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Abstract: This paper explores the advancements of drones in the context of sixth-generation mobile
communication technology (6G) green Internet of Things (IoT) through the utilization of digital twin
(DT) technology within unmanned aerial vehicle (UAV) networks. We propose a framework for
DT-based UAV applications in the realm of green IoT, where distinct tasks within the digital twin
interact with physical-world UAVs through task manager scheduling. We characterize the radio
frequency (RF) attributes of the DT using three-dimensional (3D) millimeter-wave (mmWave) radar
imaging on UAVs. The wireless channel modeling, based on ray tracing, underscores the alignment of
RF domains between the DT and the physical UAV in a bid to take advantage of multipath reflections
and save communication energy. Our numerical findings have justified the efficacy of the drone-
enabled DT platform in achieving accurate RF representation of UAVs for the intelligent operation
and management of IoT-based green UAV networks.

Keywords: UAV networks; radar imaging; DT; mmWave channel modeling; 3D ray tracing

1. Introduction

In order to meet the demand for broadband access at any time and in any region, not
only for people but also for a wide variety of things, the 6G will build a space-air-ground
integrated network (SAGIN) [1,2]. The deployment of UAVs as part of the aerial network
component of the SAGIN can help address the challenges of constructing 6G networks.
Since 6G networks will operate at higher frequencies, there are tradeoffs in coverage area,
path loss, and infrastructure costs [3,4]. However, UAVs provide new capabilities as aerial
communication nodes to complement the overall 6G network architecture. Their mobility
and positioning flexibility make them well-suited for on-demand coverage and relaying in
hard-to-reach areas.

UAV-assisted communications can provide wide-area IoT access to temporary hotspots
and areas without terrestrial network coverage. For example, it can provide services, such
as ensuring emergency communications, crop monitoring, and monitoring rare animal-
inhabited areas. Moreover, by integrating communication and radar integration functions
on UAVs, centimeter-level high-precision positioning and high-precision ground imaging
can also be achieved. It further realizes services, such as high-precision navigation, precision
agriculture, emergency rescue, and intelligent traffic scheduling. In this way, the goal of
6G communication and perception integration can be well realized, further helping to
realize the true meaning of the everything intelligent connection. The integrated hardware
equipment and intelligent application software can greatly reduce the energy consumption
of IoTs and achieve sustainable green IoTs.
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Moreover, the bandwidth, frequency overlap, and exponential increase in devices
driven by 6G requirements can be mitigated through advances in UAV technology for
green IoTs applications. UAVs can incorporate mmWave radios to take advantage of the
abundant bandwidth at high frequencies. With wider channels above 400 MHz [5], the
throughput for UAV-based green IoT services can be significantly improved. In addition,
the integration of communication and radar on UAVs can also reduce the volume, energy
consumption, and cost of communication equipment and radar equipment and realize the
green IoTs based on UAVs. Intelligent UAV deployment and coordination will help unlock
the full potential of 6G for a wide range of transformative applications.

The efficiency of a system and the intelligence of UAVs in flight can be significantly
enhanced through the application of traffic simulation and virtual testing. This is especially
important in the context of IoT, where optimal resource utilization and energy efficiency are
paramount. Advanced virtual simulation technologies such as DT facilitate the formulation
of optimal routes for autonomous aerial vehicles and vehicular traffic, contributing to
reduced energy consumption and carbon footprint, which are key goals of green IoT.

DT, due to its ability to model the entire life cycle of an operating system and synchro-
nize with real entities, has emerged as a groundbreaking technology. The methodologies
developed through DT are anticipated to find extensive applications in modern communi-
cation infrastructure, particularly in green IoT systems where real-time monitoring and
management of devices can lead to significant energy savings [6].

Realizing a network digital twin requires several potentials, including network percep-
tion, network modeling, and intelligent data processing. These advanced methodologies,
central to green IoT, enable the construction of a digital twin of a physical network, which
serves critical functions, such as physical network querying, virtual network evaluation,
and virtual-real network interaction. This can contribute to energy-efficient network opera-
tion, a core principle of green IoT.

Despite the complexity and intricacies of intelligent UAV swarm collaboration, which
considerably limit its widespread application, the utilization of DT in intelligent UAV
networks is recommended. This technology can play a significant role in green IoT by
enabling more efficient flight paths, reducing energy consumption, and thus enhancing the
environmental sustainability of these systems.

