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Abstract: A robust controller for the waypoint tracking of a quadrotor unmanned aerial vehicle (UAV)
is proposed in this paper, in which position control and attitude control are effectively decoupled.
Model predictive control (MPC) is employed in the position controller. The constraints of motors
are imposed on the state and input variables of the optimization equation. This design effectively
mitigates the nonlinearity of the attitude loop and enhances the planning efficiency of the position
controller. The attitude controller is designed using a nonlinear and robust control law based on
SO(3) space, which enables continuous control on the SO(3) manifold. By extending the differential
flatness of the quadrotor-UAV to the angular acceleration level, the mapping of the control reference
from the position controller to the attitude controller is achieved. Simulations are carried out to
demonstrate the capability of the proposed controller. In the simulations, multiple aggressive flight
trajectories and severe external disturbances are designed. The results show that the controller is
robust, with superior accuracy in tracking aggressive trajectories.

Keywords: waypoint tracking; model predictive control; nonlinear attitude controller; differential
flatness

1. Introduction

Nowadays, quadrotor UAVs have been widely employed in various applications,
such as agricultural plant protection [1], transportation and logistics distribution [2], and
post-disaster rescue operations [3]. To meet the demands of different missions and stay
robust under challenging environmental conditions, the control methods for quadrotor
UAVs have been continuously developed.

In a general task, the controller is responsible for accurately tracking a time-dependent
trajectory designated by the planner. As an underactuated system, a quadrotor-UAV has
far more state variables than input variables, and the nonlinear characteristics of the system
make the control problem challenging. The cascaded PID control method is commonly
utilized for quadrotor-UAV control, in which the position of the next time step is considered
a reference input. The inner loop controls the attitude, and the outer loop takes charge of the
position. The mapping from the position loop to the attitude loop is completed using the
differential-flatness attribute of quadrotor UAVs [4–6]. However, this error-based control
method often performs well while tracing a smooth and slow trajectory, but struggles in
tracking an aggressive trajectory.

To tackle the problem, a variety of advanced control algorithms for quadrotor UAVs
have been proposed, among which MPC has received significant attention. The MPC
method constructs an optimization problem based on the quadrotor-UAV model and ap-
plies constraints on the states and inputs of the system, and it generates control commands
over the predicted time horizon by solving the optimization problem. References [7–9] have

Drones 2023, 7, 557. https://doi.org/10.3390/drones7090557 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7090557
https://doi.org/10.3390/drones7090557
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0009-0006-8029-1216
https://doi.org/10.3390/drones7090557
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7090557?type=check_update&version=2


Drones 2023, 7, 557 2 of 21

demonstrated the exceptional control efficiency of this approach. Furthermore, linearized
model predictive control (LMPC) and nonlinear model predictive control (NMPC) have
been developed and compared in many studies. In the former method, Taylor expansion
is generally conducted around the hover point to linearize the quadrotor-UAV model.
Linearization saves the computation cost, but downgrades the performance in terms of
aggressive trajectory tracking, as the higher-order terms are truncated in the model. On
the contrary, the nonlinear model is employed in NMPC for predictive control, resulting
in superior tracking accuracy and robustness. However, the optimization offered by this
method is usually non-convex, which leads to longer computational time and risks of solver
non-convergence. In addition, the reinforcement learning-based control methods have been
demonstrated to be effective for quadrotor-UAV control [10–13]. Han et al. proposed a ro-
bust controller based on a hierarchical control framework and reinforcement learning [14].
A robust control performance is achieved without prior knowledge of quadrotor-UAV
dynamics. Kaufmann et al. showcased the application of learning-based approaches in
acrobatic quadrotor-UAV flights [12]. However, the end-to-end training approach limits
the reusability and generalization of the method.

As the quadrotor-UAV is an underactuated system, the state variables are coupled with
each other, which makes it difficult to accurately track all the states. The accuracy of attitude
tracking is directly related to the accuracy of position tracking. Therefore, attitude control
for quadrotor UAVs has been widely investigated in the literature. Traditional attitude
control methods for quadrotor-UAVs often rely on Euler angles to represent the attitude,
where each Euler angle is individually tracked to achieve attitude control. However,
Euler angles reach singularity at specific attitudes. To avoid these issues, quaternion is
employed to represent the attitude of quadrotor UAVs, as can be seen in references [15–18],
resulting in improved attitude control performance. In geometric theory, the changes
in attitude are correlated to the evolution of the SO(3) manifold. Therefore, Lee et al.
and Yu et al. designed attitude controllers based on Lie groups on SO(3) space [19–21],
which enables continuous control on SO(3) space. Also, with the representation of the
attitude using this method, singularities are avoided during the control process. What
is more, many researchers integrated the classical robust control algorithms into attitude
control for robustness. For instance, Lee et al. [22] came up with an adaptive control
algorithm. An adaptive law is employed to provide robust control with bounded errors
even in the presence of unknown quadrotor-UAV internal parameters. Considering that
quadrotor-UAVs are often subjected to external disturbances during flight, sliding-mode
control algorithms are employed for attitude control in references [23–25]. By incorporating
sliding-mode-control terms into the control laws, the system disturbance rejection capability
is, therefore, enhanced, and asymptotic convergences are ensured.

