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Abstract: Multirotor UAVs are used for a wide spectrum of civilian and public domain applications.
Their navigation controllers include onboard sensor suites that facilitate safe, autonomous or semi-
autonomous multirotor flight, operation, and functionality under nominal and detrimental conditions
and external disturbances, even when flying in uncertain and dynamically changing environments.
During the last decade, given the available computational power, different learning-based algorithms
have been derived, implemented, and tested to navigate and control, among other systems, multirotor
UAVs. Learning algorithms have been and are used to derive data-driven based models, to identify
parameters, to track objects, to develop navigation controllers, and to learn the environments in
which multirotors operate. Learning algorithms combined with model-based control techniques have
proven beneficial when applied to multirotors. This survey summarizes the research published since
2015, dividing algorithms, techniques, and methodologies into offline and online learning categories
and then further classifying them into machine learning, deep learning, and reinforcement learning
sub-categories. An integral part and focus of this survey is on online learning algorithms as applied
to multirotors, with the aim to register the type of learning techniques that are either hard or almost
hard real-time implementable, as well as to understand what information is learned, why, how, and
how fast. The outcome of the survey offers a clear understanding of the recent state of the art and of
the type and kind of learning-based algorithms that may be implemented, tested, and executed in
real time.

Keywords: multirotor UAVs; offline learning; online learning; reinforcement learning; deep learning;
machine learning

1. Introduction

Unmanned aerial vehicles (UAVs) have witnessed unprecedented levels of growth
during the last 20 years, with civilian and public domain applications spanning power line
inspection [1], the monitoring of mining areas [2], wildlife monitoring and conservation [3],
border protection [4], building and infrastructure inspection [5], and precision agricul-
ture [6], to name but a few applications. Although different UAV types and configurations
have been utilized for such applications, multirotor UAVs, particularly quadrotors, are
the most commonly and widely used due to their perceived advantages, effectiveness,
hovering capabilities, and efficiency during flight.

A plethora of conventional and advanced model-based linear, linearized, and nonlin-
ear controllers have already been derived and used for multirotor navigation and control.
However, recently, learning-based algorithms and techniques have gained momentum
because they facilitate and allow, among other things, for (i) data-driven system modeling
that may also include model updates; (ii) combined data-driven and model-based mod-
eling and control and parameter identification; (iii) data-driven parameter identification;
(iv) data-driven environment model development; and (v) pure learning-based control.
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Stated differently, learning-based approaches add to the model-based formulation, en-
hance multirotor modeling and control, and offer alternatives for learning, modeling, and
understanding the environment.

Learning-based algorithms are basically divided into offline and online learning, al-
though there exist some learning algorithms that include both offline and online learning
components. Most researchers have extensively studied offline-learning-based algorithms
and applied them to different families of (linear and nonlinear) systems. The derivation
and implementation of online-learning-based algorithms in multirotor UAVs is a relatively
recent area of research that has attracted increased interest because of the real-time im-
plementability potential, which may facilitate continuous anytime online learning. This
momentum has motivated the present survey.

To begin with, a review of the literature reveals that there exists considerable pub-
lished research addressing the use of learning algorithms for UAV control. The emphasis of
already-published surveys is on developing and adopting machine learning, deep learning,
or reinforcement learning algorithms. To be specific, Carrio et al. [7] focused on deep learn-
ing methods that are applied to UAVs, while in Polydoros and Nalpanditis [8], the emphasis
was on model-based reinforcement learning techniques that are applied to robotics but also
have applications to UAVs. Machine learning algorithms for UAV autonomous control
were explored by Choi and Cha [9], while Azar et al. [10] investigated deep reinforcement
learning algorithms as applied to drones. Most recently, Brunke et al. [11] presented several
learning algorithm-based applications in robotics, including multirotor UAVs.

The common theme of already-published surveys is that they discuss different offline-
learning-based control algorithms that may be, or have been, applied to different UAV types,
but they are not real-time implementable. Therefore, in contrast to the existing surveys, the
focus of this research is on also registering the online-learning-based algorithms that have
shown potential and/or have been implemented and tested on multirotor UAVs.

Without loss of generality, for the purpose of this survey, the below-provided ‘at-
tributes’ are considered important, and they facilitated the review process. The list is by
no means complete, nor unique; it may be modified and enhanced accordingly based
on set objectives. Note that in what follows, the terms ‘agent’ and ‘multirotor’ are used
interchangeably:

1. Navigation task: This refers to the (autonomous or semi-autonomous) function that
the multirotor needs to accomplish, given a specific controller design and/or configu-
ration.

2. Learning: This refers to ‘what’ the agent learns in order to complete the navigation
task.

3. Learning algorithm: This refers to the specific algorithm that needs to be followed for
the agent to learn. Inherent in this attribute is ‘what’ is being learned by the agent,
and ‘how’.

4. Real-time applicability: This refers to ‘how fast’ learning is achieved and ‘how com-
putationally expensive’ the learning algorithm is, which basically dictates whether
learning is applicable in hard real time or in almost hard real time. Stated differently,
the answer to ‘how fast’ determines the implementability of the learning algorithm.
The calculation of the algorithm’s computational complexity may also provide addi-
tional information on ‘how fast’ the agent learns.

5. Pros and Cons: This refers to the advantages and limitations of the underlying
learning approach, which, in unison with all other attributes, determines the overall
applicability and implementability of the learning approach on multirotor UAVs.

The rest of the survey is organized as follows: Section 2 provides background informa-
tion and related definitions, which are deemed essential for clarification and classification
purposes. Section 3 summarizes offline learning and provides a detailed table reflecting pub-
lished research, also stating what is being learned. The review of offline learning techniques
is essential for completeness purposes and also for an understanding of the differences
between offline and online learning. Section 4 dives into online learning approaches. An
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overview of each learning method is presented, along with what is being learned and
why, the advantages and disadvantages, and the obtained results. The discussion and
conclusions are offered in Section 5.

