i=1

∥∥∥ηi
T
∥∥∥‖Aiυi‖ ≤∑3

i=1
1
β1

(ηi
Tηi)

β1 + ∑3
i=1
‖Aiζi‖q

q
, (62)

where q = 2β1/(2β1 − 1).
Bringing (62) into (61) yields

.
V5 ≤ −∑4

i=1 κi(ηi
Tηi)

β1 −∑4
i=1 li2(ηi

Tηi)
β2 + ∑3

i=1
‖Aiζi‖q

q
(63)

in which κ1 = (l11 − 1/β1), κ2 = (l21 − 1/β1), κ3 = (l31 − 1/β1), κ4 = l41.

3.4. Stability Analysis

Theorem 2. For the FJR (13) with the input saturation (2) and the output-constrained condition
(4), by introducing the actual controller (54) in conjunction with the virtual control laws (23), (34),
(43) and the adaptive law (56), all signals of the closed-loop control system are bounded, the system
can track the reference signals xd within the fixed-time T.

Proof. Construct the whole Lyapunov function as

V = V4 + V5 = ∑4
i=1

1
2

χi
Tχi + ∑2

i=1
1

2ai
Ξ̃

T
Ξ +

1
2v

ηTη. (64)
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By combining (58) with (63), we have

.
V = −k11 tan

(
πχT

1 χ1
2k2

b1

)β1

− k12 tan
(

πχT
1 χ1

2k2
b1

)β2

−∑4
i=2 ki1(χi

Tχi)
β1

−∑4
i=2 ki2(χi

Tχi)
β2 − 1

2 Ξ̃
2β1 − γ2−1

γ2
Ξ̃

2β2 −∑4
i=1 κi(ηi

Tηi)
β1

−∑4
i=1 li2(ηi

Tηi)
β2 + ϕ,

(65)

in which ϕ = β2−1
β2

Ξ2β2 + ∑3
i=1

‖Aiζi‖q

q + 1
2 Ξ2 + β1g +

a2
1

2 +
a2

2
2 +

ε2
1
2 +

ε2
2
2 .

The inequation (65) can be rewritten as

.
V ≤ −κVβ1 − ιVβ2 + ϕ, (66)

where κ = min{ki1, κi, 1/2, i = 1, 2, · · · , 4}, ι = 91−β2 ∗min{ki2, li2, 1/2, i = 1, 2, · · · , 4}. Ac-
cording to Lemma 1, by choosing the appropriate parameters, the tracking errors can be
limited to a small residual set within a fixed-time interval. The proof of Theorem 2 has been
finished. The overall control scheme is shown in Figure 2.
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Figure 2. System control structure diagram.

The sensors are used to detect the output signal qi, i = 1, 2, · · · , n of the AFJR. The
tracking error e1 can be obtained by comparing the output signal qi, i = 1, 2, · · · , n with
the desired trajectory. Then, by introducing the command filter and the compensation
mechanism, dynamic surfaces are designed. Based on the dynamic surface technique,
the backstepping technique, and the fixed-time stability theory, the virtual controllers
ω1, ω2, ω3 and the actual fixed-time controller u are constructed in turn, in which the
RBFNNs and the adaptive law are used to approximate the unknown function in the
system. A fixed-time observer is introduced to estimate the disturbances ∆.

4. Simulation

This section introduces a series of simulation examples to demonstrate the effectiveness
of the presented control scheme in this paper. The simulations are carried out in MATLAB
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R2021a/Simulink. A two-link FJR is chosen as the object and its dynamics are described by
Equation (1) with

M(q) =
[

(m1 + m2)l2
1 m1l1l2(s1s2 + c1c2)

m1l1l2(s1s2 + c1c2) m2l2
2

]
C
(
q,

.
q
)
= m2l1l2(c1s2 − s1c2)

[
0 − .

q2
− .

q1 0

]
G(q) =

[
−(m1 + m2)l1gs1
−m2l2gs2

]
F
(
q,

.
q
)
=

[
0.5q1 + 0.3

.
q1

0.3q2 + 0.4
.
q2

]
(67)

where c1 = cos(q1), s1 = sin(q1), c2 = cos(q2), s2 = sin(q2).
As referred to in the literature [10], the parameters of the two-link FJR are listed

in Table 2. The initial values of the system are chosen as x1 = [0.01; 0.01], x2 = x3 =
x4 = [0; 0].xd1 = 0.6 sin(0.2πt) and xd2 = 0.5sin(0.1πt ) + 0.5sin(0.2πt) are the desired
trajectories of joint 1 and joint 2, respectively. Then, select the constants of the control
system as k1 = k3 = 0.5, k2 = k4 = 5, l1 = l2 = l3 = l4 = 65,p1 = p2 = 10, σ1 = σ2 = 0.1.
The designed parameters of filters 1, 2, and 3 are selected as τ1 = 5, τ2 = 85, τ3 = 85,
respectively. The parameters of the compensated mechanism are l11 = l12 = l21 = l22 =
l31 = l32 = l41 = l42 = 65. The RBFNNs of this paper include 11 nodes, and the center and
width of the Gaussian functions are chosen respectively as zi ∈ [−20, 20] and b1 = b2 = 50.

