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Abstract: Quantitatively characterizing coastal salt-marsh terrains and the corresponding spatiotem-
poral changes are crucial for formulating comprehensive management plans and clarifying the
dynamic carbon evolution. Multiline light detection and ranging (LiDAR) exhibits great capability
for terrain measuring for salt marshes with strong penetration performance and a new scanning
mode. The prerequisite to obtaining the high-precision terrain requires accurate filtering of the
salt-marsh vegetation points from the ground/mudflat ones in the multiline LiDAR data. In this
study, a new alternative salt-marsh vegetation point-cloud filtering method is proposed for drone
multiline LiDAR based on the extreme gradient boosting (i.e., XGBoost) model. According to the basic
principle that vegetation and the ground exhibit different geometric and radiometric characteristics,
the XGBoost is constructed to model the relationships of point categories with a series of selected
basic geometric and radiometric metrics (i.e., distance, scan angle, elevation, normal vectors, and
intensity), where absent instantaneous scan geometry (i.e., distance and scan angle) for each point
is accurately estimated according to the scanning principles and point-cloud spatial distribution
characteristics of drone multiline LiDAR. Based on the constructed model, the combination of the
selected features can accurately and intelligently predict the category of each point. The proposed
method is tested in a coastal salt marsh in Shanghai, China by a drone 16-line LiDAR system. The
results demonstrate that the averaged AUC and G-mean values of the proposed method are 0.9111
and 0.9063, respectively. The proposed method exhibits enhanced applicability and versatility and
outperforms the traditional and other machine-learning methods in different areas with varying
topography and vegetation-growth status, which shows promising potential for point-cloud filter-
ing and classification, particularly in extreme environments where the terrains, land covers, and
point-cloud distributions are highly complicated.

Keywords: drone; multiline LiDAR; salt marshes; point-cloud filtering; machine learning

1. Introduction

Salt marshes are geolocated at the transitional coastal zones between the land and sea.
Due to the distinctive geographic environment and location, salt marshes are periodically
submerged by the tides [1] and have a rich variety of flora and fauna resources [2]. As such,
salt marshes are generally recognized as a major contributor to global coastal blue carbon
ecosystems and possess enormous ecological and economic values [3,4]. Geologically, salt
marshes can naturally respond to sea-level rise by the physical accumulation of mineral and
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biogenic sediments [5,6]. Consequently, terrains and landforms can contribute to the quanti-
tative investigation of the impact mechanism for salt-marsh dynamics, geomorphology, and
sedimentation processes, as well as the acquisition of salt-marsh biomass [7–9]. Accurately
obtaining the terrain data and the corresponding spatiotemporal evolutions can provide
parameterization or complements for the investigation of the carbon–water–sediment dy-
namic exchange process and feedback mechanisms for salt marshes [10]. However, dense
vegetation coverage, periodic water accumulation, and muddy circumstances often make
in situ traditional terrain-measuring techniques infeasible. Technological advancements in
optical remote sensing have introduced a number of remarkable alternative techniques for
the investigation of salt-marsh terrains in a noncontact way [11–13]. Passive remote-sensing
technologies do not directly record the terrain. As such, some strategies or methods, e.g.,
oblique photography [14], stereo image pairs [15], and waterline detection [12], are needed
for terrain derivation with the assistance of ground truth observation data. However,
optical remote sensing is a passive technique and the acquired images are vulnerable to
the environment (e.g., sunlight, the atmosphere, and clouds). Additionally, optical remote
sensing can only provide two-dimensional information on the vegetation canopies. Only
the terrains of the regions without vegetation or with sparse vegetation can be satisfactorily
obtained [16–19].

LiDAR (light detection and ranging) can acquire the geometric and radiometric data
of each scanned point simultaneously by actively emitting and receiving lasers. Compared
with optical remote sensing, LiDAR is characterized by strong penetrability, high-resolution
data quality, and three-dimensional data acquisition [20–22]. However, traditional LiDAR
systems commonly employ a single emitter and receiver to detect targets, i.e., laser beams
are emitted successively at a very short constant time interval. Conversely, multiline
LiDAR (e.g., 4-, 8-, 16-, 32-, 64-, and 128-line), a novel technology that has boomed in
recent years, can emit multiple laser shots simultaneously to improve data accuracy and
reliability [23]. Multiline LiDAR is an “upgraded version” of traditional LiDAR and has
qualitative improvements in data dimension and scene restoration. Multiline LiDAR can
realize high-precision 3D environment modeling and detect obstacles at different heights,
which is generally used in the field of unmanned driving or drone detection. Drone
multiline LiDAR enables more effective data collection and penetration in dense vegetation
regions and shows great potential in terrain measuring for salt marshes [24].

