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Abstract: Obstacle avoidance plays a crucial role in ensuring the safe path planning of quadrotor
unmanned aerial vehicles (QUAVs). In this study, we propose a hierarchical framework for obstacle
avoidance, which combines the use of artificial potential field (APF) and deep reinforcement learning
(DRL) for training low-level motion controllers. Unlike traditional potential field methods, our
approach modifies the state information received by the motion controllers using the outputs of
the APF path planner. Specifically, the assumed target position is pushed away from obstacles,
resulting in adjustments to the perceived position errors. Additionally, we address path oscillations
by incorporating the target’s velocity information, which is calculated based on the time-derivative of
the repulsive force. Experimental results have validated the effectiveness of our proposed framework
in avoiding collisions with obstacles and reducing oscillations.

Keywords: quadrotor unmanned aerial vehicle (QUAV); obstacle avoidance; artificial potential field
(APF); deep reinforcement learning (DRL); oscillations

1. Introduction

Due to their high flexibility, quadrotor unmanned aerial vehicles (QUAVs) have gained
significant popularity in various applications, including parcel delivery [1], precision
agriculture [2–4], search and rescue [5,6], and surveillance [7]. In these scenarios, the
QUAV is typically required to autonomously navigate to a target position. However, in
dense environments, unexpected obstacles can obstruct the path and lead to collisions.
This task is even more challenging in a multi-agent system [8,9]. Therefore, obstacle
avoidance becomes a crucial task for ensuring safe path planning. The QUAV must find an
unobstructed path to the target while considering its physical limitations. Conventional
approaches to obstacle-free path planning include Dijkstra, probabilistic roadmap (PRM),
rapidly-exploring random trees (RRT), and artificial potential field (APF) [10–13]. Since
these approaches do not assume the physical realization of the agent to be of a certain
type, they are applicable to QUAV navigation. APF faces a critical challenge in dense
environments. When multiple obstacles narrow the passageway to the target, the agent
may experience oscillations due to the repulsive force created by the obstacles that conflicts
with the attractive force towards the target. As a result, reaching the target smoothly
becomes difficult.

Most existing approaches to reducing APF oscillations either rely on second-order
optimization theory techniques or employ an escaping mechanism when the agent detects
oscillations. However, these approaches are not fully compatible with a hierarchical
path planning framework because they directly modify the forces applied to the QUAV
without considering its often nonlinear dynamics. Additionally, they commonly attribute
oscillations to local minima, which is not always the case. One possible solution to this
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problem is to utilize global obstacle information to bend an imaginary rubber band path [14].
However, this approach poses challenges for real-time decision-making, as it requires prior
knowledge of obstacle positions.

Based on the symmetrical motion controller design in [15], our previous work [16] en-
abled the utilization of an APF in a hierarchical framework, utilizing only local information
provided by sensors mounted on the QUAV. In this framework, an APF path planner gen-
erates a state that incorporates modified position errors, while low-level motion controllers
are responsible for both position and attitude control. In [17], we introduced the Hessian
matrix of the APF as a damping term, which effectively dissipates system energy, and we
proved its stability using an energy-based Lyapunov function. In this current work, we
utilize the time-derivative of the APF to further reduce oscillations in QUAV path planning
within a hierarchical control framework.

Considering that the QUAV dynamic system is nonlinear and strongly coupled, we
use deep reinforcement learning (DRL) to train the low-level motion controllers [18]. DRL
not only alleviates the labor-intensive process of parameter tuning, as compared to the tra-
ditional proportional–integral–derivative (PID) method, but also demonstrates remarkable
fitting capability with the aid of deep neural networks. The key contributions of this study
are outlined as follows.

1. We incorporate the time-derivatives of the potential function to account for the veloci-
ties of intermediate target points, thereby resolving the conflict between the fixed-point
chasing logic of the DRL motion controller and the potentially erratic movements of
the intermediate target points.

2. To enhance the control performance of a high-dimensional nonlinear system, we
reconfigure the states of the DRL motion controller to eliminate any asymmetry and
ensure stability.

3. We conducted comparative simulation experiments to validate the effectiveness of the
proposed method in reducing oscillations and preventing overshooting.

4. The complex dynamics of the QUAV system are considered, which is different from
other approaches that either do not discuss agent dynamics or simplify the dynamics
as a simple second-order point mass model.

The structure of this paper is outlined as follows. In Section 2, we provide a compre-
hensive overview of the existing research on obstacle-free path planning. In Section 3, we
introduce the necessary background knowledge, including the principles of conventional
artificial potential fields, drone dynamics, and deep reinforcement learning. Section 4
elaborates on the methodology that we have employed in this study. We present the ex-
periments conducted in Section 5 to validate the effectiveness of the proposed method in
reducing oscillation and overshooting. Section 6 discusses limitations of this work and its
applicability to dynamic and irregular environments. Finally, in Section 7, we conclude
our findings.

2. Related Work

We identify three major approaches to achieve obstacle-free path planning. Since they
do not set restrictions on the type of agents being used, these approaches are applicable to
QUAV obstacle avoidance. The first approach is grid search, exemplified by algorithms such
as Dijkstra, A*, and D* [10,19,20]. These algorithms are guaranteed to find a viable least-cost
path when the environment is finite. However, they suffer from the curse of dimensionality,
as the number of vertices to be explored grows exponentially with the dimensionality of the
working space. Additionally, the need for higher control resolutions further increases the
computational burden. The second approach is sampling-based search, with PRM [11] and
RRT [12] being typical examples. For example, Farooq et al. [21] guided the QUAV to avoid
dangerous zones in a dynamic environment by computing the PRM. Compared to grid
search, these algorithms are capable of quickly producing paths in high-dimensional spaces.
However, since sampling-based methods rely on global information, such as environment
boundaries, they are not well-suited for real-time control where sensor data are used to
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generate actions for the next step. The third approach is APF, which assumes that both the
target and obstacles generate potential fields that influence the movement of the agent. By
leveraging the gradient of the summed potential field, the agent is attracted to the target
while being repelled from nearby obstacles. For example, Ma’arif et al. [22] used APF to
guide a single QUAV to reach the target and avoid collisions with dynamic obstacles. APF
is widely used in QUAV navigation due to its ease of implementation and ability to guide
the QUAV using only local information.