2. Background Information

Key concepts and definitions are presented next. The related and relevant literature is
cited to support statements, findings, and observations. This information is adopted and
used throughout the paper; it also helps to correctly classify the reviewed learning-based
algorithms, when needed.

Definitions

Reinforcement Learning: Reinforcement learning, RL, is a machine learning technique
in which an agent communicates with the environment to find the best action using the
state space and a reward function. RL includes four main components: a policy, a reward
signal, a value function, and, optionally, an environment model [7,12]. RL may be either
online or offline. The general configurations of offline RL and online RL approaches are
shown in Figures 1 and 2.

Figure 1. Offline reinforcement learning block diagram illustration [13].

Figure 2. Online reinforcement learning block diagram illustration [13].

Policy: In the context of learning algorithms, a policy determines how the learning
agent behaves at a given moment. A policy maps the discerned states of the environment
to the actions that the agent should take when in those states [12]. The policy may reflect
either on-policy or off-policy options.
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On-policy: On-policy techniques relate to a policy that is used to make decisions.
Policy iteration, value iteration, Monte Carlo for On-Policy, and State–Action–Reward–
State–Action (SARSA) algorithms are representative examples of on-policy algorithms [12].

Off-policy: Off-policy methods refer to a policy that is dissimilar to that used to
produce data. Q-learning and deep deterministic policy gradient (DDPG) are examples of
off-policy algorithms [12]; see Figure 3 for the configuration of the off-policy RL algorithm.
The agent experience is the input to a data buffer D, which is also called a replay buffer.
Each new policy πk+1 is trained by utilizing the samples of all previous policies, π0, π1, . . .,
πk, that are stored in D.

Figure 3. Off-policy RL algorithm configuration [13].

On-policy methods are generally less complicated than off-policy ones, and they are
contemplated first. Since data are produced by a different policy in off-policy methods,
they converge more slowly. Regardless, off-policy methods provide more powerful and
general alternatives [12].

Reward Signal: A reward signal is a target in an RL algorithm. The agent receives a
single number, the reward, from the environment at each time step. The only objective
of the agent is to maximize the total reward over time. The reward signal provides an
immediate sense of the current state and indicates what events are beneficial or detrimental
to the agent [12].

Value Function: A value function determines what events are advantageous to the
agent in the long term.

Environment Model: An environment model helps mimic and replicate the behavior of
the environment. It allows for making inferences about how the environment will behave.

In what follows, the definitions and fundamental concepts of offline and online learn-
ing, supervised and unsupervised learning, and machine and deep learning are detailed.

Offline Learning: In offline learning, the learning algorithm trains an agent or artificial
neural network (ANN). The agent interacts with the environment, and it is updated during
the training process. However, the agent is never updated after training is completed.
Bartak and Vykovsky [14] and Edhah et al. [15] present representative examples of offline
machine learning (ML) and deep learning (DL) algorithms, respectively. The studies of
Xu et al. [16], Rodriguez et al. [17], and Yoo et al. [18] are representative examples of offline
RL algorithms. As observed in the configuration diagram of offline RL in Figure 1, a dataset
(D) is collected by the behavior policy (πβ) with the help of the states (s) and the reward
function (r). A policy (π) is trained by using D. The training process does not interact
with the Markov decision process (MDP). The trained policy (π) is deployed to control the
system. The policy (π) interacts with the environment using the states (s) and the reward
function (r) and creates the action space (a).
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Online Learning: In online learning, according to Hoi et al. [19], the learner keeps
on learning and improves prediction to reach the best possible one by interacting with
the environment, as shown in Figure 2. A policy (πk) creates the action space to interact
with the environment using the states (s) and the reward function (r). Then, πk is updated
by using the rollout data, including states, actions, future states, and the reward function.
After the updated policy (πk+1) is determined, it is replaced with the current policy (πk).

Note that for the purposes of this survey, the definition of online learning is extended
to account for cases where the agent continues the learning process during operation in real
time, even after completing the offline learning process or without any basic learning. This
extension allows for ‘anytime learning’ while the underlying system continues to function
and accounts for the ability to modify the system model and also adapt its parameter values
(time-varying systems).

Supervised Learning: In supervised learning, the learning algorithm learns from a
classified and labeled dataset [7].

Unsupervised Learning: In unsupervised learning, the learning algorithm utilizes
unlabeled data, which are collected from sensors, to learn the proposed task. Unsupervised
learning techniques are widely used in RL [7].

Machine Learning: Machine learning, ML, is a component of Artificial Intelligence
(AI), in which tasks are learned (or imitations of tasks are learned) from collected data [7].

Deep Learning: Deep learning, DL, is a category or subset of ML that involves the use
of deep neural networks, DNNs, with input, hidden, and output layers to model and solve
complex problems.

Moreover, RL techniques and methods are divided into model-based and model-
free ones.

Model-based: In a model-based method, the agent predicts the future states and
reward and also chooses the action that provides the highest expected reward [12]. Models
and planning are used to solve RL problems.

Model-free: In a model-free method, the agent does not utilize the environment model
but makes decisions by only using trial-and-error approaches [12].

The main difference between model-based and model-free methods is that the former
relies on planning, while the latter relies on learning [12].

A Google Scholar search for articles published since 2015 returns the paper distribution
that is illustrated in Figure 4, which shows the number of published offline and online
learning papers that deal with multirotor UAVs.

Figure 4. Publications on online and offline learning algorithms for control of multirotor UAVs since
2015 based on Google Scholar search.
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This section has provided and explained the key definitions that relate to learning
algorithms discussed in this survey. The next section reviews offline learning techniques.

3. Offline Learning

In offline learning, the system may be trained either by using collected and/or pro-
vided data (supervised learning) or, alternatively, by using feedback before its actual
operation, without using any data (unsupervised learning). In this case, when operating
in real time, the agent, or the neural network (NN), is not updated or affected by the
environment.