The prerequisite is to filter the drone multiline LiDAR point clouds for terrain deriva-
tion in salt marshes, which means accurately classifying the raw data into two categories,
that is, ground (i.e., mudflat) points and nonground (i.e., vegetation) ones [25]. Massive
advanced filtering algorithms have been developed, including progressive morphological
filtering (PMF) [26], slope-based filtering (SF) [27], and cloth-simulation filtering (CSF) [28].
The basic filtering strategies of these methods mostly lie in the geometric differences
between ground and nonground points. However, these filtering algorithms cannot be
robustly and accurately applied in salt marshes due to the tortuous creeks being hetero-
geneous in depth and the dense vegetation varying in structures [24]. In addition to the
geometric differences, vegetation is composed of materials and water contents different
from that of the mudflat and has totally different reflectance properties [24]. Therefore,
vegetation can be filtered by the LiDAR-intensity data which contain the spectral properties
of the scanned points. However, multiple factors complicate the original intensity, and these
effects must be eliminated. Considerable progress has been achieved in LiDAR-intensity
correction in the past decade, and many advanced models have been developed [29–32].
Nevertheless, different LiDAR instruments must be individually calibrated, and the cor-
rected intensity data at a single-wavelength laser cannot separate all vegetation points.
Moreover, strong specular reflections typically occur over wet or water-dominated salt
marshes, increasing the difficulties in intensity correction [33]. Hence, intensity data are
a potential metric for vegetation separating but intensity correction is a big challenge. A
number of previous studies have demonstrated that a feasible optimization solution for
filtering is to combine the intensity and geometric data [34].
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In addition to the traditional filtering methods based on either geometric or intensity
data, another new potential strategy is machine-learning-based methods, e.g., adaptive
boosting (AdaBoost), extreme gradient boosting (XGBoost), and random forest (RF) [35].
Machine-learning-based methods can automate feature learning, handle high-dimensional
data, and deal with nonlinear relationships, which are suitable for various scenarios and
different filtering tasks [36]. In particular, the XGBoost can efficiently process massive data
samples through noncore computation, which demonstrates superior classification perfor-
mance and effectiveness compared to other commonly used machine-learning methods
and shows great potential in 3D point-cloud processing [37]. However, the performance of
the XGBoost for filtering salt-marsh vegetation remains unknown, since the scanning mode
of drone multiline LiDAR is totally different from the traditional LiDAR; the salt-marsh
environment is extremely complicated.

In this study, we propose a new alternative method to filter the drone multiline LiDAR
point cloud of coastal salt-marsh vegetation based on the XGBoost model. The fundamental
principle of the proposed method is to characterize the specific relationship of the point
attributes (mudflat or vegetation) and their corresponding geometric and radiometric char-
acteristics by constructing an XGBoost model. In the model, a total of five fundamental
geometric and radiometric quantities of each point, i.e., scan angle, distance, elevation, nor-
mal vectors, and original intensity, are used as independent variables, and point attributes
are used as dependent variables. The instantaneous scanning geometry (i.e., scan angle and
distance) of each point is estimated based on the scanning principles of the drone multiline
LiDAR system. Different from the geometric data-based method that needs to manually
set/derive a number of parameters and perform extensive 3D operations, the intensity-data-
based methods that need to estimate the corresponding model parameters after establishing
a specific mathematical correction model, or the combination methods that need to use
the geometric and the radiometric information successively by several procedures, the
intensity correction and the combination of the geometric and the radiometric data are
totally realized by the XGBoost model. The major innovations include (1) a novel method
proposed to accurately estimate the instantaneous scan geometry of the drone multiline
LiDAR system and (2) a new point-cloud filtering method for salt-marsh vegetation based
on XGBoost is proposed, which can avoid the complex intensity-correction process and
internally combines the geometric and radiometric data for point-cloud classification.

2. Methodology
2.1. Architecture Overview

A total of N original points collected by drone multiline LiDAR are represented by
P = {Pi(Xi, Yi, Zi, Ii, Ti), i = 1, 2, . . . , N}, where (Xi, Yi, Zi) are the 3D coordinates, Ii is
the original intensity, and Ti is the GNSS time. The flight height (H) is provided by the
drone system and the take-off point elevation (z0) is measured by real-time kinematic
(RTK). Four major procedures are included in the proposed method, as shown by the
architecture overview (Figure 1). First, the absent instantaneous distance di and scan angle
θi of each point is accurately estimated based on the 3D coordinates, GNSS time, flight
height, and take-off point elevation. Meanwhile, the surface normal vectors (µi, νi, ωi) are
derived by the best-fitting plane around the interest point using the 3D coordinates of the
nearest neighbor points by the least squares adjustment method [38]. Second, a feature
set including the distance (di), scan angle (θi), elevation (zi), normal vectors (µi, νi, ωi),
and original intensity (Ii) is constructed for each point. Third, the XGBoost is trained and
optimized using the training and test sets, whereas the model performance is assessed by
the validation datasets. Finally, the constructed model is popularized to filter the entire
point cloud of the study site.
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Figure 1. Architecture overview of the proposed method.

2.2. XGBoost Algorithm

XGBoost improves classification accuracy by building an ensemble of multiple weak
classifiers [39]. The fundamental principle of XGBoost is to fit the residuals by continu-
ously iterating and to update the model parameters by optimizing the objective function
(Figure 2).

Drones 2024, 8, x FOR PEER REVIEW 4 of 19 
 

 

Figure 1. Architecture overview of the proposed method. 

2.2. XGBoost Algorithm 

XGBoost improves classification accuracy by building an ensemble of multiple weak 

classifiers [39]. The fundamental principle of XGBoost is to fit the residuals by continu-

ously iterating and to update the model parameters by optimizing the objective function 

(Figure 2). 