In most of the missions for a quadrotor-UAV, the objective of control is accurately
tracking the position. The control of the attitude loop is essentially to fulfill the demands
of the position loop. Most control approaches usually employ the entire dynamics model
of quadrotor UAVs in the optimization process for predictive control, which introduces
challenges due to the nonlinear nature of the attitude loop. However, if the desired values
can be accurately traced in the attitude loop, the attitude loop can be decoupled from the
position loop in the MPC optimization process. The nonlinearity in the attitude loop can,
therefore, be avoided. Based on this idea, this paper aims to develop a quadrotor-UAV
controller that can accurately track waypoints with temporal information. Contributions to
this paper are listed as follows:

(1) A robust controller for quadrotor-UAV waypoint tracking is proposed, in which
position control and attitude control are decoupled. The control efficiency is enhanced
while maintaining robustness.

(2) The LMPC algorithm is used in position control, where the motor constraints are
incorporated into both the input and state variables of the optimization problem. This
approach effectively mitigates the nonlinear characteristics of the attitude loop and
enhances the planning efficiency of the position controller.
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(3) For the attitude controller, a nonlinear robust control law is designed based on the
SO(3) space, which guarantees global asymptotic stability in the sense of Lyapunov.

(4) Extensive simulations have verified the excellent control performance of the proposed
controller, which can achieve high-precision tracking of the desired trajectory even
under severe external disturbances.

The paper is divided into five sections. In Section 2, the model of the quadrotor-UAV
as well as the coordinate systems used in current research are introduced. In Section 3,
the framework of the proposed controller is elaborated. Descriptions of each module are
provided in detail. In Section 4, control performances that have been demonstrated by
multiple numerical simulations are provided. Finally, summaries and conclusions are
provided in Section 5.

2. Model

In this article, variables are defined in a unified format. Matrices and vectors are
denoted by bold non-italic capital letters and bold non-italic lowercase letters, respectively.
Scalars are written in italic letters. The subscripts of a vector represent the components of
that vector. For example, vwx, vwy and vwz are the components of the velocity vector along
the three axes in the world coordinate system, respectively.

The coordinate systems employed in this paper are the world systemW and the body
system B. For the body coordinate system, the origin is located at the center of mass of the
vehicle. The x-axis and y-axis are parallel to the two arms of the quadrotor-UAV as shown
in Figure 1 and it is a right-handed system. For the world coordinate system, the z-axis
points in the opposite direction of Earth’s gravity. Similar to the paper by Mellinger and
Kumar [26], an intermediate coordinate system C between the systemW and system B is
defined, it shares the same z-axis as the world coordinate system. The numbering of the
four motors is illustrated in Figure 1.

Figure 1. Coordinate system definition and motor numbering.

The propulsion system of the quadrotor-UAV is modeled as a second-order model.
Following the discussion in reference [26], it is assumed that the force fi and torque
ni produced by each motor are proportional to the square of its rotational speed ωi, as
indicated in Equation (1). Within the equation, both k f and kn are constants, while km stands
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for the motor response constant. In addition, considering the issue of motor saturation,
there exists a maximum rotational speed constraint for each motor.

ω̈i = km(ω
d
i −ωi), fi = k f ω2

i , ni = knω2
i (1)

0 ≤ ωi ≤ ωmax (2)

In the body coordinate system, the thrust T and the three-axis torque τ produced by
the four motors are [

τ
T

]
= Dv, τ =

 τx
τy
τz

 (3)

D =


0 k f l 0 −k f l
−k f l 0 k f l 0
−kn kn −kn kn
k f k f k f k f

, v =


ω2

1
ω2

2
ω2

3
ω2

4

 (4)

where l represents the length from the motor’s rotational axis to the center of mass of the
quadrotor-UAV.

Following the convention, all angular velocities are represented in the body frame,
while position and velocity vectors are represented in the world frame. The quadrotor-UAV
is subjected to the forces of gravity and the thrust generated by the motors along the z-axis
of the body frame. Newton’s second law related to the position control is

ma = −mgzw + Tzb (5)

in which zw and zb indicate the unit vectors of the z-axis for the world and body frames.
The mass of the quadrotor-UAV is m and the gravitational acceleration is g. The Euler
equation related to the attitude control is

Jẇb + wb × Jwb = τ (6)

where J denotes the inertia tensor. The roll, pitch, and yaw angles (φ, θ and ψ) based on the
Z-X-Y Euler angle sequence are employed to represent the attitude. The relation between
the first derivative of Euler angles and the angular velocities in the body frame is wbx

wby
wbz

 =

 cos θ 0 − cos φ sin θ
0 1 sin φ

sin θ 0 cos φ cos θ

 φ̇
θ̇
ψ̇

 (7)

3. Methodology

For the proposed controller, a sequence of reference temporal waypoints is the control
input. The information of each waypoint mainly consists of the three-dimensional (3D)
position and yaw angle

[
pd

wx pd
wy pd

wz ψd
]
. Figure 2 provides the framework of the

controller. The LMPC algorithm is employed in the position loop. The relevant model
constraints are implemented on the state and input variables, thus planning the reference
trajectory within a future time domain. Based on the differential flatness property of the
quadrotor-UAV, the planned trajectory in the position loop can be mapped to the desired
input for the attitude controller. In addition, an attitude control law is designed based
on the SO(3) space. The nonlinear robust control law achieves accurate tracking of the
desired attitude angles. Regarding the control allocation of the quadrotor-UAV, an inverse
kinematics solution is obtained based on the optimization approach. Each module will be
described in detail in the following sections.
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Figure 2. Framework of proposed the quadrotor-UAV controller based on LMPC.