Despite its numerous advantages, APF has certain inherent limitations [23]. One
recognizable limitation is that the agent can easily become trapped in local minima, where
the attraction and repulsion forces cancel each other out. Algorithms designed to address
this problem can generally be classified into three categories. The first category is local
minimum removal. For example, Kim et al. [24] employed harmonic functions to construct
potential fields, allowing for the selection of singularity locations and the elimination of
local minima in free space. The second category is local minimum escape. For instance,
Park et al. [25] combined APF with simulated annealing, which introduces randomness to
the agent’s actions, enabling it to escape from local minima. Wang et al. [26] proposed the
Left Turning scheme, which effectively handles U-shaped obstacles and helps the agent
escape local minima. Lai et al. [27] proposed a dynamic step-size adjustment method to help
the multi-UAV escape the local minima. The third category is local minimum avoidance.
For instance, Doria et al. [28] utilized the deterministic annealing approach to expand the
repulsive area and shrink the attractive area. This allows the agent to avoid local minima
at the beginning, when the potential function is convex due to a high initial temperature.
Additionally, Ge et al. [29] addressed a specific case of the local minimum problem known
as goals non-reachable with obstacles nearby (GNRON). They considered the relative
distance between the agent and the target when designing the repulsive potential function.
As the agent approaches the target, this function approaches zero, thereby reducing the
repulsive force in the target’s vicinity and overcoming the local minimum problem. Overall,
these different approaches highlight the efforts made to overcome the limitations of APF
and improve its performance in various scenarios.

APF faces another dilemma, which is the occurrence of oscillations in narrow passages
with densely distributed obstacles nearby. Previous research on oscillation reduction is
relatively limited and mainly draws inspiration from optimization theory techniques. For
instance, Ren et al. [30] proposed the use of Levenberg’s modification of Newton’s method
as a solution to oscillation problems. This approach incorporates second-order information
by utilizing the Hessian matrix. Additionally, they adjusted the control law to maintain
a constant speed, ensuring smooth movement of the agents. Biswas et al. [31] further
compared first-order gradient descent methods with two second-order approaches and
concluded that Levenberg–Marquardt is more effective in generating smoother trajectories
and improving convergence speeds.

The second branch of oscillation reduction algorithms introduces the concept of virtual
obstacles or targets. Similar to LME used in tackling local minima, methods belonging
to this branch often employ escaping techniques once oscillations are detected. For in-
stance, Zhao et al. [32] enhanced the manipulator’s predictive ability by incorporating
dynamic virtual target points and utilized an extreme point jump-out function to escape
oscillations. Zhang et al. [33] employed tangent APF to avoid local oscillations and intro-
duced the back virtual obstacle setting strategy-APF algorithm, which enables the agent
to return to previous steps and withdraw from concave obstacles. In a rule-based fashion,
Zheng et al. [34] specified the condition for adding obstacles, compelling the resultant
force to deflect when its angle to the obstacle center is too small. The dynamic step-size
adjustment method proposed by Lai et al. [27] is also able to escape the jitter area where a
local minimum is encountered, but it does not address oscillations in other cases, such as
narrow passageways.

Oscillations can also be mitigated by modifying the repulsive forces in a certain
manner. Tran et al. [35] estimated the projection of the repulsive force vector onto the
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attractive force vector and subtracted this component to prevent the agent from moving in
the opposite direction of the attractive force. Martis et al. [36] introduced vortex potential
fields to achieve seamless cooperative collision avoidance between mobile agents, and
these were validated using Lyapunov stability analysis. For larger obstacles with irregular
shapes, Szczepanski [37] combined the benefits of repulsive APF and vortex APF by
defining multiple layers around the surface area of the obstacles. This approach surpassed
traditional APF and pure vortex APF in terms of path smoothness.

There are also works specifically designed for QUAV path planning and obstacle
avoidance. For example, Meradi et al. [38] proposed a nonlinear model predictive con-
trol method based on quaternions for QUAVs’ obstacle avoidance. Valencia et al. [39]
constructed a QUAV obstacle detection and avoidance system using a monocular camera.
Gageik et al. [40] discussed the use of complementary low-cost sensors in QUAV collision
avoidance. However, the problem of oscillation reduction in QUAV obstacle-free path
planning based on APF is largely under-explored.

With the advancement in DRL technology, motion controllers based on DRL have
gained widespread usage in QUAV path planning and obstacle avoidance by virtue of
their strong fitting capability. In this context, the APF can be seen as an upper layer that
indirectly or directly influences the agent’s current pursuit position, while the low-level
motion control task is handled by the DRL agent. For instance, the RL environment
may employ convolutional neural networks to receive information about the surrounding
potential energy and generate estimated rewards for various actions [41]. Xing et al. [42]
combined the enhanced APF method with deep deterministic policy gradient to navigate
autonomous underwater vehicles. In our previous research, we developed a hierarchical
framework where the APF path planner was utilized to modify the position errors perceived
by the DRL motion controllers, effectively altering the target position [16]. In this study, we
further address oscillations by considering the velocity of the virtual target point, which
has been validated in a collision-free formation control task [17]. Experimental results
demonstrate that this improved algorithm reduces oscillations compared to approaches
that do not incorporate second-order information, such as velocities.

3. Preliminaries
3.1. Drone Dynamics

The simulation environment is built based on gym-pybullet-drones [43]. In this work,
a QUAV with an “X” configuration is considered. Similar to many fixed-wing UAVs [44],
it has six degrees of freedom. Its position and Euler angles are defined as p = [x, y, z]T

and Θ = [ϕ, θ, ψ]T , respectively. The Euler angles as shown in Figure 1 are obtained
following the intrinsic z-y-x sequence (or, equivalently, extrinsic x-y-z sequence). Therefore,
the rotation matrix from the body-fixed frame {xb, yb, zb} to the earth frame {xe, ye, ze} is
calculated by

R = [xb, yb, zb] =

cθcψ cψsθsϕ − sψcϕ cψsθcϕ + sψsϕ

cθsψ sψsθsϕ + cψcϕ sψsθcϕ − cψsϕ

−sθ sϕcθ cϕcθ

, (1)

where the coordinates of xb, yb, and zb are in the earth frame, zb = [zx
b, zy

b, zz
b]

T , cξ and sξ

(ξ = ϕ, θ, ψ) are short for cos ξ and sin ξ, respectively, and R ∈ SO(3).
In this work, we use the frame of SE(3) control [45] to avoid using a transformation

matrix W between the Euler angles Θ and the angular velocity ω = [ωx, ωy, ωz]T , which
suffers from singularity as θ approaches π

2 . This technique overcomes the small angle
restriction. The hat map ·̂ : R3 → so(3) is defined as

α̂ =

 0 −α3 α2
α3 0 −α1
−α2 α1 0

, (2)
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where α = [α1, α2, α3]
T is a three-dimensional vector. Using the differential property of Lie

Group, the QUAV’s dynamic system can be formally described by

ṗ = v,

mv̇ = RF − mg,

Ṙ = Rω̂,

Jω̇ = −ω × Jω + τ,

(3)

where the velocity v = [vx, vy, vz]T and the gravity g = [0, 0, g]T are in the earth frame,
external thrust F = [0, 0, f ]T and torque τ = [τϕ, τθ , τψ]T are in the body-fixed frame, m is
the mass, and J = diag(Iϕ, Iθ , Iψ) is the inertia matrix.