 

Figure 2. Structure of XGBoost algorithm. 

The goal of XGBoost at each iteration is to eliminate the residual of the previous iter-

ation. The process starts from the first tree until the optimization of the 𝐾-th tree is com-

pleted. The details can be described as follows: 

Figure 2. Structure of XGBoost algorithm.

The goal of XGBoost at each iteration is to eliminate the residual of the previous
iteration. The process starts from the first tree until the optimization of the K-th tree is
completed. The details can be described as follows:
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ŷi
(0) = 0

ŷi
(1) = f1(xi) = ŷi

(0) + f1(xi)

ŷi
(2) = f1(xi) + f2(xi) = ŷi

(1) + f2(xi)

· · ·
ŷi

(K) = ∑K
k=1 fk(xi) = ŷi

(K−1) + fK(xi)

(1)

where xi is the training sample, ŷi
(K) is the final model prediction value, ŷi

(K−1) is the
prediction of the model after K − 1 iterations, and fk(xi) is the prediction of the k-th tree.

XGBoost uses a gradient-boosting strategy to optimize the objective function. By
using a second-order Taylor expansion of the loss function and introducing a regularization
term, XGBoost effectively improves model accuracy while avoiding the risk of overfitting.
However, it requires considerable computational resources for large datasets.

2.3. Feature Selection and Derivation
2.3.1. Feature Selection

Selecting appropriate features for XGBoost can improve model performance and accu-
racy while reducing computational complexity and overfitting risk [40]. In the proposed
method, the intensity, incidence angle, distance, elevation, and normal vectors are used as
input features to build an XGBoost filtering model. Intensity demonstrates the reflectance
of the target surface and can discriminate different types of objects. The incidence angle and
distance are the predominant factors that affect intensity. By imputing intensity, distance,
and scan angle as features in the XGBoost model, the influences of scan geometry on inten-
sity can be fully eliminated and the traditionally complex intensity-correction processes are
avoided. However, only the single-wavelength intensity data are not able to separate all
vegetation points. The orientations of the vegetation points are irregular, whereas those
of the ground points are nearly perpendicular. Additionally, the vegetation is generally
higher than the mudflat. As such, the normal vectors and elevation (i.e., the z coordinate),
which indicate the surface orientation and height of each point, respectively, are used to
compensate for the insufficiency of the intensity data.

2.3.2. Derivation of Scan Angle and Distance

In practice, the user-provided LAS file usually does not involve the 3D coordinates
of the instrument and each point at the instantaneous scanning time [41]. Consequently,
neither the incidence angle nor the distance can be acquired directly. Due to constant flight
height and flat salt-marsh terrain, the incidence angle can be approximately substituted
by the scan angle [24,41]. A new strategy is realized in [24] to restore the scan angle and
distance of each point for drone LiDAR based on the GNSS time and flight height. In the
method, the projection point Mi

j of the instrument in a short time interval is approximately
considered the projection points of all the n emitters of the multiline LiDAR, i.e., the projec-
tion points of the n emitters coincide. However, each emitter should have an individual
projection point. For example, the projection point of the k-th (k = 1, 2, . . . , n) emitter in
the j frame is Dk

j , whereas Mi
j is the projection point of the instrument (or the midpoint of

the projection points of the n emitters). As such, the scan angle of a point Pk
i

(
Xk

i , Yk
i , Zk

i

)
scanned by the k-th emitter in the j frame is ∠Dk

j OjPk
i rather than ∠Mi

jOjPk
i . The details for

deriving ∠Dk
j OjPk

i are introduced as follows.
Multiline LiDAR takes frames as scanning units (Figure 3). The rotation axis of the

laser sensor is aligned with the flight direction of the drone. In the plane where the rotation
axis is located, the laser sensor simultaneously emits a group of beams in different directions
with multiple included angles with the rotation axis. The included angles are preset by
the manufacturer and keep constant all the time. Then, the laser sensor undergoes 360◦

rotational scanning around the rotation axis. For a n-line LiDAR with a frequency of f ,
the n emitters simultaneously emit a group of n lasers in a moment every t seconds, i.e.,
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the time interval between two neighbor frames is t where t = 1/ f . In each frame, there
are a total of n scan lines, and these scan lines are parallel to each other. There are f
frames and n · f scan lines per second. If the flight speed of the drone is v m/s, then the
distance between two neighbor frames is v · t. If Nt points are scanned per second, then
each frame contains Nt · t points and each scan line contains Nt · t/n points. In a single
frame, the forward and side fields of view of the LiDAR are α and β, respectively. The
length of a frame is 2 · H · tan(α/2), and the width of a frame (i.e., swath) is 2 · H · tan(β/2),
where H is the flight height. The distance between two neighbor scanning lines in a
certain frame is 2 · H · tan(α/2)/(n − 1), and the distance between two neighbor points
(i.e., spatial resolution) on a certain scan line is 2 · H · tan(β/2)/[Nt · t/n − 1]. Let j be the
frame number and k (k = 1, 2, . . . , n) be the scan line/emitter number. Oj is the position
of the drone in the j frame. We can segment the point clouds into a group of individual
frames by the GNSS time of each point. However, it is a challenge to further extract each
scan line in an individual frame, and, thus, the position of Dk

j cannot be directly obtained

by the points in a single scan line. This condition means that ∠Dk
j OjPk

i cannot be directly

calculated in ∆Dk
j OjPk

i .
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Figure 3. Geometric relations during drone n-line LiDAR data collection (n is 4 for the case).

