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Abstract: This paper presents enhancements to, and the demonstration of, the General Urban area
Microclimate Predictions tool (GUMP), which is designed to provide hyper-local weather predictions
by combining machine-learning (ML) models and computational fluid dynamic (CFD) simulations.
For the further development and demonstration of GUMP, the Embry–Riddle Aeronautical University
(ERAU) campus was used as a test environment. Local weather sensors provided data to train ML
models, and CFD models of urban- and suburban-like areas of ERAU’s campus were created and
iterated through with a wide assortment of inlet wind speed and direction combinations. ML weather
sensor predictions were combined with best-fit CFD models from a database of CFD flow fields,
providing flight operational areas with a fully expressed wind flow field. This field defined a risk
map for uncrewed aircraft operators based on flight plans and individual flight performance metrics.
The potential applications of GUMP are significant due to the immediate availability of weather
predictions and its ability to easily extend to arbitrary urban and suburban locations.

Keywords: uncrewed aircraft; unmanned aircraft systems; weather; micrometeorology; advanced air
mobility; urban air mobility; atmospheric boundary layer; urban boundary layer; forecasting; wind

1. Introduction

Advanced Air Mobility (AAM) is an emerging air transportation system that promises
to move both people and cargo in a more efficient and ecologically friendly manner within
and between urban areas while connecting these urban areas to adjacent suburban and rural
locales [1]. AAM stakeholders ultimately envision hundreds-to-thousands of simultaneous
flight operations in support of this vision over and around large metropolitan areas. Flight
operations will consist of a mix of different aircraft types to serve the niche markets
(e.g., cargo transportation, people transport, aerial work) composing the broader AAM
ecosystem. Associated aircraft will span in size from smaller parcel-delivering aircraft
operating in low altitude airspace (Uncrewed Aircraft Systems (UAS) Traffic Management
(UTM)) to larger aircraft transporting people and cargo at slightly higher altitudes in
a more traditional Air Traffic Management (ATM) setting. Collectively, these vertically
stacked operations will predominately take place in a block of altitudes stretching from
the surface to 5000 feet above ground level (AGL), with larger AAM aircraft cruising
at nominal altitudes of 1000–2000 feet AGL [2–6]. This block of altitude composes the
atmospheric boundary layer (ABL), a spatially and temporally dynamic portion of the
atmosphere that is also characterized by persistent turbulence [7]. With many AAM
operations tailored for the urban environment, a large number of operations will take place
within the urban boundary layer (UBL), a portion of the ABL that is influenced by the
presence of a city [8]. Since the properties of the UBL tend to reflect those of the underlying
surface, which hosts more roughness elements (e.g., buildings) and possesses more surface
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cover heterogeneity (e.g., asphalt, concrete, grass and other natural and artificial surfaces),
the UBL tends to be an even more dynamic environment than the general ABL found over
more rural, homogeneous outlying areas. This lower portion of the atmosphere (i.e., the
ABL) has traditionally been an environment that aircraft have quickly passed through
during departure- and approach-flight segments. However, with the advent of AAM,
a new era of sustained aviation operations is envisioned in this dynamic portion of the
atmosphere, and, consequently, new forecasting products need to be developed.

Within the AAM ecosystem, small UASs (sUAS) will play a central role in small pack-
age delivery and aerial work, such as the last-mile delivery of parcels and medical supplies,
infrastructure inspection, and search-and-rescue, respectively. These sUAS operations are
envisioned to occur in the UTM environment below 400 feet AGL. Consequently, these
aerial vehicles will not only be operating in a new and dynamic environment but, because
of their decreased size, mass, thrust and speed, they will also be more susceptible to their
environment. This makes timely and reliable hyperlocal forecasting for this environment
essential, and these sUAS operations are the ones in which this work seeks to support.