The four rotors are controlled by the pulse width modulation (PWM) signal u, and the
rotation speed Ω = [Ω1, Ω2, Ω3, Ω4]

T is described by

TmΩ̇ = kmu + bm − Ω, (4)

where Tm, km, and bm are the motors’ coefficients, which remain constant. The thrust F and
torque τ are then generated by the four rotors according to


f

τϕ

τθ

τψ

 =


CT CT CT CT

− L√
2

CT − L√
2

CT
L√
2

CT
L√
2

CT

− L√
2

CT
L√
2

CT
L√
2

CT − L√
2

CT

−CD CD −CD CD




Ω2
1

Ω2
2

Ω2
3

Ω2
4

, (5)

where L is the arm length and CT , CD are the thrust and torque coefficients, respectively.
The environment contains N obstacles denoted by O = [1, 2, · · · , N]. The geometric

relationship between the QUAV, the target, and obstacle i is shown in Figure 2, in which
we define p = [x, y, z]T as the QUAV’s current position, pd as the target position, and oi
as the closest point of obstacle i to the QUAV. Moreover, ei = p − oi = [ex

i , ey
i , ez

i ]
T and

ed = p − pd = [ex, ey, ez]T are error vectors to obstacle i and the target, respectively.

Figure 1. The body-fixed frame and the corresponding Euler angles.

Figure 2. Geometric relationship of the QUAV, the target, and obstacle i.
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3.2. Classical APF

The concept of APF was initially introduced by Khatib [13] with the aim of distributing
collision avoidance across different levels of control. This approach involves creating a
potential field, similar to an electrostatic field, within the agent’s working space. In this
field, the target location is represented as a valley, while obstacles are represented as
peaks. By computing the negative gradient of the total potential function, the agent can
determine a feasible path to the target while avoiding collisions with obstacles. From
another perspective, the target exerts an attractive force on the agent, while the obstacles
exert a repulsive force. To ensure the existence of these attractive and repulsive forces, the
potential functions must be continuous and differentiable, except at the target position or
within the obstacles. The calculation of the attractive and repulsive forces is performed by

Fatt = −∇pUatt(||ed||),
Frepi

= −∇pUrepi
(||ei||),

(6)

where Uatt(·) and Urepi
(·) are potential functions that receive scalars instead of vectors.

This maintains the isotropy of the overall system, since the norms of the APF forces are
only determined by the radial distances and not by the relative angles to the attraction or
repulsion sources.

Figure 3 depicts the attractive and repulsive forces in the APF algorithm. In this figure,
the green star represents the target position, while the orange circles symbolize obstacles
with specific regions of influence. The repulsive force generated by obstacle i is denoted as
Frep, and the attractive force generated by the target is denoted as Fatt. The resultant force
exerted on the agent is represented as Fr. It is worth noting that APF can be applied to both
global path planning and local path planning, as illustrated in Figure 3a and Figure 3b,
respectively. In the global case, the obstacles have a maximum influence distance ρ0, and
their positions and shapes are known in advance. However, in the local case, which is
employed in this study, the QUAV solely relies on the relative distances and velocities
obtained from sensors to calculate the APF forces. The maximum sensing range is denoted
as d.

Figure 3. Schematic diagrams of APF forces. (a) The forces are generated based on the information
returned by the QUAV’s sensors. (b) The forces are generated using global geometric information.

3.3. Deep Reinforcement Learning

RL is a commonly adopted methodology in machine learning. An RL problem is usu-
ally characterized as a Markov decision process with the state initialized by a distribution
P(s1). In this work, we assume that the Markov property is satisfied. In other words, the
transition probability for the next state is only determined by the current state and action,
which is formalized as P(st+1|s1, a1, . . . , st, at) = P(st+1)|st, at). At time step t, the agent
receives the current state st and, depending on whether the policy is stochastic or determin-
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istic, takes an action at according to its policy πα(·|s) : S → P(A) or µα(s) : S → A, where
α denotes policy parameters. The environment will then give a scalar reward rt ∼ R(st, at)
and the next state st+1 ∼ P(st, at). The aim of the agent is to maximize the expected return
Gt = ∑∞

i=t γi−tri, where γ ∈ (0, 1) is the discount factor that prevents Gt from approaching
infinity and controls how myopic the agent is.

To train the motion controller, we employ twin-delayed deep deterministic policy
gradient (TD3), which is a model-free actor-critic DRL algorithm featuring three distinct
characteristics. Firstly, it utilizes two critic networks, Qw1 and Qw2 , to tackle the issue of
action value overestimation. Secondly, it incorporates smooth regularization to minimize the
variance of the target update, which means the action is given by Equation (7), ensuring a
more stable and reliable training process, which is crucial for achieving optimal performance:

ãt+1 = µα′(st+1) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c), (7)

where µα′ is the target actor network, ϵ is the Gaussian noise, σ̃ is the standard deviation,
and c is the noise bound. The loss function for the i-th critic network is represented by

LTD3(wi) = Est ,at ,rt ,st+1∼D[(rt + γ min
j=1,2

Qw′
j
(st+1, ãt+1)− Qwi (st, at))

2], (8)

where D is the replay buffer and Qw′
j
(j = 1, 2) represent the target critic networks.