The obtained point clouds Pi = (Xi, Yi, Zi, Ii, Ti), i = 1, 2, . . . , N, are divided into N f
individual frames at a uniform interval of t ( t = 1/ f ) on the basis of the GNSS time (Ti). In
the j-th frame, a total of Nj (Nj = Nt · t) points are acquired. Let Mi

j be the center of the Nj

points. The plane coordinates
(
Xj, Yj

)
of Mi

j can be calculated as follows [24]:
Xj =

∑
Nj
l=0(Xl

i)
Nj

Yj =
∑

Nj
l=0(Yl

i )
Nj

(2)

where Xl
i and Yl

i are the x and y coordinates of the points. Mi
j is the projection point of

the drone platform at the j-th frame. Therefore, the coordinates of the n laser scanners are(
Xj, Yj, H + z0

)
.
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Let the flight direction vector of the drone at the j-th frame be Sj =
(
uj, vj, wj

)
. Sj can

be calculated by fitting the coordinates of the drone in the neighbor frames of the j-th frame
by the least squares. Let ∠LOjPk

i and ∠Dk
j Mi

jP
k
i be θ1 and θ2, respectively. The vector of

the scanning line OjPk
i is S1 =

(
Xk

i − Xj, Yk
i − Yj, Zk

i − H − z0

)
. Then, the included angle

θ1 between OjPk
i and the drone flight direction line can be obtained as follows.

θ1 = cos−1

(
Sj·S1∣∣Sj
∣∣·|S1|

)
= cos−1

 uj

(
Xk

i − Xj

)
+ vj

(
Yk

i − Yj

)
+ wj

(
Zk

i − H − z0

)
√

uj
2 + vj

2 + wj
2·
√(

Xk
i − Xj

)2
+
(
Yk

i − Yj
)2

+
(
Zk

i − H − z0
)2

 (3)

Similar to θ1, θ2 can be derived as follows.

θ2 = cos−1

(
Sj·S2∣∣Sj
∣∣·|S2|

)
= cos−1

 uj

(
Xk

i − Xj

)
+ vj

(
Yk

i − Yj

)
√

uj
2 + vj

2 + wj
2 ·
√(

Xk
i − Xj

)2
+
(
Yk

i − Yj
)2

 (4)

where S2 =
(

Xk
i − Xj, Yk

i − Yj, 0
)

is the vector of the line Mi
jP

k
i .

According to the scanning principles of drone multiline LiDAR, the n emitters are
rotated and scanned at a fixed angle step around the drone flight direction line in each
frame (Figure 3). Therefore, the included angles between each individual incident beam
and the drone flight direction line are equal for each point in a certain scan line, i.e.,
∠LOjDk

j = ∠LOjPk
i = θ1. Thus, ∠Dk

j Oj Mi
j = π/2 −∠LOjDk

j = π/2 − θ1. In ∆Dk
j Oj Mi

j
(Figure 3), the following relationships can be obtained.OjDk

j =
(

H + z0 − Zk
i

)
/cos∠Dk

j Oj Mi
j =

(
H + z0 − Zk

i

)
/sin θ1

Dk
j Mi

j =
(

H + z0 − Zk
i

)
·tan∠Dk

j Oj Mi
j =

(
H + z0 − Zk

i

)
·cot θ1

(5)

In ∆Dk
j Mi

jP
k
i (Figure 3), Dk

j Pk
i can be obtained according to the law of cosines.

Dk
j Pk

i
2
= Dk

j Mi
j
2
+ Mi

jP
k
i

2 − 2·Dk
j Mi

j·Mi
jP

k
i ·cos θ2 (6)

where Mi
jP

k
i =

√(
Xk

i − Xj
)2

+
(
Yk

i − Yj
)2. It is worth noting that the scan lines are not

strictly perpendicular to the flight direction of the drone since the drone is in uniform
motion. However, the laser sensor has an extremely high scan rate, allowing the effect of
this factor to be neglected, and the scan lines can be approximated to perpendicular to the
flight direction of the drone, i.e., ∠Pk

i Dk
j Mi

j = 90◦. In Equation (6), θ2 and Dk
j Mi
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obtained by Equations (4) and (5), respectively. In ∆Dk
j OjPk

i (Figure 3), the scan angle and

distance for an arbitrary point Pk
i can be obtained by substituting Equations (5) and (6) into

Equation (7),
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i
)

d
(
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)
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j
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i =
√(

Xk
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)2
+
(
Yk

i − Yj
)2

+
(
Zk

i − H − z0
)2

(7)

Incident angle (scan angle) and distance are the predominant influencing factors
of UAV LiDAR-intensity data. Many advanced intensity-correction models have been
developed to derive a value that is equal to or associated with the target reflectance,
including theoretical, empirical, and reference-target models [29–32]. However, these
methods commonly require independent correction for the incident angle (scan angle) and
the distance individually by deriving the specific complex mathematical relations between
intensity and distance/incident angle (scan angle) using standard Lambertian or naturally
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homogeneous targets. By simultaneously inputting scan angle, distance, and intensity into
the XGBoost model, it can automatically capture the nonlinear relationship between the
intensity and target properties, considering the influences of distance and incident angle
(scan angle). The proposed method can avoid the traditional complex intensity-correction
process and can be efficiently used for target classification.