Table 1 summarizes offline learning and RL approaches that have been applied to
multirotor UAVs. The table includes the publication year of the paper, the adopted or
derived learning model, the application task/domain, and what is being learned. Fifty-
five articles have been reviewed and classified as machine learning, ML, or deep learning,
DL, or reinforcement learning, RL, approaches (as indicated by the authors). In cases where
no information is provided in the reviewed papers, the classification follows the provided
definitions in Section 2.

Table 1. Offline learning papers.

Year Authors Learning Model Application Task What Is Being Learned

2015 Bartak et al. [14] ML Object tracking How to detect an object

2015 Giusti et al. [20] ML Navigation Image classification to determine the direction

2018 Kaufmann et al. [21] ML Waypoints and the desired veloc-
ity How to detect an object

2021 Janousek et al. [22] ML Landing and flight planning How to recognize an object

2023 Vladov et al. [23] ML Stabilization How to adjust controller parameters

2015 Kim et al. [24] DL Navigation Image classification to assist in flights

2017 Li et al. [25] DL Trajectory tracking Control signals

2017 Smolyanskiy et al. [26] DL Navigation The view orientation and lateral offset

2018 Jung et al. [27] DL Navigation How to detect the center of a gate

2018 Loquercio et al. [28] DL Navigation How to adjust the yaw angle and the probability
of collision

2019 Edhah et al. [15] DL Hovering How to determine propeller speed

2019 Mantegazza et al. [29] DL Ground target tracking Image classification for control

2023 Cardenas et al. [30] DL Position control How to determine the rotor speeds

2016 Imanberdiyev et al. [31] RL Navigation How to select the moving direction

2017 Polvara et al. [32] RL Landing How to detect a landmark and control vertical
descent

2017 Choi et al. [33] RL Trajectory tracking The control input

2017 Kahn et al. [34] RL Avoiding failure The policy

2017 Hwangbo et al. [35] RL Stabilization How to determine the rotor thrusts

2018 Xu et al. [16] RL Landing How to determine the velocities of the UAV

2018 Lee et al. [36] RL Landing How to determine the roll and pitch angles

2018 Vankadari et al. [37] RL Landing How to determine the velocities of the UAV on
the x- and y-axes

2018 Kersandt et al. [38] RL Navigation How to select three actions: move forward, turn
right, and turn left

2018 Pham et al. [39] RL Navigation How to select the moving direction

2019 Rodriguez et al. [17] RL Landing How to determine the velocities of the UAV on
the x- and y-axes

2019 Liu et al. [40] RL Formation control The optimal control law

2019 Lambert et al. [41] RL Hovering The mean and variance of the changes in states
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Table 1. Cont.

Year Authors Learning Model Application Task What Is Being Learned

2019 Manukyan et al. [42] RL Hovering How to determine the rotor speeds

2019 Srivastava et al. [43] RL Target tracking How to determine the velocities of the UAV on
the x-, y-, and z-axes

2019 Wu et al. [44] RL Trajectory planning How to select the moving direction

2019 Wang et al. [45] RL Navigation How to determine the steering angle

2019 Zeng and Xu [46] RL Path Planning How to select the flight direction

2020 Yoo et al. [18] RL Trajectory tracking How to adjust PD and LQR controller gains

2020 Rubi et al. [47] RL Trajectory tracking How to determine the yaw angle

2020 Pi et al. [48] RL Trajectory tracking How to determine the rotor thrusts

2020 Zhao et al. [49] RL Formation control How to solve the Bellman equation

2020 Guerra et al. [50] RL Trajectory optimization The control signal

2020 Li et al. [51] RL Target tracking How to determine the angular velocity of the yaw
angle and linear acceleration

2020 Kulkarni et al. [52] RL Navigation How to select the moving direction

2020 Hu and Wang [53] RL Speed optimization How to determine the rotor speeds

2021 Kooi et al. [54] RL Landing How to determine the total thrust and the roll
and pitch angles

2021 Rubi et al. [55] RL Trajectory tracking How to determine the yaw angle

2021 Bhan et al. [56] RL Avoiding failure How to adjust the gains of the PD position con-
troller

2021 Li et al. [57] RL Trajectory planning How to obtain the parameter vector of the ap-
proximate value function

2022 Jiang et al. [58] RL Landing How to determine the velocity of the UAV on the
x- and y-axes

2022 Abo et al. [59] RL Landing How to determine the roll, pitch, and yaw angles
and the velocity of the UAV on the z-axis

2022 Panetsos et al. [60] RL Payload transportation How to obtain the reference Euler angles and
velocity on the z-axis

2022 Ye et al. [61] RL Navigation How to select the moving direction and deter-
mine the velocity

2022 Wang and Ye [62] RL Trajectory tracking How to determine the pitch and roll torques

2022 Farsi and Liu [63] RL Hovering How to determine the rotor speeds

2023 Xia et al. [64] RL Landing How to obtain the force and torque command

2023 Ma et al. [65] RL Trajectory tracking How to determine the rotor speeds

2023 Castro et al. [66] RL Path Planning How to find optimized routes for navigation

2023 Mitakidis et al. [67] RL Target tracking How to obtain the roll, pitch, and yaw actions

2023 Shurrab et al. [68] RL Target localization How to determine the linear velocity and
yaw angle

3.1. Machine Learning

Most offline ML techniques applied to and used for multirotor UAVs consider an
onboard monocular camera. ML-based approaches have been developed and adopted for
navigation purposes, for stabilization, to track an object, to pass through waypoints with a
desired velocity, and for landing purposes on stationary or dynamic targets. In addition,
ML approaches are also used to tune and adjust controller parameters.