The third feature of TD3 is that actor networks are updated only after a fixed number
of updates d to the critic. The actor network’s updates follow

∇α J(α) = Eat=µα(st)[∇αµα(st)∇w1 Qw1(st, at)]. (9)

4. Methodology
4.1. Motion Controller Training

As is shown in Figure 4, motion control is divided into two hierarchies: translational
control and angular control. Due to the presence of gravity, vertical control differs inherently
from horizontal control. Hence, we further subdivide translational control into vertical
and horizontal control. As the three angular controllers adhere to the same control logic,
and likewise the two horizontal controllers, only three networks are required. The actor
networks’ parameters for angular, vertical, and horizontal control are denoted by αa, αv,
and αh, respectively. Their states are designed as

sξ = [eξ , ωξ ]T , (ξ = ϕ, θ, ψ)

sx = [ex, vx, sign(ex)ez, sign(ex)vz, θ̄, ˙̄θ]T ,

sy = [ey, vy, sign(ey)ez, sign(ey)vz, ϕ̄, ˙̄ϕ]T ,

sz = [ez, vz]T ,

(10)

in which θ̄ and ϕ̄, variables that characterize the pitch and the roll, are defined as

θ̄ = arctan
zx

b
zz

b

ϕ̄ = arctan
zy

b
zz

b
.

(11)

There are a few points to note here. First, xd, yd, zd, and ψd are given by external
sources, while ϕd and θd are calculated from the outputs of the translational controllers.
Second, horizontal states not only consider the corresponding position and velocity er-
rors but also take into account height and angular information. Third, angular errors
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eξ are defined using the rotation matrix instead of the angular differences, and they are
calculated by

eR = [eϕ, eθ , eψ]T =
1
2
(RT

dR − RTRd)
∨, (12)

in which the vee map ∨ : so(3) → R3 is the inverse of the hat map, and Rd is the desired
rotation matrix uniquely determined by ϕd, θd, and ψd.

To obtain ϕd and θd, the translational controllers’ networks first generate desired forces
along each axis following

f x
d = mctµαh(s

x),

f y
d = mctµαh(s

y),

f z
d = m(ctµαv(s

z) + g),

(13)

where the networks’ outputs are bounded by (−1, 1), and ct is the maximum translational
acceleration. Then, the desired roll and pitch can be calculated as [15]

ϕd = arcsin
sψd f x

d − cψd f y
d

||[ f x
d , f y

d , f z
d]

T ||
,

θd = arctan
cψd f x

d + sψd f y
d

f z
d

.

(14)

The ultimate desired thrust and torques are generated following Equation (15), where
cr is the maximum angular acceleration. We can find the desired steady-state rotor speed
Ωss = kmu + bm by taking the inverse matrix in Equation (5), and the PWM signal u will
eventually be obtained.

fd =
f z
d

cϕcθ
,

τ
ξ
d = Iξ crµαa(s

ξ). (ξ = ϕ, θ, ψ)

(15)

Equation (16) defines the reward function for the angular, vertical, and horizontal
reinforcement learning environments. In this equation, eζ

t represents the error at the current
time, and ζ indicates the specific controller to which the error is applied. The agent
receives a reward when the error approaches zero and is penalized otherwise. One notable
advantage of this reward design is the absence of hyperparameters that require manual
fine-tuning.

rζ
t = |eζ

t | − |eζ
t+1| (16)

During the training process, the reinforcement learning environments receive the
agent’s action aζ

t and output the next state sζ
t+1 as well as the reward rζ

t based on the

current state sζ
t . In this work, the pitch and x-axis controllers are chosen as the proto-

types for the angular and horizontal controllers, meaning that ζ = θ, x, z during training.
The training follows a certain order. First, the roll and vertical controllers are trained
independently. When the pitch controller is being trained, we set fd, τ

ϕ
d , and τ

ψ
d as zero,

and τθ
d = Iθcrµαa(s

θ), while when the vertical controller is being trained, we set fd as
m(ctµαh(s

z) + g)/cϕcθ and the desired torques as zero. The x-axis controller is trained only
after αa and αh are obtained because sx contains height and pitch information, which is
affected by the vertical and pitch controllers. No obstacles or external disturbances are
considered during training.
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Figure 4. The general framework of the motion controller.

4.2. State Transformation

The trained motion controllers have the ability to navigate the QUAV in the cor-
responding dimension. However, when the states in the testing phase are too large, it
becomes challenging for the networks to generate reasonable outputs based on the limited
training samples. This issue typically arises in translational control, where the position
errors are not bounded, except by the simulator. Since it is not feasible to gather information
for position errors of arbitrary magnitude within a finite training period, using the policy
networks in a large or boundless environment can result in uncontrollable behavior, which
is inherently dangerous. To mitigate the impact of large horizontal position errors, we
employ a hard-clipping technique on the variables ex and ey, with a clipping bound of dc.
Although no hard-clipping is applied to ez, its range is constrained due to the presence of a
floor and a ceiling in the working space of this study.

As observed in [18], the trained DRL controllers will decelerate to avoid overshooting,
indicating that there exists a natural velocity upper bound ṽ, since µα(s) > 0 when the
velocity is smaller than ṽ and µα < 0 when it exceeds the bound. Considering that ṽ is
sometimes too large to guarantee safety in the testing phase, we manually set an upper
bound v̄ to the velocity in the testing phase to prevent the QUAV from moving too quickly
in a free space. To increase data efficiency, we multiply evx

and evy
by ṽ/v̄, which can map

the horizontal velocity errors from [0, v̄] to [0, ṽ] and therefore force the actual velocity
inputs to have a similar scale as the training samples.

In addition to the aforementioned issues, it is necessary to address the problem of
anisotropic control performance. As depicted in Figure 5a, we denote the force exerted
on the QUAV as F1 when it is located at position A and as F2 when it is at position B.
Ideally, if positions A and B are equidistant from the target at a distance r, we expect the
two force vectors to have identical magnitudes and angles relative to the corresponding
position error vectors. This implies that the control performance should exhibit isotropy.
However, the current motion controllers we have obtained do not guarantee isotropy
due to two reasons: (1) the x-axis and y-axis controllers independently calculate the force
components along each axis based on sx and sy, and (2) the policy networks are non-linear.
To preserve this property, we transform the horizontal coordinate system such that the
force vector components are calculated radially and tangentially to the horizontal error
vector eh = [ex, ey, 0]T . As shown in Figure 5b, the unit radial and tangential vectors are
defined as

h =
eh

||eh||
, T(h) = h × [0, 0,−1]T . (17)

The horizontal states in the testing phase are so far modified as

srad = [erad, (ṽ/v̄)vTh, sign(erad)ez, sign(erad)vz, θ̃, ˙̃θ]T ,

stan = [etan, (ṽ/v̄)vTT(h), sign(etan)ez, sign(etan)vz, ϕ̃, ˙̃ϕ]T ,
(18)



Drones 2024, 8, 85 10 of 23

in which erad, etan, θ̃, and ϕ̃ are defined as

erad = clip(eT
dh,−dc, dc),

etan = clip(eT
d T(h),−dc, dc),

θ̃ = arctan
zT

b h
zz

b
,

ϕ̃ = arctan
zT

b T(h)
zz

b
.