2.4. Accuracy Evaluation

The filtering accuracy is usually assessed using the type I/II error and the total er-
ror [42]. However, only a few ground points can be acquired in the salt marshes. Thus, the
numbers of ground and vegetation points are extremely unbalanced. Under this circum-
stance, several unreasonable results could appear if the error-evaluation standard proposed
by ISPRS is adopted. The ROC (receiver operating characteristic) curve [43] provides a
novel way to measure the accuracy performance. This curve uses the false-positive rate
(FPR = FP/(TN + FP)) as the x-axis and the true-positive rate (TPR = TP/(TP + FN))
as the y-axis. By adjusting the classification threshold of the model, the ROC curve can be
obtained by multiple sets of FPR and TPR. In this study, the AUC [44] (i.e., area under
the ROC curve) and G-mean [45] are applied to quantitatively assess the filtering accuracy.
These two metrics are appropriate for accuracy evaluation for imbalanced samples. The
G-mean is defined as

G-mean =

√
TN

TN + FP
× TP

TP + FN
(8)

where TP is the number of ground points correctly classified as ground points, TN is the
number of vegetation points correctly classified as vegetation points, FP is the number of
vegetation points misclassified as ground points, and FN is the number of ground points
misclassified as vegetation points. The values of AUC and G-mean range from 0 to 1, and
large values indicate a better filtering result. G-mean provides an overall measure of the
classification results for both the ground and vegetation points. The G-mean is close to 1
only when both the ground and vegetation points are satisfactorily classified.

3. Experiments and Results
3.1. Data and Materials

In this study, a salt marsh (Figure 4) on Chongming Island, China, was selected to
analyze the filtering performance of the proposed method. The vegetation in this salt
marsh includes Phragmites australis (PA), Scirpus mariqueter (SM), and Spartina alterniflora
(SA). The salt marsh is approximately with an area of 2.6 km2. A wide creek is centrally
located within the salt marsh, which branches numerous narrow and multilevel creeks.
The vegetation is densely distributed among the entire salt marsh, with an average height
of 1–2 m. Only a few regions near the central wide creek are bare mudflats.

A “hummingbird” genius multiline LiDAR, equipped with an R-Fans-16 laser scanner
capable of simultaneously emitting 16 laser beams, was mounted on the “ZR-M66” drone
platform to collect the point clouds of the selected salt marsh on 17 August 2019. The
wavelength and maximum scanning distance of the emitted laser are 905 nm (near-infrared)
and 250 m, respectively. The field of view of the R-Fans-16 laser scanner is 360◦ × 30◦.
The pulse repetition frequency is 320 kHz, and the scanning frequency is 5–20 Hz (5 Hz
in this study). The R-Fans-16 laser scanner can receive multiple echoes, ensuring that it
can better penetrate the salt-marsh vegetation and obtain high-precision ground data. The
flight height during data collection was 80 m, whereas the drone moved at a uniform speed
of 7 m/s. The obtained LAS-format data for each point were mainly constituted by the
elements of 3D coordinates, GNSS time, and original intensity. The horizontal coordinates
(x and y) and elevation (z) referred to the WGS84 coordinate system and geodetic height,
respectively. The point-clouds preprocessing mainly included outliers and noises removal,
which were accomplished by CloudCompare software. A total of 243,098,388 points were
obtained for the study site, with overall horizontal and vertical accuracies of 0.10 and 0.15 m,
respectively. The acquired point clouds were used to extract the fairy circles in [33]. In this
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study, the aim is to extract the vegetation points rather than the fairy circles. Additionally,
an orthophoto of the study site was acquired by a Sony RX1R II camera (Figure 4d). More
detailed information on the study site and data collection materials can be referred to
in [24].
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The species and densities of the vegetation and the salt-marsh topography can influ-
ence the filtering accuracy and reliability. In this study, three representative subregions
(orange boxes in Figure 4c) with varying vegetation and topographic characteristics (Table 1)
from the study site were selected to build a generalized XGBoost model. The compositions
of the point clouds of the three regions were randomly divided into two subsets according
to a 7:3 ratio. Specifically, 70% of the point clouds served as the training set for model train-
ing, and 30% of the point clouds acted as the test set for model-performance evaluation. The
XGBoost model training includes a number of hyperparameter settings, among which the
main parameters include n_estimators, lambda, gamma, colsample_bytree, learning_rate,
max_depth, subsample, and min_child_weight. The hyperparameters were optimized
by a grid search method which is widely used for machine-learning hyperparameter op-
timization. The best parameters of the XGBoost model were obtained when the highest
accuracy was achieved on the test set. Merely observing the accuracy performance of the
test set cannot demonstrate the generalization ability of the constructed XGBoost model.
Therefore, we selected three additional regions with different vegetation and topographic
characteristics (Table 1) from the study site (blue boxes in Figure 4c) as the validation
set to further test the constructed model. The XGBoost model was trained, tested, and
validated using the Scikit-learn library in Python in this study. The reference data for model
evaluation were gathered manually, aided by the orthophotos to guarantee precision.
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Table 1. Information on the training, test, and validation sets.