3.1. Linear Model Predictive Control

The ability to predict over a wide time domain and consider the constraints of an
actual model are the reasons why MPC is widely employed. In this paper, the LMPC
is employed in the position controller, and the model constraints primarily incorporate
considerations of motor speed limitations and motor response constraints. At each time
step, the optimal control sequence for the entire prediction horizon is computed, but only
the first control input is applied to the system. This process is iterated in a receding horizon
manner, where optimization is performed repeatedly at each time step.

As shown in Figure 2, the selected state variables are the position, velocities, accelera-
tions, and jerks along three axes. These variables are denoted by their respective initials.

x =


p
v
a
j

, y = [p], u = [s], r = [pd] (8)

The output of the system y is the 3D position, and the control input is the snap, which
is the second derivative of acceleration. The reference input r corresponds to the desired
position. Among these variables, p, v, a, j, s ∈ R3, y ∈ R3, u ∈ R3, r ∈ R3. The reasons for
optimizing for the snap will be thoroughly analyzed in the subsequent sections.

The corresponding difference equation can be formulated based on the aforementioned
input and state variables.

x(k + 1) = Ax(k) + Bu(k)
y(k + 1) = Cx(k + 1)

(9)

where A, B, and C are defined as

A =


I3×3 Ts∗I3×3

1
2 Ts2∗I3×3

1
6 Ts3∗I3×3

0 I3×3 Ts∗I3×3
1
2 Ts2∗I3×3

0 0 I3×3 Ts∗I3×3
0 0 0 I3×3

, B =


1

24 Ts4∗I3×3
1
6 Ts3∗I3×3
1
2 Ts2∗I3×3
Ts∗I3×3


C =

[
I3×3 0 0 0

] (10)
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in which Ts represents the discrete time interval, and I3×3 denotes the identity matrix.
Given the prediction horizon N, we define the state vector X, the reference input vector Γ,
the output vector Y, and the control input vector U over the predicted time horizon.

X =


x(k + 1)
x(k + 2)
x(k + 3)

...
x(k + N)

U =


u(k)

u(k + 1)
u(k + 2)

...
u(k + N − 1)

Y =


y(k + 1)
y(k + 2)
y(k + 3)

...
y(k + N)

Γ =


r(k + 1)
r(k + 2)
r(k + 3)

...
r(k + N)

 (11)

The relationship between them can be expressed as follows:

X =


B 0 0 · · · 0

AB B 0 · · · 0
A2B AB B · · · 0

...
...

...
. . .

...
AN−1B AN−2B AN−3B · · · B

U +


A
A2

A3

...
AN

x(k) = PU + Mx(k) (12)

Y =


C 0 0 0 0
0 C 0 0 0
0 0 C 0 0

0 0 0
. . . 0

0 0 0 0 C

X = EX (13)

∆U =


I3×3 0 0 · · · 0
−I3×3 I3×3 0 · · · 0

0 −I3×3 I3×3 · · · 0
...

...
...

. . .
...

0 0 0 −I3×3 I3×3

U +


−I3×3

0
0
0
0

u(k− 1) = SU + Hu(k− 1) (14)

where x(k) represents the state values at time step k, and u(k− 1) represents the control
input at the previous time step.

Considering the limitations of the control inputs and the tracking accuracy, a problem
aiming to minimize tracking errors and control input variations can be formulated as

min
U

(Γ− Y)TG1(Γ− Y) + ∆UTG2∆U (15)

where G1 is the weight matrix related to tracking errors, and G2 is the weight matrix related
to the control input. Both G1 and G2 are positive definite diagonal matrices.

The model constraints considered in the controller are the motor speed constraints
and motor response constraints. Combining Equations (1) and (5), we obtain

ma = zb

4

∑
i=1

k f ω2
i −mgzw (16)

The motor’s maximum speed constraint is imposed on the acceleration term of the
state variables. [·]max and [·]min represent the maximum and minimum values of each
component in the vector, respectively. The attitude of quadrotor-UAV is assumed to be
unchanged within a single time step. This assumption may lead to motor speed saturation
in some extreme cases. However, the optimization-based control allocation approach
significantly reduces the impact of motor saturation.
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amin =

[
zb
m

4

∑
i=1

k f ω2
i − gzw

]
min

amax =

[
zb
m

4

∑
i=1

k f ω2
i − gzw

]
max

(17)

By taking the second derivative of both sides of Equation (5) and applying the motor
response constraints to the snap term of the input variables, we have

ms = 2zb

4

∑
i=1

k f (ωiω̈i + ω̇2
i ) (18)

smin =
2zb
m

4

∑
i=1

k f (ωiω̈i,min + ω̇2
i ), smax =

2zb
m

4

∑
i=1

k f (ωiω̈i,max + ω̇2
i ) (19)