To date, efforts toward hyperlocal forecasting have been rather limited. Common
strategies that have been employed for this include running large-scale Numerical Weather
Prediction (NWP) models with smaller grid cells that provide increased spatial resolu-
tion [9,10]. However, the increased number of calculations on these finer grids make
them impractical for real-time forecasting with currently available computational resources.
Computational Fluid Dynamics (CFD) has been used in conjunction with highly detailed
urban and topographical models to predict boundary layer flow patterns [11–13] and
for applications that include plume dispersion and the spread of airborne toxins [14,15],
predicting wind loads on buildings [16,17], assessing the wind resource for urban wind
energy generation [18–20], and investigating urban pedestrian comfort [21,22]. However,
similarly to the large-scale NWP run on fine grids, the associated computational costs
for these applications are appropriate for one-off analysis but not for real-time weather
forecasting. Finally, the downscaling of large-scale NWP on finer grids has been used with
the incorporation of additional strategically placed sensors [23,24]. While this strategy has
great potential for hyperlocal forecasting, the requirement for deliberately placed special-
ized sensors limits the utility of this methodology. The General Urban Area Microclimate
Predictions Tool (GUMP) [25] was developed with this need and these challenges in mind.
This work reports on the expansion of GUMP capability and its validation via observa-
tions made within representative urban and suburban environments on Embry–Riddle
Aeronautical University’s (ERAU) campus.

The following section of this paper is broken down into two main segments. Section 2.1
provides an overview of GUMP, including the associated machine-learning forecasting
and the iterative inference schemes using CFD. Section 2.2 details the experimental field
campaign using sUAS. Section 3 of this work juxtaposes the GUMP model output with
the empirical observations. Following these results, the promising utility of GUMP for
sUAS operations is discussed, while also highlighting strategies for improvement. Finally,
a summary of the work is provided and additional applications for GUMP are suggested.

2. Methodology
2.1. GUMP Overview

GUMP is a micro-scale, hyper-local weather prediction service for rural and urban
areas, and it leverages mesoscale forecasts in combination with data from local weather
sensors and CFD-derived datasets. GUMP combines the benefits of high-fidelity CFD with
the prediction capability of machine-learning (ML) models while targeting the specific
needs of sUAS operators. Toward this, GUMP has two major components (Figure 1):
forecasting for estimating future weather at specific point locations by consuming live and
forecast data from the National Oceanic and Atmospheric Administration (NOAA), along
with other sources, and creating temporal predictions using ML models; and iterative
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inference for extending these estimates to all other points within the area of interest using
selective CFD simulations [25].

Figure 1. GUMP architecture.

2.1.1. Machine-Learning Forecasting

ML models were trained using past data collected by local weather stations. For
example, data were collected from ERAU’s weather stations (“0104W”, “E5900”, “E9392”,
and “F3022”) from August 2019 to January 2022, and then used to train the models. It
should be noted that the reporting frequency for these stations was every 10 min.

Each individual ML model is a recurrent neural network (RNN) with the same general
structure, although hyperparameters can be set for the long short-term memory (LSTM)
layer dropout fraction, the dense layer dropout fraction, the final layer activation function,
the loss function, and the number of nodes in the LSTM layers. For the ERAU sensor
datasets, notional hyperparameters are selected as initial values based on the relative dataset
sizes. Additionally, hyperparameter tuning was performed to optimize the performance
of the ML models. The forecast weather (wind speed and wind direction) from the ML
models is generated for one-to-six hours into the future, based on the most recent six hours
of measurements. Representative results are shown in Figure 2, which use WeatherStem
mesonet data [26]. As anticipated, the overall trend shows that the prediction error increases
with a longer forecast horizon, which is expected since more immediate weather conditions
are easier to predict than those that are further into future. For wind speed, 80% of the
predictions are within 1 m/s. The error, albeit small, fluctuates widely for the first hour of
the time horizon but subsequently stabilizes. In contrast, the wind direction error appears
to increase at a constant rate for the entirety of the six-hour prediction horizon. Median
errors in wind direction prediction are modest (<30◦) for the entire prediction horizon.
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Steady-state CFD modeling is dependent on the boundary conditions provided for 
the simulation, including domain geometry and flow boundaries. By changing the flow 
inlet conditions to capture variations in wind speed and direction, a sweep across many 
potential wind fields was performed by rotating the inlet face around the domain; the 
south wind configuration is shown in Figure 4. A total of 720 cases were evaluated via the 
ANSYS Fluent CFD solver using the k-epsilon Reynolds-averaged Navier–Stokes (RANS) 
solver [25]. This turbulence model was used for its low computational cost compared to 
other solvers, such as unsteady Reynolds-averaged Navier–Stokes (URANS) or large eddy 
simulations (LES). For the formulation of flight plans, the transient effects from an un-
steady flow simulation are of a lower priority (assuming turbulent areas are sufficiently 
identified). While LES would provide better quality in the output models, most of the 
effects that RANS is unable to capture occur close to the walls. We do not expect aircraft 
to be flying here; hence, those predictions are not critical. The convergence criteria defined 
is 1 × 10−4, and the models were run at steady state for a maximum of 10,000 iterations. 
Mesh refinement was performed to meet the convergence criteria by applying cell-sizing 
constraints. 