In general, captured and acquired images are sent to pre-trained NNs, which first clas-
sify the obtained images into different classes and then pass this information to the under-
lying multirotor controller, as discussed in Bartak and Vykovsky [14], Janousek et al. [22],
Giusti et al. [20], and Kaufmann et al. [21]. The specifics are offered next.
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Bartak and Vykovsky [14] combined computer vision, ML, and control theory tech-
niques to develop a software tool for a UAV to track an object; the object is selected by a
user who observes a series of video frames (images) and picks a specific object to be tracked
by the multirotor. P-N learning, where P and N represent positive and negative learning, re-
spectively, is used by a Tracking–Learning–Detection (TLD) algorithm. The Lucas–Kanade
tracker is implemented in the tracking phase, and a cascaded classification algorithm that
includes an ML technique helps detect the object. A cascaded classification algorithm
that consists of a patch variance classifier, an ensemble classifier, and a nearest-neighbor
classifier is also used. A simple RL algorithm decides the forward or backward speed of
the multirotor by using the scaled size of the object. The yaw angle of the multirotor, used
to follow the object, is provided to a Proportional–Integral–Derivative (PID) controller as
input to determine the flight direction.

Janousek et al. [22] developed a method to accurately guide an autonomous UAV
to land in a specific area, which is labeled as the ‘ground object’. The landing area in-
cludes a QR code, which, after it is identified and recognized, provides specific instruc-
tions/commands to the UAV for landing. An NN is used to identify the landing area
using the onboard UAV camera. The recognition process is carried out from a ground
control station, GCS, which is a part of the overall UAV-GCS ensemble. The GCS includes a
communication channel for command transmission (to and from the UAV). False detection
of the landing area may occur (i.e., due to sunlight), and thus, success depends on how
accurately the processed image determines the landing area and not on the learning process
itself. Regardless, when the UAV is within an ‘acceptable flight altitude’, a successful
landing is accomplished.

Giusti et al. [20] used a quadrotor with an onboard monocular camera to determine
the path configuration and direction of forest or mountain trails. A single image is collected
from the onboard camera. A DNN is trained using supervised learning to classify the
obtained images. Two parameters are defined: v⃗ for the direction of the camera’s optical
axis and t⃗ for the direction of the trail. Based on the calculated angle α between v⃗ and t⃗ and
the angle β, which is 15◦ around t⃗, three actions are determined and classified as Turn Left
(TL), Go Straight (GS), and Turn Right (TR), represented by

– TL if −90◦ < α < −β;
– GS if −β ≤ α < +β;
– TR if +β ≤ α < +90◦.

These choices consider that the onboard camera centers and focuses on the motion
direction. For performance evaluation and comparison, three alternatives were consid-
ered: learning using a Saliency-based model, learning following the method discussed in
Santana et al. [69], and learning by using two human observers, who were asked to make
one of the three previously mentioned decisions. The accuracy of the DNN is 85.2%; the
accuracy of the Saliency-based model is 52.3%; and the accuracy of the model in [69] is
36.5%. The accuracy of Human1 is slightly better than the accuracy of the DNN, 86.5%;
Human2 has 82% accuracy, which is lower than the accuracy of the DNN. This methodology
has been tested experimentally and has produced successful results.

Kaufmann et al. [21] focused on the problem of autonomous, vision-based drone racing
in dynamic environments, with an emphasis on path planning and control. A convolutional
neural network (CNN) is used to detect the location of the waypoints from raw images and
to decide on the speed to pass through the gates. The planner utilizes this information to
design a short minimum-jerk trajectory to reach the targeted waypoints. This technique
was tested via simulations and in real environments. Comparisons with other navigation
approaches and professional human drone pilots were made. It is shown that this method
completes the track slower than human pilots do, but with a higher success rate. The
success rate is also much higher compared to using visual-inertial odometry (VIO).

Vladov et al. [23] studied the UAV stabilization problem. They adjust the PID controller
parameters using a recurrent multilayer perceptron (RMLP) method to stabilize the UAV
attitude angles. The determined error is the input to an NN. Instead of using a constant
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training rate, an adaptive training rate is implemented to overcome slow convergence in
the learning part and to avoid becoming trapped in a local minimum during the learning
phase. The results show that this method has a lower attitude error when compared to the
RMLP method with a constant training rate and when using only an ANN.

To conclude, in this part, several ML techniques applied to multirotor UAVs have
been presented. The emphasis is on the utilization of monocular cameras for waypoint
navigation, stabilization, object tracking, landing approaches, and controller parameter
tuning. In detail, the reviewed algorithms are centered on object tracking using a combina-
tion of computer vision and machine learning; autonomous landing using artificial neural
networks; trail path determination using deep neural networks; vision-based drone racing
using convolutional neural networks; and UAV stabilization using recurrent multilayer
perceptrons with adaptive training rates.

3.2. Deep Learning

DL algorithms (discussed in eight papers) that have been applied to multirotor UAVs
focus on navigation and control, hovering, ground target tracking, and trajectory tracking.

In Edhah et al. [15], a DNN was used to control UAV altitude and hover. The standard
feedforward, greedy layer-wise, and Long Short-Term Memory (LSTM) methods were eval-
uated and compared. The controller outputs, position and speed errors, are collected every
1 ms and then used by a supervised learning technique to train the DNN. After training,
the trained DNN controller (and related parameters) is replaced by a Linear–Quadratic
Regulator (LQR) controller. To overcome a slight offset in the output signal that results
in a small error (in the system response), a proportional corrector is added in parallel to
the DNN controller to recover the error in the DNN output signal. The best results are
obtained when using the greedy layer-wise method.

Mantegazza et al. [29] presented three different approaches and models to track a
moving user. In the first model, the ResNet [70] architecture (a CNN) is utilized [28]. Red–
green–blue (RGB) images captured from 14 different people are used as input, providing x-,
y-, and z-positions as output. The second model follows the same structure, but velocities
on the x- and y-axes are provided as additional inputs. These additional inputs skip ResNet,
but they are concatenated to the output of the NN. The outputs are control variables
corresponding to four moving directions: up, down, left, and right. In the third model,
a simple multilayer perceptron is utilized to map the quadrotor position on three axes
and velocities on the x- and y-axes to control variables. The Mean Absolute Error (MAE)
approach is deployed as a loss function during the training of all three models. The first
and second models use a simple baseline controller function. The last approach uses a
combination of the first and third models.