ω̈i,min = km(ω
d
min −ωi), ω̈i,max = km(ω

d
max −ωi) (20)

where ω̈i,min and ω̈i,max represent the minimum and maximum motor responsiveness,
respectively. Additional constraints, such as velocity limitations, can also be incorporated
into the current algorithm. By substituting the variables in Equation (15), an optimization
problem is formulated as

min
U

UT(PTETG1EP + STG2S)U + 2(x(k)TMTETG1EP− ΓTG1EP + u(k− 1)THTG2S)U

s.t.amin ≤ a ≤ amax
Umin ≤ U ≤ Umax

(21)

It is worth mentioning that the aforementioned optimization problem can be simplified
into a quadratic programming problem due to the absence of nonlinearity in the attitude
loop. As a result, it can be solved quickly in real-time. Through solving this optimization
equation, the desired position, velocity, acceleration, jerk, and snap can be effectively
planned within the predicted time horizon. The first control sequence of the optimization
results can then be applied to the controller in the next time step.

3.2. Nonlinear Attitude Controller Based on SO(3)

As errors in attitude significantly undermine the position tracking accuracy, an attitude
controller that can achieve high-precision tracking is very important to the overall controller.
In this paper, a nonlinear and robust attitude control law is designed based on the SO(3)
space, which ensures the attitude control is continuous on the SO(3) manifold. Furthermore,
the proposed attitude controller is proved to be global asymptotically stable in the sense
of Lyapunov.

The Euler equation for the attitude control is

Jẇb + wb × Jwb = τ + τdis (22)

where τdis represents external disturbances and τ is the input moment. Equation (22) can
be rewritten as

ẇb = J−1τ + J−1(−wb × Jwb) + J−1τdis = ηu + ξ + h
η = J−1,ξ = J−1(−wb × Jwb),h = J−1τdis

(23)

where h represents the external perturbation term, satisfying ||h||∞ ≤ hmax.
According to the Euler rotation theorem, any rotation matrix of SO(3) can be equiva-

lently achieved by rotating around a specific axis by a certain angle. Here, w
b R denotes the

rotation matrix of the current body coordinate system with respect to the world coordinate
system, while w

b Rd signifies the desired rotation matrix of the body coordinate system with
respect to the world coordinate system. Without causing any ambiguity, they are denoted
as R and Rd for simplicity, respectively. The error of the rotation matrix can be obtained as

Re = RTRd (24)
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Following the definition of the error of the rotation matrix, the angle error can be
calculated as

θe = cos−1(
tr(Re − 1)

2
) (25)

The angular velocity error is defined as the difference between the desired angular
velocity wd

b and the actual angular velocity wb:

we = wd
b −wb (26)

Hence, the attitude control law can be designed based on the angle error and the
angular velocity error:

u = η−1[ẇd
b − ξ + hmaxsgn(we) + K1we +

|θe|||wd
b||+ K2θe

2

||we||2
we + log(Re)] (27)

Referring to the exponential mapping and algebraic mapping between Lie groups
and Lie algebras [27], the calculation of the desired rotation axis based on the error of the
rotation matrix can be carried out as follows:

log(Re) =
θe

2 sin θe
(Re −RT

e )
∨ ∈ so(3) (28)

where the operator ∧ denotes a conversion of a three-dimensional vector into a 3 × 3 skew-
symmetric matrix, while the operator ∨ represents the inverse operation of the operator ∧.

c× d = c∧d, ∀c, d ∈ R3 (29)

The term hmaxsgn(we) in the control law corresponds to the sliding mode control
term for angular velocity control, and it effectively mitigates the influence of external
disturbances. Moreover, this term exhibits negligible numerical values, thus ensuring the
stability of the controller without inducing any instability concerns.

To demonstrate the robustness of the control law, a Lyapunov function is conducted
as follows:

V =
1
2

θ2
e +

1
2

wT
e we (30)

By taking the derivative of the Lyapunov function, we have

V̇ = θ̇eθe + wT
e ẇe = V̇1 + V̇2 (31)

The derivative of the angle term is expanded and the calculation is derived as

V̇1 = θ̇eθe

= θe
d(cos−1( tr(Re−1)

2 ))
dt

= −θe
1

2

√
1−cos−1( tr(Re−1)

2 )
2

dtr(Re)
dt

= − θe
2 sin θe

dtr(RTRd)
dt

= − θe
2 sin θe

tr( dRT

dt Rd + RT dRd

dt )

= − θe
2 sin θe

tr(ŵT
bRTRd + RTRdŵd

b)

= log (Re)Twe

(32)



Drones 2023, 7, 557 9 of 21

Substituting the above equation and the control law into Equation (31) and scaling it
appropriately, we have

V̇ = θ̇eθe + wT
e ẇe

= log (Re)Twe + wT
e (ẇd

b − ξ − h− ẇd
b+ξ − hmaxsgn(we)

− K1we −
|θe |||wd

b||+K2θe
2

||we||2
we − log(Re))

= −K1wT
e we − (hmaxsum(|we|) + hTwe)− |||wd

b|||θe| − K2θe
2

≤ −K1wT
e we − K2θe

2

≤ −4 min(K1, K2)V

(33)

where sum(|we|) represents the sum of the absolute values of each element in we. It is
evident that the constructed Lyapunov function is positive definite, and its derivative
is negative definite. Consequently, it can be concluded that the control law guarantees
the global asymptotic stability of the system in the sense of Lyapunov. By adjusting the
coefficients K1 and K2, the convergence rate of the system can be tailored.