Table 2. The parameters of the two-link FJR system.

Parameters Description Value Units

m1, m2
l1, l2
J1, J2

B1, B2
K1, K2

the mass o f link 1 and link 2
the length o f link 1 and link 2

f lexibility o f joint 1 and joint 2
damping coe f f icient

sti f f ness o f joint 1 and joint 2

1
2
1
0.9

100

kg
m

m/s2

N ·m · s/rad
N ·m/rad

4.1. The FTOAC under Filtering Compensation and Saturations

To analyze the effects of the filter compensation and different input saturation values
on the control performance, four cases with different control parameters are chosen for
comparison, as follows:

Case 1: The system works without the filter compensation (17), where the controller
parameters are set as uM = 20N ·m, γ1 = 1, γ2 = 1.

Case 2: The system works by the proposed FTOAC, where the controller parameters
are set as uM = 20N, kb1 = 0.25, γ1 = 97/101, γ2 = 1.5.

Case 3: The system works by the proposed FTOAC, where the controller parameters
are set as uM = 10N, kb1 = 0.25, γ1 = 97/101, γ2 = 1.5.

Case 4: The system works by the proposed FTOAC, where the controller parameters
are set as uM = 5N, kb1 = 0.25, γ1 = 97/101, γ2 = 1.5.

Case 1 represents the control scheme without the filter compensation. Cases 2, 3,
and 4 represent the fixed-time stabilization control strategy with the filter compensation.
The simulation results are shown in Figures 3–6. Figures 3 and 4 reveal the tracking
performance. It can be seen that the system outputs can track the desired trajectory well
using the proposed composite controller, and the tracking errors of both joints of the FJR
are kept within a small range. In contrast, there is a lot of volatility in the tracking errors in
Case 1. In comparing the tracking trajectories and error trajectories of Cases 2, 3, and 4, we
know that the FJR system still has good tracking performance. However, the smaller the
saturation value uM, the greater the vibration of the system.
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In order to prove the correctness of the proposed method, we introduce the Mean
Value (MV) and Root Mean Square (RMS) to evaluate the tracking error.

MV =

(
1
T
·
∫ T

0
ei(t)dt

)
, i = 1, 2 (68)

RMS =

√(
1
T
·
∫ T

0
ei(t)

2dt
)

, i = 1, 2 (69)

The quantities of the tracking errors are presented in Table 3. We know that Case 2 has
the smallest MV and RMS.

Table 3. Quantity table of tracking error.

Joint 1 MV RMS Joint 2 MV RMS

Case 1 0.054163 0.017411 Case 1 0.002127 0.010399

Case 2 0.011908 0.012069 Case 2 0.001439 0.010064

Case 3 0.011947 0.012462 Case 3 0.001463 0.010078

Case 4 0.011977 0.012535 Case 4 0.001483 0.010098

Figure 5 shows the control inputs. All the plant inputs ui, i = 1, 2 satisfy ui, i = 1, 2 ≤ uM.
Figure 6 shows the outputs of the fixed-time observer, which represents the estimation of
the saturation disturbances. We can see that when the actuators are out of saturation, the
state variables of the fixed-time observer can converge to zero quickly, thus restoring the
system performance under the nominal controller. Therefore, we can conclude that the
control scheme proposed in this paper can realize the tracking control of the FJR under
different input saturations. The solution with filtered compensation is more effective than
the one without compensation.

4.2. Comparisons between the FTOAC and the Conventional DSC

To further verify the effectiveness of the proposed controller, a comparison is carried
out with the work of Song Ling et al. [42], which is also developed by the DSC-backstepping
technique, but the asymptotic stabilization control strategy is adopted. The control laws of
the compared method are designed as

ω1 = −
k11 sin

(
πχT

1 χ1
2k2

b1

)
cos

(
πχT

1 χ1
2k2

b1

)
χ1

χT
1 χ1

+
.
x1d,

ω2 = K−1M(x1)

(
−k21χ2 −

Ξ̂χ2PT
1 P1

2a2
1
− 1

2 χ2 +
.

v1

)
− χ2

2

ω3 =
.