Figure 2. Wind speed (a) and wind direction (b) prediction error for varying quantiles at local weather
station. The black line denotes the median error.

2.1.2. Iterative Inference Using CFD

To expand GUMP’s application to diverse geographic regions of interest, a model of
the ERAU campus was created and divided into four sections (Figure 3). Treating these
sections as individual wind flow regions allowed for the production of a modular wind
field database, which provides a flow field throughout the entire area of interest.
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Figure 3. Model of ERAU campus.

Steady-state CFD modeling is dependent on the boundary conditions provided for
the simulation, including domain geometry and flow boundaries. By changing the flow
inlet conditions to capture variations in wind speed and direction, a sweep across many
potential wind fields was performed by rotating the inlet face around the domain; the
south wind configuration is shown in Figure 4. A total of 720 cases were evaluated via the
ANSYS Fluent CFD solver using the k-epsilon Reynolds-averaged Navier–Stokes (RANS)
solver [25]. This turbulence model was used for its low computational cost compared to
other solvers, such as unsteady Reynolds-averaged Navier–Stokes (URANS) or large eddy
simulations (LES). For the formulation of flight plans, the transient effects from an unsteady
flow simulation are of a lower priority (assuming turbulent areas are sufficiently identified).
While LES would provide better quality in the output models, most of the effects that RANS
is unable to capture occur close to the walls. We do not expect aircraft to be flying here;
hence, those predictions are not critical. The convergence criteria defined is 1 × 10−4, and
the models were run at steady state for a maximum of 10,000 iterations. Mesh refinement
was performed to meet the convergence criteria by applying cell-sizing constraints.
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Figure 4. Fluid domain (inlet boundary highlighted yellow) at 0 degrees (default).

The evaluated cases were derived from all possible combinations of the five computer-
aided design (CAD) models (four sections and the entire campus), nine flow speeds ranging
from four knots to 36 knots in four-knot increments, and 16 flow angles ranging from 0◦ to
360◦ in 22.5◦ increments. The full campus model was included in these sweeps to provide
additional resources for evaluating the performance of future model approximations.
Possessing many variations in wind flow for individual subsections of the location of
interest improved the potential for local wind prediction, as separate sections were allowed
to vary on the specific CFD case deemed to fit the best.

The large number of simulation cases were conducted by leveraging the built-in
simulation automation capabilities of ANSYS via its journaling feature. The meshing
parameters applied to each case were the same: a mesh cell of 4 m was used for modeling
the buildings, while 50 m was used for the ground, an example of which is shown in
Figure 5. The large number of CFD cases captured a reasonable array of expected wind
conditions. Whereas more cases would always be preferred from an accuracy perspective,
additional cases can significantly increase computational costs of the CFD simulations, as
well as their subsequent integration with the ML models. Consequently, this approach is
scalable in terms of expanding the dataset while reducing repeated computational overhead
where possible.