(19)

Similarly, the horizontal forces defined in Equation (13) should be modified following

[ f x
d , f y

d , 0]T = mctµαh(s
rad)h + mctµαh(s

tan)T(h). (20)

It should be noted that, up to now, erad =
√
(ex)2 + (ey)2 ≥ 0 and etan = 0, and there

is no reason for the QUAV to move along T(h). This is because no obstacles are taken into
consideration yet. As we shall see in the next section, they will be further modified by the
repulsive potential fields.

Figure 5. Isotropic control performance. (a) For the property of isotropy to be maintained, the norms
of F1 and F2 should be the same. (b) The horizontal coordinate system is transformed such that
horizontal axes are either parallel or tangential to the horizontal position error vector.

4.3. APF for Network Controller

In a hierarchical framework, RL motion controllers are solely responsible for the
navigation of the QUAV in open spaces and do not address higher-level tasks such as
obstacle avoidance. In this study, we incorporate the use of APF to guide the RL motion
controllers by influencing the state inputs, thereby indirectly altering the QUAV’s current
pursuit position. Figure 6 provides an illustration of how the target is updated, with the
saturated target being the direct result of the clipping operation along the radial direction.
Similar to traditional APF methods, any obstacle that falls within the QUAV’s sensing range
generates a repulsive force. However, instead of directly applying this force to the agent, it
is utilized to further modify the target’s position. This is accomplished by providing the
motion controllers with modified position errors in the following manner:

erad = clip(eT
dh, 0, dc)− FT

reph,

etan = −FT
repT(h).

(21)
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It is important to note that distance clipping is performed prior to the modification of
errors by Frep, as depicted in Figure 6a. This implies that the radial and tangential position
errors, er and et, are not strictly limited by the distance d. This is done to ensure that the
repulsive forces exerted by nearby obstacles have a significant impact on the movements of
the QUAV. Without this consideration, the actual influence of repulsion on the target would
be insignificant, as shown in Figure 6b, particularly when the original target is located
far away.

Figure 6. The target position is further adjusted based on the repulsive force. (a) In this study, the
order of operations involves conducting the clipping operation before the target is pushed by the APF.
(b) The clipping operation is performed at the end, which minimizes the impact of the repulsion.

The newly-introduced repulsive forces are dynamic, as the geometric relationship
between the QUAV and adjacent obstacles changes. This implies that the position of the
target also changes dynamically. Therefore, it is not enough to solely consider the agent’s
current velocity in the motion controllers’ states, as the target was assumed to be stationary
during the training process. In this study, we calculate the derivative of the repulsive
force with respect to time to determine the target’s velocity. Using the chain rule, we can
obtain that

vtar = Ḟrep = − ∑
i:di≤d

∇2
pUrepi

(||ei||)ṗ = − ∑
i:di≤d

Hiv, (22)

in which vtar is the velocity of the dynamic target, di =
√
(ex

i )
2 + (ey

i )
2 is the horizontal

distance to the i-th obstacle, and Hi is the Hessian matrix for the i-th obstacle’s repulsive
field. A few properties are to be satisfied when designing Urepi

(·) : (0, d] → R:

• Urepi
(x) should be monotonically decreasing with respect to x;

• ||∇pUrepi
(x)|| should be monotonically decreasing with respect to x;

• limx→0+ ||∇pUrepi
(x)|| = +∞ and ||∇pUrepi

(d) = 0||;
• Urepi

(x) should be second-order differentiable.

The first requirement is to ensure that the force is repulsive. The second property states
that the influence of the obstacle weakens as the distance increases. The third property
implies that the repulsion force approaches infinity at the surface of the obstacle, while
it becomes zero when the obstacle is at the boundary of the sensing range. The final
requirement guarantees the existence of the Hessian matrix. Since the repulsive APF is only
applied through its derivative forms, it is reasonable to directly design Frepi

as

Frepi
=

 λ

(
1
d2

i
− 1

d2

)
ei

||ei ||
di ≤ d

0 di > d
, (23)

where λ is a manually set factor that scales the intensity of repulsion.
Considering that the calculation of Hi necessitates significant computational resources

and is time-consuming, we approximate vtar by utilizing the time difference of Frep. If
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the radial component of vtar points towards the target, we eliminate it, as in such cases,
the obstacle poses no threat to the agent. To be more specific, we define a distinct target
velocity in the radial direction using the following approach:

vrad =

{
vtar hTvtar > 0

0 hTvtar ≤ 0
. (24)

This technique prevents er from exceeding the bound d and therefore avoids over-
shooting. Ultimately, the horizontal states in the testing phase are modified as

srad = [erad, (ṽ/v̄)(v − vrad)Th, sign(erad)ez, sign(erad)vz, θ̃, ˙̃θ]T ,

stan = [etan, (ṽ/v̄)(v − vtar)TT(h), sign(etan)ez, sign(etan)vz, ϕ̃, ˙̃ϕ]T .
(25)

This design enables the seamless integration of RL motion control and APF obstacle
avoidance, without requiring any modifications to the underlying structure of the pre-
trained motion controllers. The modification of states only occurs during the testing phase.
What sets this strategy apart from traditional APF approaches is that, instead of directly
applying forces to the QUAV, they are utilized to propel the target. This approach is
equivalent to generating a sequence of waypoints that are carefully designed to avoid any
potential obstacles.

5. Simulation Experiments
5.1. Training Setup

The QUAV’s dynamics followed Crazyflie 2.0 [46]. All agents were trained using TD3,
whose hyperparameters are summarized in Table 1. The time step was set as 0.02 s to
ensure control accuracy, while the upper bounds of translational and angular acceleration
were ct = 5 m/s2 and cr = 20 rad/s2, respectively.

Table 1. TD3 hyperparameter settings.