Dataset Point Number Size Features

Training and test set

1 5,410,276 250 × 160 m (1) Vegetation: PA, SA, and SM, highly dense
(2) Several intertidal creeks

2 5,260,976 130 × 510 m (1) Vegetation: SA and SM, relatively dense
(2) Multiple intertidal creeks and a small part of bare mudflat

3 5,201,640 260 × 170 m (1) Vegetation: SA, highly dense
(2) No intertidal creek

Validation set

4 4,780,134 250 × 180 m (1) Vegetation: PA and SA, relatively dense
(2) Several intertidal creeks

5 4,700,965 120 × 490 m (1) Vegetation: SA and SM, relatively dense
(2) Multiple intertidal creeks and a small part of bare mudflat

6 5,147,804 240 × 195 m (1) Vegetation: SA, relatively dense
(2) No intertidal creek

3.2. Model Training and Testing Results

The separating results of the training and test regions are shown in Figure 5. Visually,
the ground points can be effectively separated from various types of vegetation points for
Regions 1, 2, and 3; only a small portion was recognized as vegetation points. The intertidal
creeks in Regions 1 and 2 are tortuous and the depths vary considerably; nevertheless,
they were satisfactorily recognized as ground points. Although the vegetation is highly
dense and only a few ground points were obtained for Region 3, the XGBoost model
can robustly achieve satisfactory filtering regardless of the imbalance of the ground and
vegetation points. The AUC and G-mean were 0.9536 and 0.9528 for the training set, and
0.9404 and 0.9391 for the test set, respectively. The results indicated that the XGBoost can
achieve a high accuracy in separating point clouds with varying vegetation types and
terrain characteristics.
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and 3, respectively.

3.3. Model-Validation Results

The trained XGBoost model was migrated to the three validation regions (Figure 6
and Table 2). Obviously, the trained XGBoost model effectively discriminated vegetation
points from ground points in all three validation regions, demonstrating that the trained
XGBoost model can be robustly extended to different kinds of regions with satisfactory
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filtering accuracy. The AUC and G-mean values of the XGBoost model for Regions 4,
5, and 6 were 0.9191 and 0.9158, 0.9535 and 0.9534, and 0.8607 and 0.8496, respectively.
The highest accuracy was achieved in Region 5, because this region is covered by bare
mudflats and low/sparse vegetation. In contrast, the filtering performance was not so
satisfactory for Region 6 compared to the other two validation regions. This phenomenon
was primarily attributed to the very dense vegetation coverage in Region 6, resulting in
a sparse acquisition of ground points and difficulty in filtering. Additionally, manual
separation of the ground and vegetation points in dense vegetation coverage regions is
challenging even with the assistance of the orthophoto. Some errors existed in the reference
data and this would lead to the unfair accuracy evaluation of Region 6.

Drones 2024, 8, x FOR PEER REVIEW 11 of 19 
 

sparse acquisition of ground points and difficulty in filtering. Additionally, manual sepa-

ration of the ground and vegetation points in dense vegetation coverage regions is chal-

lenging even with the assistance of the orthophoto. Some errors existed in the reference 

data and this would lead to the unfair accuracy evaluation of Region 6. 

 

 

Figure 6. Separating results of the validation set by the XGBoost model. (a–c) Points are colored by 

elevation for Regions 4, 5, and 6, respectively. (d–f) Separating results for Regions 4, 5, and 6, re-

spectively. 

Table 2. AUC and G-means of the validation set. 

 Region 4 Region 5 Region 6 

AUC 0.9191 0.9535 0.8607 

G-mean 0.9158 0.9534 0.8496 

3.4. Separating Results of the Entire Study Site 

The results in Sections 3.2 and 3.3 indicated the satisfactory performance of the 

XGBoost model in filtering salt-marsh vegetation. Therefore, the trained XGBoost model 

was applied to the entire study site (Figure 7a,i). A total of 25,740,656 and 217,357,732 

points were identified as ground and vegetation. The ground points were sparse and only 

accounted for 11% of the total points. It can be observed that the various types of salt-

marsh vegetation points were effectively separated, while the ground points in the bare 

mudflat areas were completely preserved. The distribution and orientation of the tidal 

creeks were easily discernible. Additionally, it can be observed from Figure 7i that the 

acquired ground points are denser at the nadir regions, i.e., strip effects existed in the 

ground points. The strip effects were due to the normal incidence at nadir regions, making 

a better penetration performance for the lasers within the dense vegetation. 

Figure 6. Separating results of the validation set by the XGBoost model. (a–c) Points are colored
by elevation for Regions 4, 5, and 6, respectively. (d–f) Separating results for Regions 4, 5, and
6, respectively.

Table 2. AUC and G-means of the validation set.