The integration of digital twins for UAVs with cloud servers facilitates advanced route
planning for UAV operators, effectively diminishing the resources and duration dedicated
to path formulation. In the context of edge networks, the swift synchronization between
digital twins and the mobile edge computing (MEC) platform minimizes the necessity for
recurrent data exchanges. This not only amplifies energy conservation and traffic fluency
for UAV users but also resonates with the ethos of green IoT [7–9].

The requirement for multiple UAVs to communicate concurrently further complicates
the already intricate wireless channel characteristics. The DT platform can provide an
accurate virtual representation of UAVs’ wireless channels, thus enabling the platform to
carry out reliable and energy-efficient channel modeling by employing artificial intelligence
(AI) technology, an essential feature for green IoT systems. This study investigates the
potential of DT technology for modeling wireless channels for UAVs using radar imaging
and ray-tracing techniques, with a focus on their implications for energy efficiency in
green IoT systems. Specifically, this research considers the reflection properties of incident
waves by moving UAVs and the reflection effects of radio waves between multiple UAVs,
both of which have significant implications for the energy efficiency and environmental
sustainability of IoT systems [10].

The rest of this paper is structured as follows. Section 2 introduces the fundamentals of
digital twin-enabled UAV networks, with a specific focus on their applications in green IoT
systems. Section 3 delves into the exploration of UAV radar imaging in the mmWave Band
and Section 4 takes this a step further by developing ray-tracing-based aerial mmWave
channel modeling, a crucial aspect for energy-efficient communication in green IoT. Then,
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Section 5 provides the simulation results to validate our proposed method, followed by
Section 6 to conclude this paper by summarizing the potential impacts of our findings.

2. Digital Twin-Based UAV Communications for Green IoT

For the purpose of this study, we chose a professional UAV model, the DJI Phan-
tom 4 Pro quadcopter, produced by SZ DJI Technology Co., Ltd. (Shenzhen, China). This
UAVs is a technologically advanced aerial imaging solution. Its 1-inch CMOS sensor allows
20 MP and 4 K/60 fps video capture, while the OcuSync 2.0 system guarantees reliable con-
nectivity. Enhanced with five-direction obstacle sensing for safety and a specialized remote
controller for precision, this drone’s intelligent features streamline its operation, making it
a preferred choice for professional creators. Figure 1 provides a schematic representation of
the measurement setup, which includes a UAVs being tested and a radar front-end that is
supported by a tripod and connected via microwave wires [11,12].
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The significance of UAV specification in radar imaging lies in augmenting the percep-
tion and recognition capabilities of UAVs, which, in turn, fosters enhanced flight safety
and mission execution efficiency [13]. Radar imaging, as an active sensing technology,
employs the transmission of radar signals and the reception of reflected signals to ascertain
information pertaining to the distance, direction, and speed of a target.

The DT concept is a burgeoning proposition that has attracted notable attention in
recent years, particularly within the context of IoT [8]. DT’s ability to faithfully replicate
physical systems on digital platforms offers substantial potential for augmenting the energy
efficiency and sustainability of IoT systems [14].

Currently, the most salient applications of DT are manifested in engineering and
construction, with intense research and focus being channeled towards its utilization in
intelligent manufacturing, including the fabrication of energy-efficient IoT devices [15].
DT encompasses a diverse range of data types, such as physical models, sensor updates,
and operational histories. It synthesizes multi-disciplinary, multi-physical, multi-scale,
and multi-probability simulation processes, thereby achieving a virtual mapping. This
facilitates the monitoring and optimization of the entire lifecycle of corresponding physical
equipment, aligning with the principles of green IoT and resulting in significant energy
savings [16].

DT transcends mere conceptualization and may be considered a comprehensive digital
mapping system for one or more essential and interdependent equipment systems, inclusive
of those engaged in green IoT [17]. As a universally applicable theoretical and technical
system, DT has vast potential applications across various domains. Its relevance to green
IoT is pronounced, enabling the creation of more energy-efficient products in design
and manufacturing, reducing energy consumption in medical analyses, and fostering the
development of sustainable structures in engineering construction.