The attitude control law is designed based on the SO(3) space to avoid singularities.
Concurrently, the control outputs are more efficient on the SO(3) manifold. Simulations
presented in Section 4 have demonstrated the exceptional performance of the proposed
attitude control law, even in the presence of disturbances and observation uncertainties.
The precise tracking of the attitude loop ensures its capability to fulfill the demands of
the position loop. Although the attitude loop is excluded from the MPC optimization, its
nonlinearity can still be compensated by the attitude controller, thus the overall control
performance remains superior.

3.3. Differential Flatness

Given the above control scheme, the position and attitude controller can be designed
independently. By leveraging the differential flatness properties of the quadrotor-UAV, a
mapping from the position loop to the attitude loop is achieved. Differential flatness is
referred to as the selection of appropriate variables from the state space and describing
the entire state space using these variables and their derivatives. Similar to most articles
in the literature, the following flat outputs are selected, namely the 3D position and the
yaw angle:

σ = [pwx, pwy, pwz, ψ]T (34)

The position is planned using the LMPC method within the position loop, and the
yaw angle information is pre-defined. A direct mapping from the flat outputs to the desired
attitude, angular rate, and angular acceleration is obtained based on these variables and
their derivatives.

According to Mellinger and Kumar [26], the desired attitude is calculated through
acceleration. As mentioned in Section 2, the coordinate system C is an intermediate
coordinate system obtained by rotating the world coordinate system around the z-axis with
the yaw angle, and xc indicates the unit vectors of the x-axis for this coordinate system.

zb = ad+gzw
||ad+gzw||

xc = [cos ψ, sin ψ, 0]T

yb = zb×xc
||zb×xc||

xb = yb × zb, w
b Rd= [xb yb zb]

(35)
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By differentiating both sides of Equation (5), the jerk planned in the position loop can
be mapped into the desired angular velocity.

mȧ = Ṫzb + T(ww × zb)
Ṫ = zb ·mȧ
h = ww × zb=

m
T (j

d − (zb · jd)zb)
wbx = −h · yb, wby = h · xb

(36)

Also in paper [26], however, the z-axis angular velocity is taken as zero for a constant
yaw setpoint, which is actually nonzero. In this paper, the z-axis angular velocity is
calculated through Equation (7). By taking the inverse of Equation (7), we obtain φ̇

θ̇
ψ̇

 =

 cos θ 0 sin θ
tan φ sin θ 1 − tan φ cos θ
− sec φ sin θ 0 sec φ cos θ

 wbx
wby
wbz

 (37)

By solving Equation (38), the z-axis angular velocity can be determined based on the
derivative value of the yaw angle.

ψ̇ cos φ = −wbx sin θ + wbz cos θ (38)

In the attitude controller, both angular velocity and angular acceleration are required as
feed-forward terms to enhance tracking accuracy in attitude control. Thus, the differential
flatness property is extended to the angular acceleration to calculate its desired value.
Similarly, by taking the second derivative of Equation (5), we have

msd = T̈zb + 2Ṫ(ww × zb) + T
δ(ww × zb)

δt
(39)

The equation for calculating the second derivative of thrust T is

T̈ = (ww × zb) ·mȧ + zb ·msd (40)

Expanding Equation (39), the cross product of the angular acceleration with the z-axis
of the world coordinate system can be calculated. By projecting this quantity onto the x-axis
and y-axis of the body coordinate system, the values of ẇbx and ẇby can be derived as

δ(ww×zb)
δt = (ŵw

w
b Rwb + w

b R−1 δwb
δt )× zb + ww × (ww × zb)

ζ = ẇw × zb = w
b R−1 δwb

δt × zb
ẇbx = −ζ · yb, ẇby = ζ · xb

(41)

Furthermore, we take the derivative of Equation (38):

ψ̈ cos φ = ẇbz cos θ − ẇbx sin θ − θ̇φ̇ + φ̇ψ̇ sin φ (42)

By solving Equation (42), the angular acceleration of the z-axis in the body coordinate
system can be calculated. Based on differential flatness, the information in the position
controller, ad, jd, sd, can be mapped to the inputs of the attitude controller, Rd, wd, ẇd. There-
fore, the second derivative of acceleration, i.e., the snap variable, must be considered in
the position controller. Apart from better handling of the constraint of motor responsive-
ness, another crucial reason for this is to calculate the desired angular acceleration for the
attitude controller.

3.4. Optimization-Based Control Allocation

The desired thrust can be calculated based on the desired acceleration from the posi-
tion controller. When combined with the desired torque from the attitude controller, the
desired control inputs can be obtained. Under normal conditions, it is sufficient to compute
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the desired rotational speeds for each motor by solving the system of linear Equations (3).
Nevertheless, considering potential inaccuracies in the applied constraints and the pos-
sibility of excessive torque required during extreme flight conditions, the desired motor
rotational speed might still exceed the actual speed limitation. To minimize the effects of
motor saturation, the final module employs an optimization-based approach for control
allocation. The algorithm is expressed as

min
v

(

[
τ
T

]
−Dv)TQ(

[
τ
T

]
−Dv)

s.t.vmin ≤ v ≤ vmax

(43)

where Q represents the weight matrix. The desired rotational speeds for the four motors
are determined by solving the aforementioned optimization problem. Subsequently, these
desired speeds are translated into the corresponding PWM signals and transmitted to
the motors.