Li et al. [25] studied trajectory tracking without any adaptation, but they considered
quadrotor stabilization and robustness in the presence of disturbances. A DNN is trained
with labeled training examples using a standard feedforward method. The DNN uses the
desired quadrotor trajectory and the current states of position and translational velocities
(on each axis), Euler angles, angular velocities, and acceleration on the z-axis. The quadrotor
reference states are provided as the DNN output. The trained DNN is placed in front of
a controller, and errors between current and desired states are used as inputs to a PID
controller. The results show that the DNN with current state feedback is more efficient than
the DNN without current state feedback. However, the DNN using future desired state
feedback provides better performance.

Kim and Chen [24], Jung et al. [27], Loquercio et al. [28], and Smolyanskiy et al. [26]
focused on the quadrotor navigation task using DL techniques.

Kim and Chen [24] developed an autonomous indoor navigation system for a quadro-
tor to find a specific item using a single onboard camera. Six flight commands are used:
Move Forward, Move Right, Move Left, Spin Right, Spin Left, and Stop. To establish
a dataset, an expert pilot flies the quadrotor in seven different locations; from the UAV,
images are collected that are based on or correspond to (specific) flight commands. A
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CNN that is a modified CaffeNet model [71] is trained with the established dataset. This
modification allows for faster training. During indoor flights, obtained images are classified
by the trained NN, and based on image classification, specific control commands are issued
to the quadrotor.

Jung et al. [27] developed a CNN to accurately identify the centers of gates during
indoor drone racing. ADRNet was built and trained using the Caffe library. To build the
ADRNet, the AlexNet used in [72] was applied instead of the VGG-16 employed in [73].
In [74], a convolutional layer was added among the fully connected layers of AlexNet instead
of the fc6 and fc7 layers, while the fc8 layer was removed. Thus, a shorter inference time is
required compared to the VGG-16-based Single-Shot Detection (SSD) approach. ADRNet
detects the center of the gate, and this information is forwarded to a Line-Of-Sight (LOS)
guidance algorithm that issues specific flight control commands. The performance of three
Single-Shot Detection (SSD) models, the VGG-16-based SSD, the AlexNet-based SSD, and the
ADRNet, were compared. ADRNet was the fastest model to detect the center of the gate.

Different from the traditional map–localize–plan methods, Loquercio et al. [28] applied
a data-driven approach to overcome the UAV challenges encountered when navigating
in unstructured and dynamic environments. A CNN called DroNet, which is used to
navigate quadrotors through the streets of a city, was proposed. Collecting data in urban
areas within a city to train UAVs is dangerous for both pedestrians and vehicles, even if
an expert pilot flies the quadrotor. Therefore, publicly available datasets from Udacity’s
project were used to learn the steering angles. The dataset includes over 70,000 driving
car images collected and classified through six experiments. Five experiments are for
training and one is for testing. A collision probability dataset was also developed for
different areas of a city by placing a GoPro camera on the handlebars of a bicycle. UAV
control is achieved via commands issued based on the output of DroNet. The collision
probability is used to determine the quadrotor forward velocity. The desired yaw angle
in the range [−π

2 , π
2 ] is determined by using predicted scaled steering in the range [−1, 1].

DroNet worked successfully to avoid unexpected situations and obstacles, predicting the
collision probability and the desired steering angle. The quadrotor learned to fly in several
environments, including in indoor environments, such as parking lots and corridors.

Smolyanskiy et al. [26] focused on autonomously navigating a micro aerial vehicle
(MAV) in unstructured outdoor environments. A DNN called TrailNet was developed
and used to estimate the view orientation and lateral offset of the MAV with respect
to the center of a trail. A DNN-based controller allows for a stable flight and avoids
overconfident maneuvers by utilizing a loss function that includes both label smoothing
and an entropy reward. The MAV includes two vision modules: a second DNN and
a visual odometry component that is called direct sparse odometry (DSO). The second
DNN helps detect objects in the environment; the DSO estimates the depth to compute
a pseudo-colored depth map. Their combination with TrailNet provides an autonomous
flight controller that functions in unstructured environments. ResNet-18, SqueezeNet (a
miniature version of AlexNet), the DNN architecture in [20], and TrailNet were compared
considering autonomous long-distance flight ability, prediction accuracy, computational
efficiency, and power efficiency. Only TrailNet is 100% autonomous; SqueezeNet and mini
AlexNet are the closest to TrailNet at 98% and 97%, respectively. The least autonomous
architecture is the DNN in [20] at 80%. The software modules run simultaneously in real
time, and the quadcopter successfully flies in unstructured environments.

Cardenas et al. [30] developed a DNN-based flight position controller using a super-
vised DL technique. A dataset that includes position, velocity, acceleration, and motor
output signals for different trajectories was created by using a PID flight controller. Five
different NN architectures (from the literature) were utilized to learn the rotor speeds using
the dataset, and their performance was compared. The five developed architectures are
(i) ANN, (ii) ANN Feedback, (iii) LSTM, (iv) LSTM Layers interleaved with convolutional
1D layers (LSTMCNN), and (v) Convolutional 1D Layers cascaded with LSTM layers
(CLSTM). A comparative study showed that LSTMCNN gives the best performance as a
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DNN-based flight position controller. The LSTMCNN performance was checked against
the PID position controller, and it was shown that LSTMCNN has a wider operational
range than the PID position controller.