Region 4 Region 5 Region 6

AUC 0.9191 0.9535 0.8607
G-mean 0.9158 0.9534 0.8496

3.4. Separating Results of the Entire Study Site

The results in Sections 3.2 and 3.3 indicated the satisfactory performance of the XG-
Boost model in filtering salt-marsh vegetation. Therefore, the trained XGBoost model was
applied to the entire study site (Figure 7a,i). A total of 25,740,656 and 217,357,732 points
were identified as ground and vegetation. The ground points were sparse and only ac-
counted for 11% of the total points. It can be observed that the various types of salt-marsh
vegetation points were effectively separated, while the ground points in the bare mudflat
areas were completely preserved. The distribution and orientation of the tidal creeks were
easily discernible. Additionally, it can be observed from Figure 7i that the acquired ground
points are denser at the nadir regions, i.e., strip effects existed in the ground points. The
strip effects were due to the normal incidence at nadir regions, making a better penetration
performance for the lasers within the dense vegetation.
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Figure 7. Separating results of the entire study site. (a–h): Ground and nonground/vegetation points
acquired by XGBoost, AdaBoost, RF, Catboost, PMF, SF, CSF, and, CIF, respectively. (i–p): Ground
points acquired by XGBoost, AdaBoost, RF, Catboost, PMF, SF, CSF, and CIF, respectively. The
ground/vegetation points after separating are 25,740,656/217,357,732, 25,757,205/217,341,183,
24,983,927/218,114,461, 25,675,001/217,423,387, 51,229,362/191,869,026, 9,8575,115/144,523,273,
141,987,475/101,110,913, and 130,563,383/112,535,005 for XGBoost, AdaBoost, RF, Catboost, PMF, SF,
CSF, and CIF, respectively.

4. Discussion

We compared the AUC and G-mean values of the proposed method with those of
other commonly used methods to the validation set to further demonstrate superiority
(Figure 8 and Table 3). These methods included three machine-learning methods (i.e., RF,
AdaBoost, and Categorical Boosting (CatBoost)), three advanced filtering methods based
on the geometric data (i.e., PMF, SF, and CSF), and a filtering method based on the Phong
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model corrected intensity (i.e., CIF) [24]. To ensure a fair comparison, the features selected
and the training and test datasets used for RF, AdaBoost, and CatBoost were consistent with
that of the XGBoost; the parameters of RF, AdaBoost, and CatBoost were tuned to achieve
the best results. Obviously, PMF, SF, CSF, and CIF all had a considerable misclassification
rate. By contrast, the four machine-learning methods achieved higher AUC and G-mean
values. This is because the common point-cloud filtering methods rely purely on either
geometric or intensity information of the point cloud, which makes it difficult to effectively
separate the various types of dense vegetation from the ground. By integrating both the
geometric and intensity data as input features, machine-learning methods autonomously
learn the classification patterns of vegetation and ground and can achieve an accurate
separation of ground and vegetation points. XGBoost achieved higher AUC and G-mean
values compared to RF, AdaBoost, and CatBoost in Regions 1 and 3. The three machine-
learning methods performed similarly in Region 2, with RF having marginally higher
AUC and G-mean values. In general, XGBoost is more efficient in separating salt-marsh
vegetation point clouds than the other three machine-learning methods. The application
of RF, AdaBoost, CatBoost, PMF, SF, CSF, and CIF to the entire study site is shown in
Figure 7. A considerable number of vegetation points were misclassified as ground points
for PMF, SF, CSF, and CIF. No obvious differences were observed in the separating results
for XGBoost, RF, AdaBoost, and CatBoost.
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Table 3. Quantitative evaluation results of the validation set for different filtering methods.

Region 4 Region 5 Region 6

AUC G-Mean AUC G-Mean AUC G-Mean

XGBoost 0.9191 0.9158 0.9535 0.9534 0.8607 0.8496
RF 0.9069 0.9023 0.9551 0.9550 0.8554 0.8433

AdaBoost 0.9032 0.8984 0.9516 0.9515 0.8124 0.7911
CatBoost 0.9136 0.9098 0.9549 0.9548 0.8363 0.8204

PMF 0.7350 0.7226 0.8019 0.7986 0.7232 0.7157
SF 0.6495 0.6169 0.7301 0.7296 0.7017 0.6829

CSF 0.7366 0.7251 0.6820 0.6819 0.5627 0.5588
CIF 0.6876 0.6237 0.7639 0.7361 0.5209 0.5092

Additionally, the training time for the three machine-learning methods was recorded
and compared to evaluate the efficiency. Experiments were conducted on a desktop (32-GB
RAM and Inter Core i7-11700K CPU at 3.6 GHz) using Python 3.8.3 and Scikit-learn
1.0.1. The training times were 0.11, 0.74, 14.22, and 0.27 h for RF, XGBoost, AdaBoost,
and CatBoost, respectively. RF had the shortest training time because each decision tree
is independent, which allows for parallel computation to accelerate the model training.
Additionally, feature and sample subsampling in RF can decrease the computational work.
Though XGBoost can also be parallelized, it requires more computational resources when
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handling large datasets and high-dimensional features, leading to a slower computational
speed. AdaBoost had the longest training time because it updates sample weights in each
iteration, which involves resampling and significantly increases the training time. CatBoost
had the second shortest training time after RF. This is because CatBoost uses a symmetric
decision-tree structure, which can speed up training. In summary, both RF and CatBoost
have shorter training times, but they slightly underperform compared to XGBoost. XGBoost
achieves the highest overall accuracy, but its training time is slightly longer than that of RF
and CatBoost. AdaBoost needs the longest training time compared to RF, XGBoost, and
CatBoost, and its overall accuracy is the lowest.