4. Results

The simulations were performed within the MATLAB software, and the LMPC opti-
mization equa+tions were solved using the OSQP solver. All modules were individually
implemented on a HP OMEN8 Plus laptop, which is equipped with an Intel Core i7-
12700H processor and 16 GB RAM. Under this specific hardware configuration, the average
computation time for solving the MPC optimization problem is 4 ms.

A series of simulation scenarios were conducted to validate the tracking performance
of the proposed controller. The relevant parameters of the quadrotor-UAV are provided
in Table 1, which is referred to [28]. The performance of the proposed attitude controller
in terms of attitude angle tracking is demonstrated in Section 4.1. The trajectory tracking
performance of the entire controller is presented in Section 4.2.

Table 1. Parameters of the quadrotor-UAV in simulation.

Variables Description Values

m The mass of the quadrotor-UAV (kg) 0.98
J The inertia tensor of the quadrotor-UAV Diag{2.64× 10−3, 2.64× 10−3, 4.96× 10−3}

k f The force scaling factor of motor 8.98132× 10−9

kn The moment scaling factor of motor 1.1694× 10−10

km Motor Response Constant 10
l The arm length of the quadrotor-UAV(m) 0.26

ωmax Maximum motor speed (RPM) 42.000

4.1. Nonlinear Attitude Controller Based on SO(3)

It is crucial to substantiate the control performance and robustness of the attitude
controller, given its direct relevance to the overall controller. In the attitude control law
as shown in Equation (27), both K1 and K2 were set as 10. The desired tracking attitude is
given as

φ(t) =
π

9
sin(πt), θ(t) =

π

9
cos(πt), ψ(t) = 0 (44)

Firstly, the simulation was carried out without the external disturbances. In Figure 3,
the actual and desired attitude and angular rate in three axes are plotted over time. As can
be observed in the graph, even with an initial deviation between the actual and desired pitch
angle, the system stabilized within 2 seconds. Subsequently, the system accurately tracked
the specified attitude angles and angular velocities throughout the ensuing timeframe.
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Figure 3. Actual and desired attitude and angular rate without external disturbances.

Next, observation errors with an amplitude of 0.1 were added to the measured values
of attitude and angular rate, while white noise sampled every 0.2 s with an amplitude of
20% of the controller normal operating conditions was employed to simulate the external
disturbances. The actual and desired attitude and angular rate are plotted over time
in Figure 4. Despite such a large initial pitch angle deviation and a massive amount
of disturbances, the system stabilized and converged to the desired states quickly. It is
important to note that there were several significant peaks in the actual angular velocities.
This was caused by the presence of large random disturbances and observation errors
at that particular moment. The attitude controller compensated for tracking errors by
outputting a large torque. Actually, the angular velocity remained stable, but there were
certain instances where it exhibits higher rates of variation.
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Figure 4. Actual and desired attitude and angular rate with external disturbances.

The results shown above have proved that the proposed nonlinear attitude controller
based on SO(3) space has a robust control performance even under considerable
external disturbances.

4.2. Trajectory Tracking

In order to validate the tracking performance of the proposed LMPC-based robust
controller, four simulations were conducted: (a) aggressive trajectory tracking, (b) tracking
lemniscate of Bernoulli, (c) acrobatic flight trajectory tracking, and (d) aggressive trajectory
tracking under observation errors and extreme external disturbances. In these simulations,
other controllers were employed for the purpose of comparison.

In the simulations, the prediction horizon for the position control was set to 50, which
means that the LMPC optimizes the reference trajectory of the position loop for the next
50 time steps. Relevant parameters in the LMPC algorithm are presented in Table 2. The
planning frequency of the position controller was set as 20 Hz, while the control frequency
of the attitude controller was set as 200 Hz.
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Table 2. MPC parameter settings in simulation.

Variables Description Values

N The prediction horizon 50
G1 The weight matrix of tracking error Diag{20, 20, · · · , 20, 200}
G2 The weight matrix of control input Diag{0.01, 0.005, · · · , 0.005}
Q The weight matrix for control allocation Diag{5, 5, 5, 10}

K1
The proportional coefficient in attitude

control law 10

K2
The proportional coefficient in attitude

control law 10

4.2.1. Aggressive Trajectory Tracking

In the first simulation scenario, the initial position for the quadrotor-UAV was at
[0, 0, 0]. Both velocity and acceleration were configured as zero at the initial time. The given
reference waypoints are

pd
x,k = 3 cos( 2π

5 tk)

pd
y,k = 2 sin( 2π

5 tk)

pd
z,k = 4− 2 cos( 2π

5 tk)

(45)

which requires aggressive attitude changes in both roll and pitch angles. A differential
flatness-based cascaded PID controller with velocity and acceleration feedforward [24]
was employed for comparison. Furthermore, a controller that combines MPC for position
control with PID for attitude control was conducted as a comparative experiment to
validate the performance of our attitude controller. The tracking performance is evaluated
by comparing the desired and actual dynamics states (i.e., position, velocity, acceleration,
attitude, and angular rate), as shown in Figure 5.