As depicted in Figure 2, a UAVs physically integrates several components, such as
NVIDIA’s physics engine, moments, rigid bodies, and joints. This not only allows for a
realistic simulation of the UAVs’ six degrees of freedom but also enables the optimization of
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the UAVs’ energy consumption, making it a key tool for green IoT. The force and moment
components, extensively utilized in propellers and motors, can be optimized for energy
efficiency. The joint components aid in connecting the internal parts of the UAVs, and their
efficient design can contribute to the overall energy efficiency of the UAVs, an important
consideration in green IoT [18].
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The physics of multi-rotor UAVs encompasses both internal forces and external forces
resulting from contact with other objects. These dynamics play a vital role in the context of
IoT, where efficient energy use and sustainable operations are paramount. The physical
motion of a multi-rotor UAVs is primarily governed by the differential in propeller speeds.
A significant consequence of the disparate speeds of the propellers is a shift in the UAV’s
total thrust across all directions [19]. This, in turn, allows for precise adjustments to the
UAV’s acceleration and attitude angles in all directions, leading to an optimized state of
mobility. This optimization can contribute to energy savings, which is a key objective in
green IoT.

In intelligent UAV networking based on DT, the closed-loop interaction between the
digital and physical domains enables UAVs to swiftly adapt to complex and dynamic
environments. This facilitates the autonomous execution of advanced functions, such
as trajectory optimization and resource allocation, both crucial for energy efficiency in
green IoT systems [20]. In order to ensure precise DT modeling and meet the data volume
requirements for simulation verification, base stations necessitate extensive bandwidths and
high transmission rates, which can lead to efficient and sustainable data service responses.

Data of varying values can be distributed across core clouds, edge computing devices,
and terminal devices, optimizing resource use and energy consumption. AI technology
can then perform data value mining, enabling dynamic scenario adaptation and intelligent
policy optimization, key features in the pursuit of green IoT.

The DT of the UAV network, being its digital mirror, replicates the same environ-
ment, UAVs, topologies, and various data as the actual UAV network. It serves as a
sophisticated “replica” of the actual network [10], providing a platform for energy-efficient
operation, a critical aspect of green IoT. The DT application platform can provide a digital
verification environment that closely resembles the actual UAV network, allowing for the
optimization of energy-efficient UAV path planning, driving strategy, and network operation
and maintenance.

The reliability of AI models and pre-validation results trained on the DT application
platform surpasses that of traditional simulation platforms. Consequently, as depicted in
Figure 2, the AI intelligent decisions, which are trained on the DT application platform, can
be directly dispatched to the actual UAVs via the MEC server. This integration allows UAVs
to make real-time, informed, and energy-efficient decisions without human intervention,
an important consideration in green IoT.

The amalgamation of DT and MEC servers within UAV networks can culminate in
augmented performance, heightened safety, and decreased expenditures. These outcomes
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are congruous with the guiding principles of IoT. Therefore, the utilization of DT and MEC
servers represents a pivotal approach to furthering the objectives of green IoT, particularly
in relation to the promotion of efficient and sustainable operations.

3. UAV Radar Imaging in mmWave Band
3.1. mmWave Communications for Green IoT and UAV Connectivity

The mmWave spectrum experiences significant propagation loss, consequently con-
straining its coverage area. However, in the context of IoT, this could be viewed as an
advantage, as it encourages the implementation of smaller, more energy-efficient networks.
Characterizing the RF characteristics of the DT using 3D millimeter-wave radar imaging
is a complex process involving key steps, such as signal generation, object scanning, data
analysis, and DT creation. By precisely capturing the RF attributes of the physical UAVs
and replicating these attributes in the virtual model, a close alignment between the DT and
the physical entities is ensured.

3.1.1. The Application of mmWave-Based UAV Communications in Green IoT

Given that direct transmission is the primary propagation mode during mmWave
transmission, it is deemed more fitting to utilize mmWave as the communication medium
between the air and ground. This direct method of transmission can reduce energy con-
sumption, aligning with the principles of green IoT. At present, mmWave is one of the
main communication frequency bands used in low-orbit satellite communications. It is
reasonable to posit that mmWave is more appropriate for UAV communications at lower
altitudes than low earth orbit (LEO) satellites, which can further be improved to a certain
extent under the condition that the communication range, data rate, coverage, delay, cost,
and other factors, satisfied [21,22].