The feature importance for each variable in the XGBoost model was calculated
(Figure 9). The importance ranks highest for distance, followed by elevation, intensity, and
scan angle, with the importance of normal vectors being relatively lower. This indicates that
distance and scan angle play significant roles in the XGBoost model. To further analyze the
importance of distance and scan-angle features in compensating for the intensity data, we
constructed a new XGBoost model after removing the scan angle and distance features. The
separating results for Regions 4, 5, and 6 are shown in Figure 10. Obviously, the tidal creek
was misclassified as nonground points in Region 4 (blue ellipse in Figure 10a), and there
were almost no ground points in Region 6. The AUC and G-mean values of the XGBoost
model for Regions 4, 5, and 6 were 0.6845 and 0.6075, 0.9512 and 0.9501, and 0.5013 and
0.0516, respectively. Compared to the XGBoost model without excluding the scan angle
and distance features, the accuracy of Regions 4 and 6 decreased substantially, while the
accuracy of Region 5 marginally declined. This indicates that the inclusion of distance
and scan-angle features can effectively eliminate their effects on intensity data, achieving a
better separation between ground and nonground points, especially in regions with dense
vegetation coverage.
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In the practical applications of the proposed method, the distance, scan angle, el-
evation, normal vectors, and original intensity features of all point clouds are initially
calculated and acquired. Subsequently, several typical regions (e.g., regions with differ-
ent vegetation species or topography features) are selected and accurately classified into
ground and nonground points manually or using traditional point-cloud filtering meth-
ods. These selected regions are then divided into training and test sets, and the XGBoost
model is constructed with hyperparameter optimization. Ultimately, all point clouds can be
precisely separated into ground and nonground points using the trained XGBoost model.
Based on the constructed model, the combination of the selected features can accurately
and intelligently predict the category of each point. Only the original user-provided data
and the corresponding fundamental derived quantities are needed.

The proposed instantaneous scan geometry estimation method for a drone multiline
LiDAR system is based on the linear or near-linear alignment of the scanning points
(Figure 3), which is applicable to different LiDAR systems with the scanning modes (e.g.,
swing scanning and rotating regular polyhedron scanning) that satisfy this point alignment.
For other scanning modes (e.g., rotating elliptical cylindrical scanning), the scanning points
are nonlinear alignment. The proposed instantaneous scan geometry estimation method is
infeasible in this circumstance. However, the proposed filtering method remains applicable
as long as the scan angles are recorded by the LiDAR system.

This study focused on regions with various salt-marsh vegetation types and topog-
raphy characteristics along the coastal zones for the training, testing, and validation of
the XGBoost model. The results consistently demonstrated enhanced applicability and
versatility. However, the coastal zones have extremely complex ecological environments,
with variations in salt-marsh vegetation types across different regions (e.g., Suaeda glauca
and Tamarix chinensis in the Yellow River Estuary in China) and diverse sedimentary ge-
omorphological landforms in different estuarine deltas. Further analyses are needed in
future studies to assess the filtering performance of the proposed method under varying
environmental conditions in different coastal zones. Moreover, the proposed method can
be further explored for different coastal types (e.g., sandy and rocky coasts) and vegetation
species (e.g., mangroves).

The proposed method provides a new alternative mode for massive point-cloud
filtering, as well as a novel approach for LiDAR-intensity correction, and a new strategy for
the combination of the LiDAR geometric and radiometric data. Additionally, this method is
not limited to a UAV–LiDAR system and can be extended to various platforms, including
terrestrial and mobile LiDAR systems. Meanwhile, this method can be applied to various
scenarios, e.g., urban and forest. For example, in steep and dense vegetation coverage
forest regions where the ground points on the slope may be at the same elevation as the
vegetation points, traditional filtering methods can hardly achieve satisfactory results. The
proposed method can be used as an alternative solution in such scenarios.

5. Conclusions

In this study, we accurately estimate the instantaneous scan geometry based on the
scanning principles of the drone multiline LiDAR systems and propose a new alterna-
tive point-cloud filtering method based on XGBoost for coastal salt-marsh vegetation.
The method can substitute the complex intensity correction that is typically required for
intensity-based filtering methods. No cumbersome parameterization, dimensionality re-
duction/projection, and prior understanding of the specific scene/data are needed for
the proposed model. The scan angle, distance, intensity, elevation, and normal vectors
are selected as input features to build a point-cloud filtering model based on XGBoost,
which can realize the combination of geometric and intensity data for filtering. The results
indicate that drone multiline LiDAR is a very promising technology for salt-marsh terrain
measuring and the proposed method exhibits superiority in the acquisition of the ground
points in terms of accuracy, efficiency, and robustness. However, only the fundamental
quantities are empirically selected as input features. In future work, more additional fea-
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tures and quantities can be considered and applied to more complex coastal environments
to further improve the generalizability and accuracy of the proposed method. Additionally,
the strategy of using the basic geometric and radiometric metrics with machine-learning
models provides a new solution for the intelligent interpretation of LiDAR data under
different modalities and platforms.
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