Symbols Descriptions Values

|D| Replay Buffer Size 1 × 104

N Batch Size 512
γ Discount Factor 0.99
τ Target Update Rate 0.1
δ Learning Rate 1 × 10−3

σ̃ Noise Variance 0.2
c Noise Clip 0.5
d Policy Update Delay 2

An MLP with two layers, each consisting of 32 nodes, was utilized to train each
controller. The optimizer used in this process was Adam. The targets were randomly
sampled from a uniform distribution. Specifically, angular targets were chosen from the
range of (−π

2 , π
2 ), while translational targets were selected from the range of [−5, 5]. It is

worth noting that the horizontal network was trained only after the angular and vertical
networks had been obtained. The training stage of each controller comprised a total of
200 training episodes, with episode lengths set at 100 and 500 for angular and translational
control respectively. This ensured that the agent had sufficient time to reach the target
before an episode concluded. Throughout the training phase, no obstacles or external
disturbances were taken into consideration.

5.2. Testing Setup

We designed three different controllers for all experiments. Controller 1 utilized the
default setting, while controller 2 excluded the axial target velocity cancellation operation.



Drones 2024, 8, 85 13 of 23

On the other hand, controller 3 solely employed APF to influence position errors, without
affecting velocity errors.

The testing environment consisted of an open space with a floor and a ceiling that
was 5 m high. Additionally, there were several cylindrical obstacles, each standing at a
height of 5 m, strategically placed around the center of the space. The positions of these
obstacles were determined by uniformly selecting the distances of their axes from the
center within the range of [0, 6]. Furthermore, the radii of the cylinders were uniformly
chosen from the range of [0.9, 1.1]. It was ensured that the minimum distance between any
two obstacles was at least dmin. For each trial, three QUAVs were utilized, which acted
as dynamic obstacles and generated APF repulsive forces similar to the fixed obstacles in
the environment.

They were initialized at [8 sin( 2kπ
3 ), 8 cos( 2kπ

3 )], and the corresponding targets were
at [−8 sin( 2kπ

3 ),−8 cos( 2kπ
3 )], where k = 0, 1, 2. As the agents moved, proximity sensors

mounted on them could detect nearby obstacles. The maximum sensing range d was 2 m,
the position error clipping bound dc was 0.5 m, while the repulsive force scaling factor λ
was set as 0.18. The manually set velocity upper bound v̄ was set as 2 m/s, and through
experiments, it was found that the natural velocity upper bound ṽ = 1.5 m/s.

The agents faced the challenge of reaching the targets on the opposite side without any
collisions. The success of navigation was determined by whether each agent entered the
0.1 m proximity of its corresponding target. We created four different environments with
specific values for dmin and N: (0.7, 15), (0.7, 12), (0.9, 12), and (0.9, 9). In each environment,
we conducted 1000 trials for every controller setting. Based on these trials, we calculated
the success rates and the average time taken for successful trials.

To evaluate path smoothness, we calculated the curvatures of projection of the actual
paths on the horizontal plane according to

κ =
|ẋÿ − ẍẏ|
(ẋ2 + ẏ2)

3
2

, (26)

in which the time-derivatives of positions are approximated by the differences between two
time steps. It should be emphasized that κ may be either positive or negative, depending
on the turning direction. Path oscillations are reflected by the occurrence of sharp turns,
which correspond to huge absolute curvatures. In other words, if a path contains multiple
points with huge absolute curvatures, it is oscillatory. In this work, the curvature threshold
for a sharp turn is defined as 1000.

5.3. Experiment Results
5.3.1. General Performance

Figure 7 is a vertical view of the agents’ trajectories as they moved around in the four
environments, where the circles represent cylindrical obstacles, the curves in orange, green,
and blue illustrate the trajectories, and the stars at their ends are the targets. A smaller
dmin indicates a more challenging scenario, since the minimum width of the passageway
between two obstacles was smaller, while a bigger N means there were more obstacles
around the origin. It can be seen that the hierarchical control framework we have proposed
is capable of navigating the agents to the corresponding targets smoothly without collisions
or detours, even in the densest environment.

To validate the effectiveness of the proposed modifications, we conducted 1000 trials
for the three controllers in various environments. The success rates and average reaching
times are presented in Table 2. In the environment with low density (0.9, 9), all con-
trollers achieved a high success rate. Among them, controller 2 demonstrated the fastest
performance, with an average reaching time of only 22.801 s. This can be attributed to
controller 2’s tendency to accelerate more dramatically when the repulsive force contributes
to the attractive force. However, as the density increased, controller 2 experienced a more
significant decrease in success rate compared to controller 1. This is because the higher
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acceleration increases the risk of overshooting, which will be discussed in the following
section. Furthermore, controller 3, which did not consider any velocity errors, exhibited
a severe decline in performance. It not only took more time to reach the targets but also
struggled to handle dense environments. This was due to the delay between the assumed
target and the actual target, modified by the repulsive APF forces. As a result, oscillatory
behaviors were observed. In summary, the introduction of velocity errors effectively miti-
gated oscillations, while the cancellation of the target velocity radial component enhanced
the agents’ ability to address overshooting and the resulting oscillations. However, this
came at the expense of slower agent movement.

Figure 7. QUAV performance with the designed controllers in four environments, with the densest on
the leftmost side and the sparsest on the rightmost side. (a) dmin = 0.7, N = 15. (b) dmin = 0.7, N = 12.
(c) dmin = 0.9, N = 12. (d) dmin = 0.9, N = 9.

Table 2. Success rate (SCR) and average reaching time (ART) of different controllers.

Settings
Controller 1 Controller 2 Controller 3

SCR ART (s) SCR ART (s) SCR ART (s)

(0.7, 15) 0.950 29.545 0.886 27.433 0.364 32.236
(0.7, 12) 0.968 27.194 0.945 25.223 0.675 29.012
(0.9, 12) 0.986 26.000 0.953 24.181 0.950 27.836
(0.9, 9) 0.989 24.529 0.975 22.801 0.968 25.984
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The method is also applicable to an environment with more QUAVs, as shown in
Figure 8. The environment setting is similar to that discussed in the testing setup. In general,
the agents are able to reach their targets without collisions. For example, in Figure 8b,
where three pairs of agents move head to head, they can still reach the targets safely.

Figure 8. The method is applicable to cases with more QUAVs. The environment settings are
dmin = 0.7, N = 12. (a) The case with 5 agents. (b) The case with 6 agents.

5.3.2. Oscillation Reduction and Overshooting Prevention

Table 3 lists the average number of points with an absolute curvature greater than
1000 for the three controllers over all successful trials. It can be seen that controller
3 demonstrates the worst performance in terms of path smoothness, which testifies that
target velocity information plays an essential role in reducing path oscillations. On the
other hand, controllers 1 and 2 are close, with the path of the former being slightly more
oscillatory. It should be noted that overshooting is not equivalent to global path smoothness,
since it only occurs at certain areas, such as the triangular trap. Therefore, the oscillations
caused by overshooting cannot easily be reflected by path curvature.