The mean square error (MSE) of position for the aforementioned three controllers is
shown in Table 3.

Table 3. The MSE in tracking an aggressive trajectory.

Algorithms/Time 0–10 s 10–20 s 0–20 s

Proposed [0.4670, 0.0373, 0.2753] [6.507× 10−6, 2.917× 10−6, 3.559× 10−6] [0.2335, 0.0186, 0.1376]
PID + FF [0.8527, 0.1652, 0.2536] [0.2183, 0.1099, 0.0098] [0.5355, 0.135, 0.1317]

MPC + PID [0.4632, 0.0507, 0.2781] [0.0008, 0.0097, 0.0007] [0.2320, 0.0302, 0.1394]

In this scenario, substantial initial deviations occurred in both the x and z-axes. More-
over, there were also significant attitude changes in roll and pitch angles with an amplitude
of 1 radius during flight. As shown in Figure 5 and Table 3, the PID controller with feed-
forward failed to track the trajectory, leading to observable phase lag in tracking. This
shortfall could be attributed to the presence of initial errors, impeding the provision of
precise feedforward information. For the controller that combines MPC and PID, although
it exhibited a good tracking performance overall, there was a significant tracking error in
the y-axis position compared to the proposed controller. This disparity became particularly
conspicuous during peaks in the y-axis position, where substantial tracking errors manifest.
On the contrary, the proposed controller tracked the given trajectory with high spatial and
temporal precision.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Aggressive trajectory tracking without disturbances. (a) Aggressive trajectory tracking.
(b) Desired position (blue curve), actual position by the proposed controller (red curve), actual
position by the controller that combines MPC for position control with PID for attitude control (green
curve), and actual position by the PID controller with feedforward (dashed black curve). (c) Actual
and desired velocity. (d) Actual and desired acceleration. (e) Actual and desired attitude. (f) Actual
and desired angular rate.

4.2.2. Comparison of Different Controllers in Tracking Lemniscate of Bernoulli

To examine the performance of the proposed controller in waypoint tracking, a simula-
tion was conducted utilizing the Bernoulli lemniscate as the reference trajectory. Similarly,
the above two controllers (the PID controller with velocity and acceleration feedforward
and the controller that combines MPC for position control with PID for attitude control)
were implemented for comparison. The given reference waypoints are as follows. The
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initial position of the quadrotor-UAV was set at [0, 4, 1], and both velocity and acceleration
were set to zero at the initial time.

R = 4, w = π
3

pd
x,k = −

R cos(wtk) sin(wtk)

sin2(wtk)+1

pd
y,k =

R cos(wtk)

sin2(wtk)+1
pd

z,k = 1

(46)

The waypoints and the actual flight path by the three controllers are illustrated
in Figure 6. The comparisons between desired and actual values of position, velocity,
acceleration, attitude, and angular rate are plotted in separate subplots of Figure 6.
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Figure 6. Lemniscate of Bernoulli tracking. (a) Trajectory of different controllers. (b) Actual and
desired position. (c) Actual and desired velocity. (d) Actual and desired acceleration. (e) Actual and
desired attitude. (f) Actual and desired angular rate.

The MSE of position for the aforementioned three controllers is presented in Table 4.

Table 4. The MSE in tracking Lemniscate of Bernoulli.

Algorithms/Time 0–6 s 6–12 s 0–12 s

Proposed [0.0420, 0.0074, 1.4256× 10−6] [5.027× 10−5, 5.128× 10−5, 4.127× 10−7] [0.0210, 0.0037, 9.191× 10−7]
PID + FF [0.0832, 0.0049, 0.0045] [0.0079, 0.0075, 0.0032] [0.0455, 0.0062, 0.0038]

MPC + PID [0.0451, 0.0070, 0.0008] [0.0013, 0.0025, 0.0020] [0.0232, 0.0047, 0.0014]

In this simulation, the PID feedforward controller accurately provided the velocity
and acceleration feedforward information. However, its effectiveness was limited by
the position loop, which only output the desired acceleration. Consequently, it failed to
provide additional feedforward information (desired angular velocity and desired angular
acceleration) to the attitude control loop. As a result, significant tracking errors could be
observed. The MPC combined with the PID controller showcased a satisfying tracking
performance. However, as presented in Figure 6 and Table 4, this controller achieved
precise tracking along straight paths, but exhibited larger tracking errors during aggressive
turns. This discrepancy arose due to the requirement of the quadrotor-UAV for substantial
adjustments in attitude during the turns, which the PID attitude controller failed to track
accurately. In contrast, the proposed controller exhibited superior tracking performance. It
accurately traced the desired trajectory after the initial adjustments.