The flow conditions at a desired location (or sensor) are estimated by comparing the
observed initial flow condition at the desired location with the database of CFD simulation
results and determining the simulation case with the best match. A lookup function was
developed to automatically implement this comparison process. However, this strategy
is only relevant if accurate initial condition information can be ascertained at the desired
location, such as the case when a weather sensor provides accurate information for that
exact location. For cases when this is not possible, such as locations that either lack a sensor
input and are, therefore, ineligible for the previously defined lookup function, or where
the lookup function returns multiple potential matches, inferences are made to assign an
appropriate flow field. For areas where an inference cannot be made with the provided
data, additional iterations of the inference scheme can propagate sensor information to the
lacking locations while maintaining deference to available sensor data. Toward meeting
this challenge, an iterative inference scheme is developed.
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The iterative inference scheme uses the boundaries between two adjacent sections of a
geographic region, in this case covering the ERAU campus, to choose the best CFD result.
An example of the iterative inference was generated by assuming an input prediction of
southerly wind flow at 8 m/s at the 0104W sensor. Using this sensor input, a wind field
model was produced for the entire ERAU campus (Figure 6). The four section models
used to produce this flow field were derived from CFD results with inlet conditions
corresponding to a southerly wind. The selected upper right section was derived from a
far field wind of 4 m/s, which was slower than expected and produced more noticeable
discontinuities in wind speeds along a horizontal boundary on the right side. This was
likely due to the positioning of the sensor downstream from obstructions in the flow
slowing down the freestream velocity. Discontinuities between individual sections in the
completed flow field are expected and minimized by using boundary comparisons to help
select wind field combinations based on the lowest discrepancy in wind vectors.
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2.1.3. User Interface

The GUMP tool has been integrated into a data pipeline that ingests live weather data
and outputs detailed predicted flow fields for several hours into the future and displays
this on a live interface. An example of this display is shown in Figure 7. The flight plan is
demonstrated by bold arrows embedded in purple that, in this case, navigated through
the center of ERAU’s campus. Wind vectors throughout the flight operation area are
color-coded according to wind speed. While color assignment is configurable, in this case,
red vectors are assigned to wind speeds over 20 mph, which may be of concern to sUAS
operators. Several dominant wind corridors are observable, as well as changes in wind
speed over and around buildings. It is quite possible in this scenario that the proposed
flight route is unsuitable at this forecasted time. Providing this information to the operator
will make the deployment of the sUAS safer with the knowledge that there are wind
magnitudes that may exceed the capabilities of the sUAS. This can prevent a circumstance
that may result in a flight mishap that endangers people or property in the area.
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2.2. sUAS Flight Operations
2.2.1. Experimental Setting

With the availability of historical weather data, presence of requisite surface sensors,
topographical insight, and proximity to the flight operation team’s location, among other
factors, ERAU’s Daytona Beach campus was identified as the primary demonstration site.
To further develop the capability to forecast for arbitrary regions of interest, a model of
the ERAU campus was created, as previously mentioned. ERAU’s central campus offers
both mid-rise buildings (seven floors) that reflect modern urban architecture and a building
density that enables it to serve as a proxy for an urban setting, including an urban canyon (a
setting of much interest and concern for urban sUAS operations). ERAU’s athletic complex,
adjacent to its central campus, consists of numerous athletic fields and a broad area with a
lower density of roughness elements. This provided the setting for a proxy suburban flight
operational area.

ERAU’s campus sits adjacent to Daytona Beach International Airport (KDAB). The
proximity of ERAU’s representative urban and suburban environments to KDAB enabled
GUMP development and validation in a real-world scenario consisting of a hub and spoke
distribution network. Here, KDAB serves as a hub style product distribution center. For
an urban delivery scenario, a sUAS follows a route from the proxy distribution center to a
package destination situated within a cluster of seven-story residence halls (Figure 8). The
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entirety of the flight occurs with the roughness sublayer, and the delivery location is located
at the end of an urban canyon (Figure 9). A similar “suburban” last-mile delivery scenario
was created by a flight plan that began at the same package delivery hub, passed through
Embry–Riddle’s central campus, and terminated in Embry–Riddle’s athletic complex,
itself sitting adjacent to a suburban neighborhood (Figure 10). Due to flight restrictions
stemming from the demonstration area’s close proximity to KDAB, a Certificate of Waiver
or Authorization (COA) was obtained from the Federal Aviation Administration (FAA) in
order to conduct the flight operations.
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2.2.2. Creation of the Built Environment Model