Table 3. The average number of sharp turns (|κ| > 1000) of different controllers.

Settings Controller 1 Controller 2 Controller 3

(0.7, 15) 79.427 73.855 122.403
(0.7, 12) 54.788 51.731 90.938
(0.9, 12) 41.925 33.658 75.417
(0.9, 9) 30.434 25.136 53.372

To give quantitative analysis to the effectiveness of radial target velocity cancellation
operation as defined by Equation (24), another experiment setting was used. Concretely,
three cylindrical obstacles with a radius of 1.5 m were randomly placed on a ring whose
inner and outer radii were 2.3 m and 2.5 m, respectively. The three QUAVs were initialized at
[0.6 sin( 2kπ

3 ), 0.6 cos( 2kπ
3 )], and the corresponding targets were at [−8 sin( 2kπ

3 ),−8 cos( 2kπ
3 )],

where k = 0, 1, 2. In this way, they were trapped by the encircled obstacles at first, and the
task was to escape the triangular trap. Ideally, the maximum distance between any QUAV
and the corresponding target position is 8.6 m, otherwise it is caused by overshooting.
In this experiment, overshooting cases are defined as cases where at least one QUAV’s
distance to its target exceeded 10 m, as shown in Figure 9a. Furthermore, we define
trapped cases where at least one QUAV’s distance to the origin is within 4 m, as shown in
Figure 9b. Table 4 shows the results. It can be seen that controller 1 encountered the fewest
overshooting cases, which shows that the velocity cancellation operation helps prevent-



Drones 2024, 8, 85 16 of 23

ing overshooting. Moreover, since this operation simplifies the obstacle environment by
neglecting obstacles behind it, trapped cases are largely avoided as well.

Figure 9. (a) Overshooting case. (b) Trapped case.

Table 4. The number of overshooting and trapped cases of different controllers.

Controller 1 Controller 2 Controller 3

Overshooting Cases 23 145 481
Trapped Cases 24 199 641

SCR 0.969 0.732 0.237
ART (s) 13.735 13.958 18.566

An intuitive comparison of the three controllers can be found in Figure 10. In
Figure 10b, the agent represented by the green trajectory experienced oscillation within
the triangular area formed by obstacles 1, 2, and 3. The reason behind this oscillation
was that the combined force exerted by obstacle 1 and obstacle 2 was directed towards
the target and was not counteracted even though they did not pose a threat to the agent.
Consequently, the force towards the goal became excessively strong, leading to the agent
overshooting in this direction. Furthermore, disregarding velocity information entirely
resulted in more frequent oscillations. The reason was that, in this case, the agent assumed
the intermediate target to be fixed, while in reality the intermediate target was affected by
the relative position between the agent and the obstacles. Oscillations occurred when the
intermediate target updated before the agent reached the previous one. This can be ob-
served in Figure 10c, where all agents’ trajectories exhibit a zigzag pattern, especially when
maneuvering between obstacles. This increases the risk of collision with nearby obstacles.

5.3.3. The Effect of a Clipping Bound

In the mentioned experiments, we utilized a position error clipping bound of
dc = 0.5 m. This choice was made based on previous experiments that indicated that
it was the safest option. We varied the value of dc for controller 1, ranging from 0.3 m to
1.0 m with an increment of 0.1 m. A total of 1000 trials were conducted with the environ-
ment parameters set at (0.7, 12). Additionally, we observed that, for dc values of 0.3 m
and 0.4 m, the agent’s velocity was relatively low, resulting in a longer time to reach the
target. To account for more trials that had the potential to reach the targets, we relaxed
the time requirement for success. This adjustment allowed us to consider a broader range
of trials. The results of these experiments are presented in Table 5. From the table, it can
be observed that the average reaching time is inversely correlated with dc. Furthermore,
dc = 0.5 yielded the highest success rate. This can be attributed to the fact that, when the
agent moved too slowly, it lacked the flexibility to handle imminent collisions. Conversely,
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when the agent moved too quickly, the outputs of the low-level flight controllers were
not sufficiently strong to decelerate the agent in time, thereby increasing the likelihood
of collisions.

Figure 10. Performance comparison of different controllers in the same environment, where
dmin = 0.7 and N = 12. (a) Controller 1. All the designs mentioned previously were used.
(b) Controller 2. Radial component of the target velocity was not canceled even when it contributed
to the attractive force. (c) Controller 3. No velocity errors were introduced to the states. (d) A close-up
view of controller 2’s path.

Table 5. Success rate (SCR) and average reaching time (ART) of different controllers.

dc 0.3 * 0.4 * 0.5 0.6 0.7 0.8 0.9 1.0

SCR 0.517 0.930 0.968 0.941 0.851 0.714 0.585 0.568
ART (s) 43.437 34.983 27.194 22.340 19.606 18.705 19.146 17.710

* The time requirement for success was relaxed from 3000 steps to 5000 steps.

5.3.4. Comparison to Existing Methods

This section compares the proposed method to two other existing methods in terms of
success rate, average reaching time, average absolute curvature, and the number of sharp
turns. The first method to be compared uses A* as the path planner and the SE(3) control
law proposed in [45] as the motion controller. This method discretizes the environment into
cubes with side length 0.2 m, which are also known as voxels. It should be noted that the
environment information of this algorithm is known in advance instead of being obtained
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with sensors. The second method to be compared [47] is a hierarchical DRL method that
uses a DQN network to generate waypoints based on the sensor information returned by
16 rangefinders. The waypoints then serve as the target points of the motion controller
trained with PPO. The testing environment was a single-angle scenario, where the agent
was initialized at [0, 4.5, 2.5], and the target position was [0, −4.5, 2.5]. Twelve cylindrical
obstacles with a radius of 0.4 m were randomly placed around the origin. The positions of
these obstacles were determined by uniformly selecting the distances of their axes from
the center within the range of [0, 3] and dmin = 0.6. The results are listed in Table 6, which
also includes the performance of controller 3 in this environment. We can see that the
proposed method outperformed the other two algorithms in terms of success rate and
average reaching time, with the path slightly more oscillatory. Although path oscillation is
an inherent problem with APF, it can be reduced to a large extent with the help of velocity
information. After addressing this issue, the controller can navigate the QUAV in a more
safe and efficient manner.