4.2.3. Acrobatic Flight Trajectory Tracking

Since the design of the attitude controller is based on the SO(3) space, it possesses
the capacity to track dynamic trajectories encompassing substantial attitude maneuvers.
An acrobatic flying trajectory in the X-Z plane was prescribed in Figure 7 for testing the
proposed controller. The controller that combines MPC for position control with PID for
attitude control was added as a comparative experiment. The given reference waypoints are

wd
k =

√
v2

min+2gR(1+cos βk)
R

βk+1 = βk + wd
k(tk+1−tk)

pd
x,k = R sin βk

pd
y,k = 0

pd
z,k = R(1− cos βk) + 1

vmin ≥
√

gR

(47)
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where R was set to 2 m, and vmin was set to 6 m/s. The initial position for the quadrotor-
UAV was established as [0, 0, 1], and both velocity and acceleration were set to zero at
the initial time. In order to track the given waypoints accurately, the pitch angle of the
quadrotor-UAV was required to complete a full attitude maneuver from 0 to 2π. Addition-
ally, the large steps in the velocity and acceleration terms at the initial time made it more
challenging for the controller.

Figure 7. Acrobatic flight trajectory.

The performance in terms of tracking the acrobatic flight trajectory is evaluated by
comparing the desired position, velocity, acceleration, attitude, and angular rate to the
actual values and they are plotted in Figure 8.
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Figure 8. Acrobatic flight trajectory tracking of the quadrotor-UAV without disturbances. (a) Acrobatic
flight trajectory tracking. (b) Actual and desired position. (c) Actual and desired velocity. (d) Actual and
desired acceleration. (e) Actual and desired attitude. (f) Actual and desired angular rate.

The MSE of position for tracking the acrobatic flight trajectory is shown in Table 5.

Table 5. The MSE in tracking acrobatic flight trajectory.

Algorithms/Time 0–4 s 4–8 s 0–8 s

Proposed [0.2486, 0, 0.3217] [2.404× 10−4, 0, 3.26× 10−4] [0.1244, 0, 0.1610]

In the simulation, given the trajectory involving full attitude maneuvers, our attitude
controller achieved stable tracking without encountering any singularities. Despite the
presence of significant errors in both velocity and acceleration at the initial time, good
accuracy in tracking the desired waypoints could be observed in Figure 8 and Table 5.
As a comparative experiment, the controller that combines MPC with PID failed to track
the given waypoints. This inadequacy could be attributed to the PID attitude controller’s
limited ability to accurately trace the desired attitude, particularly when dealing with
aggressive attitude changes.

4.2.4. Aggressive Trajectory Tracking under Observation Errors and Extreme
External Disturbances

Considering the complex environmental factors the quadrotor-UAV may encounter
during the actual flight, in the simulation, the artificial state observation errors were
introduced for simulating the real-world conditions. Specifically, the random values were
added to the state variables to emulate the measurement values. The amplitudes of the
random values associated with each state variable are presented in Table 6.

Table 6. Observation errors in state variables.

Variables Observation Error Amplitude

Displacement 0.05 [m]
Velocity 0.05 [m/s]

Acceleration 0.03 [m/s2]
Attitude angle 0.02 [rad]
Angular rate 0.01 [rad/s]

The reference waypoints in this case are defined by Equation (45). The initial position
for the quadrotor-UAV was set at [0, 0, 0], with both velocity and acceleration initialized to
zero at the initial time. Moreover, a significant external disturbance was introduced during
the 9th to 11th seconds as shown in Figure 9. During this time interval, a constant force was
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exerted on the quadrotor-UAV to simulate external disturbances, with magnitudes of 2.5N,
2N, and 1.5N along the three axes, respectively. Given the desired trajectory, observation
errors, and external disturbances, the tracking performance of the controller is evaluated
by comparing the desired position, velocity, acceleration, attitude, and angular velocity to
the actual values in Figure 9.
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Figure 9. Aggressive trajectory tracking under observation errors and external disturbances. (a) Trajec-
tory of proposed controller. (b) Actual and desired position. (c) Actual and desired velocity. (d) Actual
and desired acceleration. (e) Actual and desired attitude. (f) Actual and desired angular rate.

The MSE of position for tracking aggressive trajectory under observation errors and
extreme external disturbances is shown in Table 7.

Table 7. The MSE in tracking aggressive trajectory under disturbances.

Algorithms/Time 0–8 s 8–12 s 12–20 s

Proposed [0.5846, 0.0469, 0.3450] [0.2929, 0.0951, 0.1592] [1.518× 10−4, 1.1× 10−4, 4.923× 10−5]



Drones 2023, 7, 557 20 of 21

The results presented in Figure 9 and Table 7 demonstrated that the proposed controller
exhibited strong disturbance rejection capabilities. Even in the presence of observation
errors and substantial external disturbances, the controller was able to maintain robust
control. It is worth mentioning that the replanning time of our controller in the position
loop is less than 0.01 s, which endows our controller with online control capability.

5. Conclusions

In the context of waypoint tracking tasks for quadrotor UAVs, a robust controller is
introduced in this paper. The LMPC algorithm is employed in the position loop and a
nonlinear control law based on the SO(3) space is designed for the attitude control. The
accurate tracking of the attitude loop enables the decoupling of the attitude control from the
optimization within the MPC. The motor model constraints are taken into account for wide-
time-domain prediction and feasible trajectory optimization. Furthermore, the nonlinear
characteristics can be effectively compensated by the attitude controller, therefore allowing
the controller to maintain its superior performance while reducing the computational
expenses. Multiple aggressive trajectories and external disturbances were designed and
simulations were conducted to test the controller. The proposed scheme showed high preci-
sion in tracking performance. Since the controller requires low computational resources, it
is estimated to be implementable for real-time control for an actual quadrotor-UAV.
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