In summary, this part of the survey paper highlights applications of deep learning
algorithms in multirotor UAVs. The focus is on navigation and control tasks such as
hovering, ground target tracking, and trajectory tracking. Different DL techniques are
explored, including DNNs, CNNs, and LSTM models, for altitude control, user tracking,
trajectory tracking, and navigation in structured and unstructured environments. The
reviewed research also compares DL-based controllers with traditional methods like PID
controllers, showcasing improved performance and autonomy in UAV operations.

3.3. Reinforcement Learning

Offline RL has been extensively applied to multirotor UAVs. The literature review
reveals 42 papers that focus on 13 different tasks, which include trajectory tracking, landing,
navigation, formation control, flight control, and hovering.

In general, the RL framework uses an agent that is trained through trial and error
to decide on an action that maximizes a long-term benefit. RL is described by a Markov
decision process (MDP). The agent–environment interaction in an MDP is illustrated in
Figure 5, where the agent, environment, and action represent, in engineering terms, the
controller, the controlled system, and the control signal, respectively [12].

Figure 5. Block diagram and interaction between agent and environment [12].

RL algorithms are classified according to whether they are model-based or model-free,
on-policy or off-policy, value-function-based or policy-search-based, or whether they are
derived for planning or learning purposes. In what follows, the classification is in terms of
value-function-based, policy-search-based, or actor–critic. Table 2 offers a summary of the
different variations of RL algorithms.

Table 2. Classification of reinforcement learning (offline).

Methods Algorithms Papers

Value-function-based

Q-learning Guerra et al. [50], Pham et al. [39], Kulkarni et al. [52], Abo et al. [59], Zeng and Xu [46]
DQN Xu et al. [16], Polvara et al. [32], Castro et al. [66], Shurrab et al. [68], Wu et al. [44], Kersandt et al. [38]
LSPI Vankadari et al. [37], Lee et al. [36], Srivastava et al. [43]
IRL Choi et al. [33]
Others Imanberdiyev et al. [31], Ye et al. [61], Farsi and Liu [63], Li et al. [57], Xia et al. [64]

Policy-search-based

PPO Kooi and Babuška [54], Bhan et al [56]
TRPO Manukyan et al. [42]
PILCO Yoo et al. [18]
PLATO Kahn et al. [34]
Others Hu and Wang [53], Lambert et al. [41]

Actor–critic

DDPG Jiang and Song [58], Rodriguez et al. [17], Rubi et al. [47], Rubi et al. [55], Ma et al. [65], Mitakidis et al. [67]
TD3 Jiang and Song [58], Kooi and Babuška [54], Li et al. [51], Panetsos et al. [60]
SAC Jiang and Song [58], Kooi and Babuška [54],
Fast-RDPG Wang et al. [45]
DeFRA Li et al. [75]
CdRL Wang and Ye [62]
Others Pi et al. [48], Hwangbo et al. [35]
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3.3.1. Value-Function-Based Algorithms

Value-function-based methods use state-value and action–state functions that are
presented in (1) and (2), respectively, shown next:

vπ(s) = Eπ

[
∞

∑
k=0

γkRt+k+1

∣∣∣∣∣ St = s

]
f or all s ∈ S (1)

qπ(s, a) = Eπ

[
∞

∑
k=0

γkRt+k+1

∣∣∣∣∣ St = s, At = a

]
(2)

where vπ(s) denotes the value function for policy π at state s, while qπ(s, a) represents the
action-value function for policy π at state s and action a. Eπ [·] denotes the expected value
under policy π. ∑∞

k=0 γkRt+k+1 is the sum of discounted future rewards starting from time t
in state s and represents the expected discounted return, and γ is the discount rate, 0 ≤ γ ≤ 1,
here. St and At represent the state and action at time t, respectively [12,76,77].

The discount rate γ plays a critical role in calculating the present value of future
rewards. If γ < 1, the infinite sum has a finite value when the reward sequence, Rk, is
bounded. If γ = 0, the agent cannot calculate future rewards; it can only calculate the
immediate reward (∑∞

k=0 γkRt+k+1 = 00Rt+1 + 01Rt+2 + · · · = Rt+1). So, the agent learns
how to choose the action At to maximize Rt+1. If γ approaches 1, the future rewards are
highlighted in the expected discount return; that is, the agent behaves in a more farsighted
manner. For example, in [12] the chosen discount factor is close to 1. Li et al. [57] and Hu
and Wang [53] chose a value of 0.9, and Castro et al. [66] and Panetsos et al. [60] chose a
discount factor value of 0.99.

Value-function-based algorithms consist of variance algorithms, such as dynamic
programming (DP), Monte Carlo (MC), and Temporal Difference (TD). The two most
popular DP methods, policy iteration and value iteration, benefit from policy evaluation
and policy improvement. The MC method is also based on policy evaluation and policy
improvement, but unlike the DP method, an alternative policy evaluation process is utilized.
The policy evaluation in the DP method employs a bootstrapping technique, while sampling
and average return techniques are applied in the MC method. The TD method is created
by combining the DP and MC methods applying sampling and bootstrapping [12,76,78].

TD has been extensively applied in control algorithms for multirotors executing
diverse tasks, like landing, navigation, obstacle avoidance, path planning, and trajectory
optimization. Q-learning and Deep Q-Networks (DQNs) stand out as commonly employed
RL algorithms within the TD framework, particularly in value-function-based algorithm;
see Guerra et al. [50], Pham et al. [39], and Polvara et al. [32].

Xu et al. [16] applied an end-to-end control scheme that includes a DNN and a
double DQN algorithm for quadrotor landing on a stable platform. The output of the
underlying deep reinforcement learning (DRL) model is the quadrotor speed in x and y,
while the velocity in the z-direction is not controlled: it is considered fixed; this makes
the problem easier. After testing, the improved DQN method produces good results on
autonomous landing.