ω2 − k31χ3 − 1
2 M−1(x1)Kχ3 − 1

2 χ3

u = J
hm

(
−k41χ4 −

Ξ̂PT
2 P2χ4
2a2

2
+

.
ω3 + χ4

)
,

(70)

and the adaptive law is designed as

.
Ξ̂ = σ1

χ2
Tχ2PT

1 P1

2a2
1

+ σ1
χ4

Tχ4PT
2 P2

2a2
2

− Ξ̂. (71)

The comparative simulations are performed with the same control parameters and the
initial state of the system. The simulation results are shown in Figures 7–9. Figures 7 and 8
represent the tracking performance of joint 1 and joint 2, respectively. We can see that
the tracking effect using the comparison scheme is not satisfactory where the expected
trajectory changes more frequently. The system has a large overshoot, and when the system
is in a steady state, the error fluctuation is still large, close to about 0.2 rad. On the contrary,
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the convergence performance of the error is faster using the FTOAC scheme proposed in
this paper, and the errors stay in a very small range when the system is stable. Table 4
shows the mean value and root mean square of the tracking errors. It is obvious that the
mean and root mean square values of the tracking error of the FTOAC are smaller.
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Table 4. Quantity table of tracking error.

Joint 1 MV RMS Joint 2 MV RMS

Conventional DSC 0.060696 0.06564 Conventional DSC 0.00792 0.054

FTOAC 0.016863 0.020326 FTOAC −0.00002 0.019

Figure 9 shows the actual control input of the system. By the FTOAC, the control input
curve is smoother. According to the above analysis, it is clear that the control performance
of the FTOAC scheme is much better than the compared scheme.
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4.3. The FTOAC under Internal Disturbances from the Drone Platform

In order to verify the FTOAC can tolerate disturbances from the internal force between
the arm and the quadrotor, we introduce the following simulation.

Case 1: The system works under the perturbation of internal forces on the robotic arm
by the quadrotor UAV, where the disturbances are chosen as dext1 = 2 sin(t),
dext1 = 3 sin(2t).

Case 2: The system works under the disturbances dext1 = 2 sin(t), dext1 = 3 sin(2t)
and the input saturation uM = 40.

It can be seen from Figures 10 and 11 that the tracking performance of the system can
still be guaranteed by using the FTOAC scheme proposed in this paper in the presence
of coupling force interference between the subsystems of the aerial unmanned robotic
arm and input saturation. According to Figures 12 and 13, we can see that the unknown
disturbances within the system can be approximated by our proposed fixed-time observer
within a small time interval.
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5. Conclusions

By proposing an FTOAC scheme for the AFJR system, the nonlinear unknown dynam-
ics of the system, the input saturation perturbation problem of the FJR, and the internal
disturbances from the UAV are effectively learned and compensated. Then, a tangent-type
Lyapunov function is introduced to implement the output constraint, and a fixed-time
compensator is designed to eliminate the influences from filtering errors. The stability
analysis shows that all the signals of the closed-loop system are bounded, and the system
satisfies the condition of fixed-time convergence. The simulation results show that the
FTOAC scheme has better control performance than the conventional DSC scheme and can
tolerate disturbances from the internal force between the drone and the arm.

Future work will focus on the study of reinforcement learning control problems for
AFJR systems and the development of physical platforms.
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Appendix A

Proof of Theorem 1. By taking the derivative of ε1, one can obtain

.
ε1 =

.
z1 −

.
x4

= −l1
ε1

‖ε1‖1/2 − l2ε1‖ε1‖p−1 + z2 − ∆. (A1)

Letting ε1
∗ = z2 − ∆, we have

.
ε1 = −l1

ε1

‖ε1‖1/2 − l2ε1‖ε1‖p−1 + ε1
∗. (A2)

Taking the derivative of ε1
∗ provides
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ε1
∗ =

.
z2 −

.
∆ = −l3

ε2

‖ε2‖
−

.
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As a result, the error dynamics of the observer for ∆ can be represented as
.
ε1 = −l1

ε1

‖ε1‖1/2 − l2ε1‖ε1‖p−1 + ε1
∗

.
ε1
∗ =

.
z2 −

.
∆ = −l3

ε1
‖ε1‖
−

.
∆

. (A4)

On the basis of the result presented in [50], when the observer gains l1, l2, and l3 satisfy
the condition (23), ε1 and ε1

∗ can uniformly converge to the origin within a fixed time as

to ≤
(

1
l2(p− 1)}p−1 +

2(
√

2})1/2

l1

) (
1 +

l3 + L
(l3 − L)

(
1−
√

2l3/l1
)) (A5)

where } > 0. The minimum value of to(}) is obtained as long as } =
(

21/4l1/l2
) 1

p+1/2 .
Recalling the definition ε1

∗ = z2−∆, it is proven that z2 can approach ∆ within a fixed time.
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