To enable the creation of the large array of CFD simulation cases, a mesh of the built
environment had to be constructed for execution of the numerical simulations. LiDAR
and photogrammetry serve as a means for rapidly, and accurately, creating virtual models
of real-world objects. UAS with ultra-precise flight path control are ideal platforms for
moving cameras and LiDAR sensors in such an environment and were used to create a 3D
model of ERAU’s campus.

Imaging and creating virtual buildings using photogrammetric techniques involves
several steps [27]. First, a UAS flight plan is programmed that provides a desired ground
sampling distance (GSD). GSD is determined by the distance between two consecutive
pixel centers in a selected image. The smaller the value of the image GSD, the higher
the degree of spatial resolution for the image. Lower values of GSD lead to increased
levels of visible detail. The UAS captured images that were automatically geotagged in
the Exchangeable Image File Format (exif) by software that reads positional information
from the UAS. This tagging provides the necessary positional accuracy required during
post-processing. Photogrammetric software then stitches together discrete images using
parallactic measurements, thus allowing for the creation of virtual 3D models.

LiDAR was also incorporated for the remote sensing (i.e., accurate measurement and
geolocating of surfaces and features) of buildings within the demonstration area. Similar to
photogrammetry, the workflow for UAS-borne LiDAR also begins with programming a
flight path that considers the altitude of the UAS, speed of the UAS, overlap of data collec-
tion paths, and transitions between flight paths [28]. The LiDAR used for this project [29]
produced superior results when flown at an altitude of 140 feet AGL and at a speed of
5 mph. This speed and altitude enabled creation of a dense LiDAR point cloud with up to
400 points per square meter.
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Post-processing of both photogrammetrically and LiDAR produced densely populated
3D point clouds allowed creation of triangle meshes, which served as the framework for
the virtual objects with photo-real textures. The triangle meshes were refined, using
Autodesk 3ds Max [30], into .obj- and .fbx-formatted virtual objects. These formats are
widely interchangeable with numerous programs (e.g., flight simulation and CAD). The
resulting 3D model is shown in Figure 3.

2.2.3. Observations by Meteorologically Instrumented sUAS

Two meteorologically instrumented multirotor (MR) sUASs were employed to make
observations along both the urban and suburban routes. MR sUASs were chosen for their
ability to obtain measurements in a continuous manner, or along a discontinuous route, at
deliberately chosen points of interest. The ability to hover also provides the opportunity to
obtain longer data records and to respect the response times of each sensor. Thermodynamic
observations were made with a resistance temperature detector (RTD) to obtain temperature
and a capacitive humidity sensor for relative humidity. Barometric pressure was ascertained
from a micro-electro-mechanical system (MEMS) pressure sensor. Wind speed and direction
were measured by an ultrasonic anemometer making use of acoustic resonance technology.
Data were written locally on the sUAS while simultaneously being telemetered in order to
mitigate risk by continuously monitoring the dynamic flight environment and in order to
empower real-time decision-making. One of the meteorologically instrumented MR sUASs
is displayed hovering in Figure 11.
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Figure 11. A meteorologically instrumented uncrewed aircraft participating in the GUMP field campaign.

Flight observations, for validating numerical simulation results, were conducted on
a moderately windy day and spanned from the late morning, with a well-mixed ABL to
the evening transition. The instrumented sUAS were laterally staggered roughly 100 feet
apart and flew simultaneous ascending vertical profiles from 10 feet to 190 feet AGL.
Thirty-second data records were obtained while in a hover at 20-foot intervals. Thus,
this provided 10 distinct observations per vertical profile (Figure 12). Subsequent to
accomplishing a set of vertical profiles, the pair of sUASs was advanced further down
the delivery route. The location of the vertical profiles along each route is displayed
in Figure 13.
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3. Results