Imanberdiyev et al. [31] used a model-based RL algorithm on a quadrotor to create
an efficient path to reach a destination by considering its battery life. The agent uses three
states: the position in x and y and the battery level. The agent follows one of eight possible
actions, moving on the x-y plane and learning the moving direction. The direction action is
converted to trajectory commands that are executed using position control. In model-based
RL methods, there is a limited number of actions the agent learns to create a sufficiently
accurate environment model, as opposed to model-free RL methods. Model-based RL
algorithms are not suitable for real-time systems since the planning and model learning
aspects are computationally expensive. However, in [31], a parallel architecture called
TEXPLORE is used. Thus, it is possible to take action fast enough based on the current policy:
there is no need to wait for the planning and model update. Simulation results illustrate
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that the approach has the ability to learn and to perform well after a few iterations and to
also perform actions in real time. Its performance was compared with that of Q-learning
algorithms. In 150 episodes, while there was no significant change in the average reward in
Q-learning, the average reward of TEXPLORE dramatically increased after the 25th episode.
TEXPLORE obtained significantly more rewards than Q-learning in each episode.

In [46], the path design problem for a cellular-connected UAV was handled to reduce
the mission completion time. A new RL-based UAV path planning algorithm was derived,
and TD was applied to directly learn the state-value function. A linear function was
added to the algorithm with tile coding. Function approximation has two advantages over
table-based RL. It learns the parameter vector, which has a lower dimension than the state
vector, instead of storing and updating the value function for all states. It also allows for
generalization. Tile coding is used to build the feature vector. The parameter vector may be
updated to minimize its mean squared error based on a stochastic semi-gradient method
with a linear approximation for each state–reward–next-state transition observed by the
agent. It is shown that TD with a tile coding algorithm overcomes problems with cellular
networks in complex urban environments of size 2 km × 2 km with high-rise buildings.
Also, the accumulated rewards from TD and TD with tile coding learning algorithms
are almost identical, but tile coding provides faster convergence. When tested, the UAV
reached the desired location without running into the coverage holes of cellular networks.

The approach discussed in [32] uses two DQNs. One is utilized for landmark detection,
and the other is used to control the UAV’s vertical descent. A hierarchy representing sub-
policies is applied to the DQNs to reach decisions during the different navigation phases.
The DQNs can autonomously decide on the next state. However, the hierarchy decreases
the sophistication of the task decision. The algorithm performance was compared with an
augmented reality (AR) tracker algorithm and with human pilots. The proposed algorithm
is faster than a human pilot when landing on a marked pad but also more robust than the
AR tracker in finding the marker. The complete details of [32] can be found in [79].

Ye et al. [61] developed a DRL-based control algorithm to navigate a UAV swarm
around an unexplored environment under partial observations. This can be accomplished
by using GAT-based FANET (GAT-FANET), which is a combination of the flying ad hoc
network (FANET) and the graph attention network (GAT). Partial observations lead to a
loss of information. Thus, a network architecture named Deep Recurrent Graph Network
(DRGN) was developed and combined with GAT-FANET to collect environment spatial
information and use previous information from memory via a gated recurrent unit (GRU).
A maximum-entropy RL algorithm, called the soft deep recurrent graph network (SDRGN),
was developed, which is a multi-agent deep RL algorithm. It learns a DRGN-based stochastic
policy with a soft Bellman function. The performance of the DRGN (a deterministic model)
and the SDRGN were compared with that of DQN, multi-actor attention critic (MAAC),
CommNet, and graph convolutional RL (DGN). In a partially observable environment, the
stochastic policy approach is more robust than the deterministic policy one. Also, GAT-FENAT
provides an advantage because of its memory unit. When the number of UAVs increases,
more information is required from the GAT-FANET, and this reduces the dependency on
the memory unit. Results [61] show that policies based on GAT-FANET provide better
performance in coverage than other policies. It is observed that graph-based communication
improves performance in cooperative exploration and path planning, too. The SDRGN
algorithm has lower energy consumption than DRGN, but DQN has the lowest energy
consumption when compared with DRL methods. SDRGN and DRGN performance increases
linearly with the number of UAVs. SDRGN shows better performance than DRL methods: this
verifies that it has better transferability. Consequently, overall, SDRGN has better performance,
scalability, transferability, robustness, and interpretability than other DRL methods.

Abo et al. [59] solved the problem of UAV landing on a dynamic platform by taking
advantage of Q-learning. Two types of adaptive multi-level quantization (AMLQ) were
used: AMLQ 4A with four actions and AMLQ 5A with five actions; they were then
compared with a PID controller. The PID position magnitude errors in x and y were higher
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than the corresponding AMLQ errors, while the oscillation in the AMLQ models was higher
than in the PID controller. The developed AMLQ reduces the error on the targeted landing
platform. This solution provides faster training and allows for knowledge representation
without the need for a DNN.

Path planning is effectively used in several areas that include precision agriculture.
Castro et al. [66] worked on adaptive path planning using DRL to inspect insect traps on
olive trees. The proposed path planning algorithm includes two parts: the rapidly exploring
random tree (RRT) algorithm and a DQN algorithm. The former searches for path options,
while the latter performs optimized route planning, integrating environmental changes
in real time; however, the training process of DQN is completed offline. Simulation runs
were performed in an area of 300 m2 with 10 dynamic objects; the UAV was provided with
a safe route, determined by the proposed approach, and it arrived at the insect traps to take
their picture.

Shurrab et al. [68] studied the target localization problem and proposed a Q-learning-
based data-driven method in which a DQN algorithm helps overcome dimensionality
challenges. Data measurements from the previous and current steps, the previous action,
and the direction of the nearest boundary of the UAV compose the state space. The
action space includes the UAV linear velocity and the yaw angle that determines the flight
direction. This approach was compared with the traditional uniform search method and
the gradient descent-based ML technique; it returned better results in terms of localization
and traveled distance.