Figure 11 illustrates the paths of the four methods in the same environment. It can
be seen that the proposed method’s path is smooth on a macro level and is far away from
obstacles. The path of A* + SE(3) is mostly straight because the waypoints returned by
A* are exactly on the centers of the voxels. Figure 11c shows a similar path, in that there
are only 16 possible directions to choose from when updating the waypoints. The path of
controller 3, on the other hand, is the most oscillatory one.

Figure 11. Performance comparison of the four methods in the same environment. (a) Proposed
method. (b) A* + SE(3). (c) DQN + PPO. (d) Controller 3.



Drones 2024, 8, 85 19 of 23

Table 6. Comparison of the proposed method to existing methods.

APF + TD3 A* + SE(3) DQN + PPO Controller 3

SCR 0.983 0.969 0.885 0.761
ART (s) 15.312 19.458 36.694 18.249

|κ| 7.121 4.794 6.610 11.426
sharp turns 0.651 0.480 0.431 1.112

6. Discussion
6.1. Limitations

Although the designed controller can achieve high success rates with moderate reach-
ing time even in a dense environment, there is still room for improvement. We considered
cases as failures when the agents were close to the targets but still outside the 0.1 m neigh-
borhood. This issue is referred to as the GNRON problem, which is discussed in Section 2.
Table 7 provides the number of GNRON cases for different controllers, where the success
requirement is relaxed to entering the 0.3 m neighborhood of targets. It is evident that the
success rates could have been higher if we had employed a strategy that actively addressed
this problem. By introducing a damping term in the repulsive forces when the agents are
in close proximity to the targets, this problem can be effectively resolved. Additionally,
there are other limitations to the proposed method, such as the absence of explicit collision
detection, leading to occasional collisions, and the hyperparameter dc, which needs to be
manually adjusted.

Another limitation of the proposed method is that it fails to escape local minima
created by U-shaped obstacles, which is shown in Figure 12a. Moreover, when the QUAV’s
moving direction is almost collinear with the joint force, the path is usually not smooth, as
shown in Figure 12b. One possible solution is to combine the proposed method with the
vortex potential field method discussed in [36,37], since in this way the agent will move
smoothly around the obstacle instead of heading directly towards it and spending a long
time adjusting the path.

Table 7. The number of GNRON cases for different controllers.

Environments (0.7, 15) (0.7, 12) (0.9, 12) (0.9, 9)

Controller 1 19 12 10 8
Controller 2 20 10 11 3
Controller 3 6 4 4 1

Figure 12. (a) The QUAV failed to escape the local minimum caused by a U-shaped obstacle. (b) When
the approaching angle is close to zero, the path is not smooth.
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6.2. Applicability to Dynamic Environments

The proposed method has the potential to be transferred to dynamic environments
since collision avoidance behavior is only determined by the repulsive forces updated
at every time step. In fact, the preceding experiments have verified this ability because
all the QUAVs are dynamic, generating repulsive forces to other QUAVs. As shown in
Figure 13, when they move close to each other, the QUAVs are able to take actions to avoid
collisions. This behavior resembles the cooperative collision avoidance mentioned in [36].
One significant difference between agents and obstacles is that the former ones usually
actively take action to avoid collisions while the latter ones’ behavior may be unpredictable.
Therefore, avoiding collisions between moving QUAVs and moving obstacles is more
challenging. One possible solution is to combine the current framework with reciprocal
velocity obstacles [48] based on the current velocity information of the obstacles.

Figure 13. Cooperative collision avoidance. (a) The case with 3 agents. (b) The case with 6 agents.

6.3. Irregular Obstacles

In real applications, the shapes of obstacles may not be as simple as cylinders. Since this
work assumes that the QUAV only detects nearby obstacles with sensors, it is impractical
to generate a global potential field in advance. There are two simple ways to adapt this
framework so as to make it applicable to environments with irregular obstacles. The first
method, as shown in Figure 14a, is to replace the surface of the sensed part with smaller
cylinders. In this way, the irregular obstacle’s repulsive force equals the joint repulsive force
of all cylindrical obstacles. The second method is to assume the part behind the sensed
surface as solid and calculate its center of gravity. The distance to the obstacle is obtained
as shown in Figure 14b. Some works deal with irregular obstacles in advanced ways. For
example, Ge et al. [49] integrated the repulsive force of every part of the obstacle to calculate
the ultimate repulsive force. This can model the obstacles more accurately, but it requires
the QUAV to have prior global information of the environment. Guo et al. [50] used the
closest point on the obstacle’s surface to generate repulsive force, which is the same as our
method when the obstacles are cylindrical or round. However, separate discussions are
needed for obstacles with corners or edge points. This makes it difficult to achieve stable
control using the Hessian matrix considering that its calculation will be even more complex
under such circumstances.
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Figure 14. Two possible ways to model irregular obstacles, where the sensed parts are shown in dark
blue. (a) The surface of the sensed part is replaced with smaller cylindrical obstacles, illustrated as
orange circles. (b) Assuming the sensed part is a solid object.

7. Conclusions

In this study, we have proposed an efficient hierarchical controller that combines the
use of an APF for path planning and obstacle avoidance with DRL motion controllers to
generate rotor signals. Our approach differs from traditional APF methods in that the APF
force is no longer directly applied to the QUAV but instead used to modify the position
errors, effectively pushing the sensed target position. Additionally, we have introduced the
calculation of the time-derivative of the APF force and incorporated a second-order term in
the velocity error of the DRL controllers’ inputs. This modification has successfully reduced
oscillations that occur when an agent is surrounded by multiple obstacles. The oscillation
technique not only ensures smoother paths but also significantly improves the robustness
of the controller. Furthermore, we have demonstrated that canceling the projection of the
target velocity on the attractive force when they are in the same direction is an effective
method to prevent overshooting and enhance the success rate. Although this approach may
slightly decrease the speed at which the target is reached, it is a reasonable compromise
that prioritizes safety, especially in dense environments. We would like to emphasize the
importance of the clipping factor dc as a hyperparameter in our design. It is crucial to find
an optimal value for dc, as both excessively small and excessively large values can lead to
significant performance degradation. Lastly, we discussed the limitations of the proposed
method and provided some possible solutions. The control framework in this work can
be applied to a real testing environment considering that it is based on real parameters
of a QUAV. Potential challenges include the accumulated errors of the discrete system
that generates outputs based on differences, a key point that needs to be addressed in
future work.
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