In mmWave-based UAV communication systems, the transmission requirements of
large traffic volumes can be met, an essential aspect of green IoT. MmWave is also more
suitable for high-capacity hotspot area coverage and wireless backhaul as a substitute for
optical fiber in terrestrial communication systems, contributing to the energy efficiency
goals of green IoT. Industrial cameras mounted on UAVs capture large volumes of data
in the form of infrared images and high-definition videos. Such application scenarios
necessitate transmission rates in the order of hundreds of megabits or even gigabits [5].
Another application where UAV mmWave communication proves beneficial is film and
television production, where it can support the capture and transmission of ultra-high-
definition video [23,24].

Moreover, due to the low latency characteristics of mmWave, near-zero delay in UAV
communication can be achieved, thereby significantly enhancing the safety performance
of UAVs, and reducing energy waste. Equipping UAVs with mmWave radar can enable
obstacle avoidance and ground-like flight, thus making them invaluable in application
fields, such as agriculture, forestry, plant protection, and line inspection, all of which can
benefit from green IoT principles, as shown in Figure 3.

UAV mmWave communications can foster the integration of future 6G communication
and sensing, one of the fundamental features of 6G networks. The research direction of
integrated communication and sensing technology based on the wireless spectrum (partic-
ularly high-frequency band) was proposed in 2018. The integration of communication and
sensing can reduce the size and energy consumption of communication and radar devices,
improve spectrum usage efficiency, and provide superior services for vertical industries
such as UAVs and telematics applications, all crucial aspects of green IoT.
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3.1.2. Green IoT-Enabled Aerial mmWave Channel Characteristics

The principal propagation mode of mmWave is the direct wave, characterized by
higher transmission loss and a weaker ability to circumnavigate obstacles. These charac-
teristics make its shadow fading substantially distinct from those of low-frequency waves.
In the context of terrestrial communication, mmWaves are prone to obstruction by vari-
ous objects, such as buildings and human bodies. However, in aerial mmWave wireless
channels, such as those between UAVs and ground-based stations, there’s less obstruction.
This factor makes mmWave ideal for Green IoT, as it can lead to improved transmission
performance compared to ground-based communications, contributing to energy efficiency.

The aerial mmWave channel has several key characteristics in the context of Green IoT:

1. A substantial frequency span: mmWave boasts abundant available resources, and
both the system bandwidth and channel bandwidths can be large. As the frequency
increases, the decay of electromagnetic wave energy accelerates with distance, and
weather factors such as rain and fog become more influential [25–27]. This large
frequency span, combined with the direct propagation mode of mmWave, allows for
energy-efficient communication in the Green IoT context.

2. Deficient mobility support: mmWave is suited for fixed scenarios with relatively high
traffic demand. However, in the context of Green IoT, stationary devices or those with
low mobility can benefit from energy savings due to the reduced need for frequent
handovers or network reconfigurations.

3. Influence of technology diversity on channel transmission: To counteract the spatial
propagation loss of mmWave, beamforming technology is typically employed to boost
antenna gain. In the future 6G landscape, more diverse technologies, such as super
massive multiple input multiple output (MIMO)/holographic MIMO, intelligent
reconfigurable surfaces (IRS), and communication-aware integration (CAI), may be
utilized. These technologies can help reduce energy consumption by improving the
efficiency of data transmission, aligning with the principles of Green IoT.

Given the complexity of mmWave channels and the need for more research in this
area, Green IoT can benefit from the development of energy-efficient algorithms and
technologies for mmWave communication. Accurate channel modeling, for instance, can
lead to more efficient usage of the spectrum, contributing to energy savings. Similarly,
developing technical parameters and performance indicators for different technologies can
help optimize energy use in various Green IoT applications.

3.2. UAV Radar Imaging by ISAR

As radar emerges as the preferred method for detecting UAVs, the necessity for an
accurate assessment of UAV radar signatures is becoming increasingly paramount [28–31].
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Inverse synthetic aperture radar (ISAR), an image processing technique, leverages target
motion rather than radar motion to achieve this [32]. This technique offers a more accurate
depiction of scenarios where the measurement geometry is determined by the collected
data and is not known beforehand.

The fundamental concept behind ISAR is to utilize the geographic variety of data
collected to concentrate a high-resolution picture. A measurement session produces a
complex number matrix by using the apparatus mentioned above and moving the radar
head incrementally along z. We can get Ei,k,m = Ii,k,m + jQi,k,m, where Ii,k,m and Qi,k,m are
the in-phase and quadrature components, respectively.