For validation, high-resolution GUMP model output was compared to in-situ obser-
vations made by the instrumented sUAS. For the purpose of observational data quality,
only measurements made during ascent were recorded to ensure that observations were
conducted in undisturbed air. Therefore, the lowest and highest altitude for a given vertical
profile marked the beginning and end of the data record, respectively. Representative com-
parisons between model output and observations for a vertical profile that lies on the flight
route are shown in Figures 14 and 15. Figure 14 is a comparison of sUAS 1 observations
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and GUMP output, with the corresponding comparison for sUAS 2 shown in Figure 15.
For these comparisons, vertical profiles accomplished from 1753–1800 UTC are shown in
red. For comparison, the GUMP model timeframe for 1730–1739 UTC was chosen (green).
With a GUMP model forecast horizon of 20 min, the model output for this time period was
equivalent to the time period of the sUAS profiles.
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GUMP performed well when predicting wind speeds at the lower altitudes but overes-
timated wind speeds at the upper altitudes for both sUAS flight profiles. With the exception
of the lowest bin at sUAS 2′s location, GUMP performed extremely well in forecasting
wind direction. In general, Figures 14 and 15 are indicative of GUMP’s overall performance,
forecasting wind magnitude better at lower altitudes but overpredicting wind speed at
higher heights while handling wind direction well.

The analysis captured in Figures 14 and 15 is based on a 20-min time horizon, as
if a flight operation is imminent. Since the accuracy of the ML predictions improve as
the forecasted time approaches, a separate review of the tool’s performance in the hours
leading up to a flight operation, when more preliminary planning might be underway, is
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also of interest. Table 1 (magnitude) and Table 2 (direction) compare observations taken
by sUAS 1 and sUAS 2 with GUMP forecasts at 30 feet AGL along both the urban and
suburban routes. Forecast output and observations are compared across nine locations
along the flight routes, including four locations in the urban region and five locations in
the suburban region. The sUAS wind speeds represent the average of 30 s of data observed
at 30 feet for the associated region. The contrasting GUMP output is the average value of
12 10-min periods of GUMP forecasts for two hours prior to the sUAS flights. Each table
represents the differences between forecast and observed winds: shades of blue indicate
model overestimation, whereas shades of red indicate an underestimation.

Table 1. sUAS wind speed measurements at 30 ft. compared to GUMP urban and suburban forecasts
for the same altitude. The GUMP forecast values are an average of the 12 forecasts made from
two hours prior to the sUAS flights. All values given in m/s.

Scenario sUAS 1 sUAS 2 GUMP
(2-h Average)

GUMP—
sUAS1

GUMP—
sUAS2

Urban 1 3.07 0.83 4.96 1.89 4.13
Urban 2 4.69 3.43 4.65 −0.04 1.22
Urban 3 2.46 3.25 4.72 2.26 1.47
Urban 4 2.22 3.56 4.82 2.60 1.26

Suburban 1 3.95 4.38 1.81 −2.14 −2.57
Suburban 2 1.19 1.03 2.11 0.92 1.08
Suburban 3 4.33 3.66 2.41 −1.92 −1.25
Suburban 4 2.23 2.21 2.65 0.42 0.44
Suburban 5 4.00 4.12 2.47 −1.53 −1.65

Table 2. sUAS wind direction observation at 30 ft. compared to GUMP urban and suburban forecasts
for the same altitude. The GUMP forecast values are an average of the 12 forecasts made from
two hours prior to the sUAS flights. All values given in degrees.