The fundamental concept of the windowing method we used is shown in Figure 4. To
preserve the best resolution possible, the spinning circle is split into four partly overlapping
180◦ arcs.
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The fundamental formula for (x, y, z)-coordinated general point focusing is [28]:

I(x, y, z) = ∑
i,k,m

Ei,kej 4π
c fi Rk,m(x,y,z) (1)

where Rk,m(x, y, z) is the separation between the place denoted by the indices k and m and
the image point (x, y, z). At each arc, a window that is projected to the chord subtended by
the same arc is applied prior to focusing. The chords are parallel to the x and y axes if the
arcs are arranged as in Figure 4. Each arc is independently treated to the ISAR algorithm,
and by releasing the phase, the resulting image Iw(x, y, z) is added incoherently.

Iw(x, y, z) =
4

∑
n=1
|In(x, y, z)| (2)

As an illustrative example, Figure 5 presents our measurement of the DJI Phan-
tom 4 Pro UAVs employing the Windowing process at the 10 GHz ray frequency. Figure 5a
exhibits a two-dimensional image under HH (Horizontal transmission and Horizontal
reception) polarization. In this polarization scheme, the signal is both transmitted and
received in a horizontal manner. The image captures the reflection of the signal from the
UAVs, evidenced by a bright spot at the center of the image. The surrounding area appears
relatively dark, indicating a low reflection level. Upon closer examination, the bright spot
representing the UAV reflection has a roughly circular shape and is positioned near the
center of the image. The darkness of the background suggests negligible radar returns from
the surrounding environment. This is expected for HH polarization, which tends to interact
weakly with vertical structures. The high brightness of the UAV highlight demonstrates
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that the HH scheme produces excellent reflection from the horizontal components of the
UAV body.
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Figure 5b represents the same UAVs under the VV (Vertical transmission and Vertical
reception) polarization scheme. This scheme involves the vertical transmission and recep-
tion of the signal. The resultant image captures a comparable reflection from the UAVs,
albeit with a slight variation in shape and position compared to Figure 5a. Specifically, the
UAV reflection has taken on a more elongated, oval-like shape and shifted slightly down
and to the right. This discrepancy in the VV radar return arises due to the differential
interaction of the signal with the UAVs, contingent upon its polarization. The VV mode
exhibits greater sensitivity to vertical structures, resulting in enhanced returns from the
vertical edges and body of the UAV. Furthermore, the viewing angle and orientation of the
UAV may have changed between measurements, leading to the observed shape and posi-
tion differences. Overall, Figure 5a,b demonstrates that HH and VV polarization schemes
yield detectable yet distinct radar reflections from the UAV targets at 10 GHz frequency.
This example highlights the ability to image UAVs using radar and the dependence of the
measured returns on transmit/receive polarizations.

4. 3D Ray-Tracing Based Aerial mmWave Channel Modeling

In previous studies, it was commonly assumed that scatterers are distributed in a two-
dimensional plane when analyzing the channel. This assumption disregards the impact of
the elevation plane on channel analysis and is valid in the low-frequency range. However,
as the frequency range widens, the signal’s propagation properties change, rendering the
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original assumption inaccurate in calculating channel parameters [27]. Therefore, it is
necessary to adopt a three-dimensional propagation model to accurately transmit mmWave
signals and obtain their propagation characteristics in the space, time, and frequency
domains. Furthermore, this model can be extended to various transmission scenarios,
including those involving green IoT technologies. The proposed wireless channel modeling
based on ray tracing plays a crucial role in this process. Ray tracing simulates the interaction
of RF signals with the environment, considering real-world conditions such as obstacles,
reflections, diffractions, and scatterings. This not only ensures the precise alignment of the
DT’s RF characteristics with the physical UAVs but also enhances the prediction and control
of the UAVs’ behavior in real-world scenarios, thereby improving the overall efficiency
and accuracy.

4.1. The 3D Ray-Tracing Method in Green IoT Channel Analysis

In the context of analyzing electromagnetic waves in the real physical external environ-
ment, the three-position ray tracing method employs electromagnetic waves as the object
and light propagation as the fundamental principle to derive the characteristic parameters
of radio wave propagation. This method allows for efficient 3D ray tracing to calculate the
main component reflection, scattering, diffraction, and other related parameters. The 3D
ray tracing method has demonstrated high reliability in accurately simulating mmWave
channel characteristics and finds application in diverse measurement scenarios [28]. When
employing the 3D ray tracing method to analyze electromagnetic waves in the context of
green IoT, the first step involves geometric modeling of the scene, considering environ-
mentally friendly elements and energy-efficient devices. The accuracy of the geometric
modeling directly affects the correctness of the final results, ensuring the effectiveness
of green IoT implementations. For instance, to incorporate UAVs into the model, one
approach is to introduce the Doppler frequency shift, the micro-Doppler effect of the UAV
itself and the 3D mmWave image of the UAVs into the simulation system, thus enhancing
the accuracy of the simulation results, while considering the energy consumption and
environmental impact.

The next step entails setting the simulation parameters within the simulation system,
with key parameters including transmit power, angle of departure (AoD), antenna height,
number of UAVs, etc., taking into account energy-efficient configurations and green IoT
principles. Subsequently, ray tracing technology is employed to simulate the propagation of
wireless signals, ensuring minimal interference and optimal energy consumption. Finally,
the parameters of each path in multipath signals, such as time of arrival (ToA), angle
of arrival (AoA), phase, and amplitude, are obtained. At the receiver side, statistical
information can be extracted, including power angle spectrum (PAS), power delay curve
(PDC), root-mean-square (RMS), and power spectrum density (PSD) delay, providing
insights into the performance and energy efficiency of the green IoT system. Figure 6
illustrates the 3D ray tracing of UAVs in the mmWave band, showcasing the integration of
green IoT principles for sustainable and eco-friendly wireless communication. In Figure 6,
based on the green Internet of Things environment, when there are buildings blocking direct
communication between ground users and mobile base stations, they can communicate
through the network composed of UAV groups in the air. In order to ensure the reliability of
UAV network communication, the UAV can also establish communication through mobile
base stations. This forms a 3D communication network.
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4.2. Simulating Propagation with Ray Tracing

The data obtained from the simulation can be rigorously analyzed to derive a compre-
hensive three-dimensional multipath channel model specifically tailored for the real-world
UAV IoT environment. This detailed analysis allows for the precise calculation of channel
coefficients, thereby enhancing the accuracy of the modeling process.

In our integrated UAV network, ground sources D and S may communicate with
one another thanks to UAVs. Assumedly, there is no direct connection between D and S.
Between D and S, the UAVs additionally serve as a reflector. In cartesian coordinates, the
locations of D and S are denoted as:

Ld = (xd, yd, 0) (3)

Ls = (xs, ys, 0) (4)

Additionally, we consider that UAVs may be positioned at any height h. Then, the
coordinates of the UAVs can be denoted as:

Lu = (xu, yu, h) (5)

In two-dimensional Cartesian coordinates, the location of the UAVs, D, and S can be
given by:

su = (xu, yu) (6)

sd = (xd, yd) (7)

ss = (xs, ys) (8)

In this paper, we assume hs and hd are Rician fading channel. Then, the probability
density function of |hs|2 is given by:

fs(x) =
Ks + 1

Ωs
e−Ku− (Ks+1)x

Ωs I0(2

√
Ks(Ks + 1)x

Ωs
) (9)

where Ωs is the mean of |hs|2 and I0 is the zero-th order modified Bessel function of the
first kind. Obviously, we can also get the probability density function of |hd|2, According
to (9). The transmission to the users may have line of sight (LoS) or non-LoS based on the
elevation angle between D, S, and the UAVs. Then, we can obtain the path-loss between S
and UAVs by:

PLu,s = du,s
−α(θu,s) (10)
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where ds is the distance between S and UAVs, which can be obtained by:

du,s =

√
|su − ss|2 − h2 (11)

The elevation angle between the environment and the node determines the communi-
cation between the ground receivers D and S and the UAVs. The elevation angle θu between
UAVs and S can be given as follows:

θu,s = arctan(
h

|au − as|
) (12)

The probability of LoS in each link is a function of θs,

pL(θu,s) = (1 + esexp(−gs(θu,s − es)))− 1 (13)

where es and gs are the environment parameters obtained from the curve fitting using
the Damped Least-Squares method. Then, the path-loss exponent α is a function of the
elevation angle, i.e.,

α(θu,s) = pL(θu,s)qs + vs (14)

where vs and qs are constants depending on the downlink environment. We can also get
the path-loss from S to UAVs PLd = dd

−α(θd), according to (14)–(18). Then, we can get the
received signal at D by:

yd =
√

P
√

PLshsσs
√

PLdhds + n (15)

where hs and hd is the small-scale channel fading from S to UAVs and UAVs to D, s is the
transmitted signal from S and E(|s|2) = 1, σs is the reflection coefficient associated with the
UAVs, n is the additive white Gaussian noise (AWGN) with zero-mean and power spectral
density N0, and P is the transmitted power from S.