Scenario sUAS 1 sUAS 2 GUMP
(2-h Average)

GUMP—
sUAS1

GUMP—
sUAS2

Urban 1 214.05 212.61 300.78 86.73 88.17
Urban 2 299.41 289.22 282.38 −17.03 −6.84
Urban 3 323.59 314.05 284.58 −39.01 −29.47
Urban 4 297.24 308.43 305.04 7.80 −3.39

Suburban 1 282.27 282.26 275.17 −7.10 −7.09
Suburban 2 270.48 294.81 291.92 21.44 −2.89
Suburban 3 306.84 310.34 297.52 −9.32 −12.82
Suburban 4 310.80 286.57 304.11 −6.69 17.54
Suburban 5 301.71 313.47 296.05 −5.66 −17.42

Overall, Tables 1 and 2 show that GUMP overestimated wind speed and underesti-
mated wind direction in the urban setting, with the singular exception of the large difference
in wind direction for the Urban 1 scenario. The suburban forecasts were much more likely
to result in an underestimation for both sUAS locations. Overall, the suburban forecasts
were more accurate than the urban forecasts.

4. Discussion

GUMP’s inaugural demonstration shows promising utility for sUAS operations while
also pointing toward strategies for improvement. Unsurprisingly, forecasts along the
suburban corridor resulted in better prediction accuracy, likely due to the lower number of
flow obstructions and the resulting simplified fluid dynamics. However, GUMP’s ability to
more accurately predict wind direction possibly emphasizes the importance and varying
impact of upstream flow effects.

The higher accuracy in wind predictions observed at lower altitudes is expected due
to the nature of the CFD selection process. The flow fields chosen to define the target area
are selected based on similarity to a predicted wind vector at the known sensor location.
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Since the wind sensor used for the presented results is approximately 8 m above the
ground, this is the level where the highest accuracy would be anticipated, and results
confirmed this. This underscores the limitation of relying on a single sensor source for the
selection process. Presumably, forecasting improvement would be realized with additional
strategically placed sensors (laterally and vertically) for use in fitting the CFD models to
the predictions/sensor readings.

Closely tied to the issue of the number of sensors is the increased attention that must
be given to sensor placement and setup. One of the sensors used here was atop a building,
which may impact the flow field and, thus, create unrepresentative observations. This can
render the resulting data unsuitable for multiple flow fields within close proximity. Each of
these sensor issues can degrade GUMP performance through both the quality of the ML
training data and the determination of the best matched simulation case.

Consequently, moving forward, there are required improvements for GUMP to in-
crease its accuracy, usability, and deployability. The aforementioned sensor issues can be
rectified by more purposely chosen and sited sensors. The results reported in this initial
work made use of pre-established sensors deployed without the needs of GUMP in mind.
Further, the neglection of topography in the CFD simulations disregards the influence of
uneven terrain across the large area modeled. Exacerbating this is the additional neglect
of roughness elements not deemed to be of sufficient size for consideration in GUMP’s
early development. Contrasting Figures 8 and 10 with Figure 3 clearly shows that a sig-
nificant number of roughness elements were excluded. Improvement in the fidelity of the
environment would further enhance performance.

5. Conclusions

Advanced air mobility promises to revolutionize the transport of products and people
and usher in new types of aerial work that can accomplish many tasks in a more efficient
and effective manner. This will require a stellar safety record, a profitable business model,
and public acceptance. Central to each of these are reliable forecasting products for this
new dynamic airspace. GUMP was developed for sUAS operations with this in mind.

GUMP is a fast-time decision-support tool for sUAS operators by combining physics-
based models with machine-learning methods. While CFD simulations are generally
computationally onerous, a RANS scheme was employed to reduce this cost without
severely compromising accuracy in the wind field estimation. The motivation for GUMP
was to not model wind fields with high fidelity but, instead, to provide a quick first-order
estimation of prevalent winds that sUAS operators can use to make more informed initial
go/no-go operational decisions. The use of ML models is central to achieving this objective.

The underlying GUMP architecture, and the idea of “templatizing”, makes the tool
generalizable and, therefore, adaptable to other urban and suburban locations. With a
minimal amount of information regarding the new location and local weather, GUMP
can be deployed for operations across any region on Earth. While sUAS operators are the
original customers for GUMP, the provided insight is equally relevant and important to
airspace managers, aviation, and other regulatory agencies, as well as the general public,
among other interested parties. GUMP is a highly useful tool for any activity reliant on
weather, such as wildfire monitoring and mitigation, emergency and disaster response,
event planning, travel planning, etc.
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