According to (9), the decoding signal to interference plus noise ratio (SINR) of s at D is:

SINRd =
PPLuPLd|huhd|2σu

2

n2 (16)

Then we can get the throughput by:

Rd = log(1 +
PPLsPLd|hshd|2σs

2

n2 ) (17)

5. Simulation Study on DT-Based UAV Networks

The simulation scenarios of DT-based UAV network are shown in Figure 7. The
provided parameter values represent characteristics and specifications of a communication
system involving antenna elements, beamwidth, gain, physical separation, bandwidth,
carrier frequency, transmit power range, channel path loss index, AWGN spectral density,
and noise figure. The communication system utilizes 512 antenna elements arranged in
a 3-dimensional array with dimensions of 16 × 16 × 2. Each antenna element supports
256 elements per polarization. The beamwidth of the antenna is 90 degrees at −3 dB. The
maximum gain of the antenna is 5 dBi. The physical separation between adjacent antenna
elements is 0.5 wavelengths (λ). The communication system has a net transfer bandwidth
of 800 MHz. The communication system operates at a carrier frequency of 100 GHz. The
system’s transmit power can be adjusted within a range of 40–100 W. The channel path loss
index is 3. The spectral density of AWGN in the channel is −170 dBm/Hz. The noise figure
of the system is 5 dB.

Subsequently, simulation experiments are conducted on the proposed use cases (Use
case 1: UAV flies along a straight line and Use case 2: UAV flies along a 30-degree inclined
path). In each experiment, a comparative analysis is performed between the designed
scheme and the finite-difference time-domain (FDTD) model to assess their respective
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performances. The use of actual radar measurements can be utilized to validate and verify
the results obtained from the FDTD model.
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“Use case 1: UAV flies along a straight line” represents a fundamental and commonly
encountered scenario in UAV operations. In this case, the UAV follows a linear trajectory
without any deviations, which allows us to study the basic channel characteristics and
evaluate the impact of path loss and fading in a straightforward setting. Understanding the
channel behavior in this scenario provides a foundation for comparison and benchmarking
against more complex flight paths. On the other hand, “Use case 1: UAV flies along a
30-degree inclined path” introduces an essential element of real-world UAV applications,
non-linear flight paths. Many practical UAV missions involve navigating through varying
terrain, avoiding obstacles, or following specific routes for surveillance and data collection.
By simulating an inclined path, we can investigate the effects of elevation changes on signal
propagation, assess the impact of obstacles or terrain irregularities, and gain insights into
the implications for communication link quality and performance. These chosen scenarios
reflect crucial aspects of UAV networks in realistic operating conditions. By focusing
on a straight-line flight and an inclined path, we cover both simple and complex flight
trajectories, allowing us to draw meaningful conclusions about the UAV communication
channel’s behavior across various operational scenarios. This approach enables us to design
more robust communication protocols, antenna configurations, and network strategies
tailored to the challenges presented by real-world UAV deployments. The combination of
these distinct scenarios in our simulation analysis ensures that the derived channel model
is practical, comprehensive, and capable of supporting the optimization of UAV network
performance in diverse and dynamic environments.

The two approaches, actual radar imaging and FDTD models, can be employed to
derive the channel model of UAVs. Both actual radar imaging and FDTD models can be
employed to derive the channel model of UAVs. Actual radar imaging involves collect-
ing real-world radar data and analyzing it to accurately describe the signal propagation
characteristics, including path loss, multipath effects, and fading, between the radar trans-
mitter and the UAV receiver. Despite its advantages in realism and comprehensiveness, this
method may not be suitable for all scenarios due to its high cost, complexity, and limitations
in results. On the other hand, FDTD models are numerical methods used to solve Maxwell’s
equations and simulate electromagnetic wave propagation in a given environment. In the
context of deriving the UAV channel model, FDTD models simulate the electromagnetic
behavior between the radar transmitter and the UAV receiver based on the geometry of the
surroundings. This approach offers advantages in flexibility and cost-effectiveness, as it can
be applied to various scenarios and UAV configurations. However, FDTD models also have
limitations, such as simplified assumptions and high computational requirements, which
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may result in some degree of accuracy loss. In practical applications, a combination of
both approaches may be used to obtain a more comprehensive and accurate UAV channel
model. Actual radar imaging provides valuable data for validating and calibrating the
FDTD models, while FDTD models allow for exploring a wider range of scenarios and
conditions without the constraints of physical experiments.

5.1. Use Case 1: UAV Flies along a Straight Line

Figure 8 depicts the SINR as a function of the UAVs’ location or distance along a
straight line for different numbers of transmit antennas: 1, 16, and 256 antennas, respec-
tively. Notably, when the number of antennas is increased to 256, the beamforming gain
experiences a substantial rise, resulting in a significant increase in SINR. The solid line in
Figure 8 represents the SINR data obtained through the FDTD approach, while the dashed
line corresponds to the results derived from RF imaging. Remarkably, the findings pre-
dominantly exhibit a close match, effectively capturing the correct trend, thus reaffirming
their reliability and mutual consistency. In Figure 9, the relationship between throughput
and the UAVs’ location is presented. The results demonstrate a close alignment between
the data obtained through the FDTD method and the measured values. This compelling
agreement validates the validity and soundness of our approach to radar imaging for RF
digital twin modeling.
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5.2. Use Case 2: UAV Flies along a 30-Degree Inclined Path

In Figure 10, we present the SINR results, while Figure 11 showcases the throughput
outcomes. The UAVs’ flight trajectory incorporates a 30-degree inclination angle, which
introduces asymmetry in its distance from both the user equipment (UE) and the base
station (BS). As a consequence of this asymmetry, the SINR and throughput results exhibit
variations across the entire 360-degree range. The noticeable asymmetrical patterns in both
figures underscore the significant influence of the UAVs’ flight angle on the communication
system’s performance. These findings emphasize the importance of considering such flight
angles in the design and evaluation of UAV communication systems, as they play a crucial
role in determining overall communication quality and efficiency.
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When comparing the results for straight and inclined path scenarios in UAV commu-
nication channel models, several patterns and differences emerge that reveal the impact
of flight trajectories on signal propagation. In straight-line scenarios, changes in signal
strength along a linear trajectory are attenuated. However, in oblique path scenarios,
significant differences are observed. When the drone rises along a 30-degree slope, the
signal strength roughly shows a trend of first rising and then falling. Understanding these
patterns and differences is critical for designing adaptive communication strategies that
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can adapt to varying channel conditions, especially when UAVs traverse complex terrain or
follow non-linear flight paths in real-world applications. By comparing the results of these
different scenarios, researchers and engineers can gain insight into the performance con-
straints and opportunities for optimizing UAV communication networks under different
operating conditions.

The validation process involving the use of actual radar measurements to validate
and verify the results obtained from the FDTD model is a critical step in ensuring the
accuracy and reliability of the simulated UAV communication channel. The process works
by conducting real-world radar measurements in the same environment where UAVs
operate. These measurements capture the actual electromagnetic behavior, including signal
propagation, reflections, and scattering effects. The FDTD model is then used to simulate the
same scenario by taking into account the same geometric parameters and frequency bands
used during the radar measurements. By comparing the simulation results with the actual
radar data, researchers can assess the accuracy of the FDTD model’s predictions. A close
match between the simulation and real-world measurements indicates that the FDTD model
accurately represents the UAV communication channel’s behavior, providing confidence in
its application for designing and optimizing UAV communication systems. Furthermore,
this validation process allows for model improvements based on discrepancies identified
during comparison, enhancing the model’s reliability and its generalizability to different
UAV scenarios and environments. Ultimately, the use of actual radar measurements for
validation ensures that the FDTD model is a robust and reliable tool for supporting the
development of efficient and effective UAV communication networks in real-world settings.

6. Conclusions

This study proposes a drone-enabled digital twin framework for green IoT that em-
ploys artificial intelligence to manage UAV swarm tasks, thereby accomplishing intelligent
operation of physical UAV networks. The real-time DT-physical UAV connection permits
optimal route planning and dependable UAV operation. 3D radar imaging extracts RF
characteristics of UAVs for DT modeling. The application of ray-tracing to UAV propaga-
tion characteristics reflects their wireless channel influence. Finally, our numerical results
justify that the drone-enabled DT platform faithfully represents UAV RF characteristics for
intelligent management of green IoT-based UAV networks.
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