Guera et al. [50] emphasized detection and mapping for trajectory optimization. For
detection, the aim is to minimize ‘wrong detection’, and for mapping, the aim is to minimize
the uncertainty related to estimating the unknown environment map. The proposed MDP-
based RL algorithm, inspired by Q-learning, consists of state and control estimations. The
states are the UAV position depending on actions, a binary parameter that shows the
presence or absence of a signal source in the environment, and the states of each cell. The
action space includes the control signal to move the UAV from one cell to another in the grid
(environment) map. Numerical results show that this technique provides a high probability
of target detection and improves the capabilities of map exploration.

Pham et al. [39] handled the UAV navigation problem using Q-learning. The naviga-
tion problem was formulated using a discretized state space within a bounded environment.
The algorithm learns the action, which is the UAV moving direction in the described envi-
ronment. The state space includes the distance between the UAV and the target position,
and the distance to the nearest obstacle in the north, south, west, or east direction. UAV
navigation following the shortest path was demonstrated.

Kulkarni et al. [52] also used Q-learning for navigation purposes. The objective is to
determine the location of a victim by using an RF signal emitted from a smart device. The
transmitted signal reaches the agent, and according to the received signal strength (RSS),
the agent learns to choose one of eight directions separated by 45 degrees on the x-y plane.
For mapping, a grid system is utilized, and each state label is correlated to a particular RSS
value (two adjacent grids in the map have different RSS values). Each location on the map
has a unique state. The ϵ-greedy approach provides an action to the UAV, and each episode
or iteration is completed when the RSS value of the grid is determined to be greater than
−21 dBm: this value means that the distance from the victim is less than 2 m. The proposed
approach was tested for different starting positions on different floor plans, demonstrating
that the UAV successfully reached the victim’s position.

Choi et al. [33] trained a multirotor UAV by mimicking the control performance of an
expert pilot. A pilot collects data from several actual flights. Then, a hidden Markov model
(HMM) and dynamic time warping (DTW) are utilized to create the trajectory. Inverse RL
is used to learn the hidden reward function and use it to design a controller for trajectory
following. Simulations and experiments showed successful results.

Wu et al. [44] worked on the general task of ‘object finding’, for example, in rescue
missions. A DQN algorithm is used for trajectory planning. The elimination of the loop
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storm effect that reflects the current sequence in an MDP is repeated, and it does not cause
a punishment in continued actions. The Odor Storm that is caused by not reaching the
highest reward value when the agent gets closer to the target increases the convergence
speed of the training process. It is shown that the breakout loop storm technique and the
odor effect reduce the training process time.

In Kersandt et al. [38], a DNN is trained with a DRL algorithm to control a fully
autonomous quadcopter that is equipped with a stereo-vision camera to avoid obstacles.
Three different DRL algorithms, DQN, double DQN (DDQN), and Dueling DDQN, are
applied to the system. The average performance of each algorithm with respect to rewards
is 33, 120, and 116, respectively; they are all below human performance. The results of
applying DDQN and Dueling techniques show that the quadrotor reaches the target with
80% success.

Liu et al. [40] and Zhao et al. [49] used RL for formation control. In [40], a value-
function-based RL control algorithm was applied to leader–follower quadrotors to tackle
the attitude synchronization problem. The output of each quadrotor is synchronized
with the output of the leader quadrotor by the designed control system. In [49], the aim
was to solve the model-free robust optimal formation control problem by utilizing off-
policy value-function-based algorithms. The algorithms are trained for robust optimal
position and attitude controllers by using the input and output data of the quadrotors.
The theoretical analysis and simulation results matched, and the robust formation control
method worked effectively.

Vankadari et al. [37] and Lee et al. [36] worked on the landing task using a Least-
Square Policy Iteration (LSPI) algorithm that is considered a form of approximate dynamic
programming (ADP). Srivastava et al. [43] and Li et al. [57] applied an LSPI algorithm in
multirotor UAVs for target tracking and trajectory planning, respectively. ADP is used to
solve problems with large state or action spaces. ADP approximates the value function or
policy with function approximation techniques, since storing values for every state–action
pair is not practical.

In [37], an LSPI algorithm was used to study the landing problem. An RL algorithm
estimates quadrotor control velocities using instantaneous position and velocity errors.
The optimal value function of any policy is determined by solving the Bellman equation,
as applied to a linear system. In the RL algorithm, the LSPI method forecasts the value
function, parameterizing it into basis functions instead of calculating an optimal value
function. The RL algorithm converges quickly and learns how to minimize the tracking
error for a given set point. Different waypoints are used to train the algorithm for landing.
The method can also be used effectively in noisy environments. Simulations and real
environment results demonstrate the applicability of the approach.

The research in [63] provided a low-level control approach for a quadrotor by im-
plementing a structured online learning-based algorithm (SOL) [80] to fly and keep the
hovering position at a desired altitude. The learning procedure consists of two stages: The
quadrotor is first flown with almost equal pulse-width modulation (PWM) values for each
rotor; these values are collected to create an initial model. Then, learning in a closed-loop
form is applied using the initial model. Before applying closed-loop learning, three pre-run
flights are completed, with 634 samples collected in 68 s of flying. The state samples are
determined at each time step in the control loop, and then the system model is updated
using an RLS algorithm. After determining the updated model, a value function (needed
to find the control value for the next step) is updated. The quadrotor is autonomously
controlled. This online learning control approach successfully reaches the desired position
and keeps the quadrotor hovering.

In [36], a trained NN was adopted for guidance in a simulation environment. A
quadrotor with a PID controller and an onboard ground-looking camera was used. The
camera provides the pixel deviation of the targeted landing platform from an image frame,
and a laser rangefinder procures the altitude information. During training, the NN is
trained to learn how to control the UAV attitude. In simulation studies, the UAV reached
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the proposed landing location. In experiments, the AI pilot was turned off below an altitude
of 1.5 m, but the AI pilot could land at the targeted location using a vision sensor. The
trajectories were not smooth because the landing location in the image was not accurately
determined due to oscillations, because image processing errors occurred in the actor
NN, because signal transmission created a total delay of 200 ms, and because there are
disturbances in real-world environments.

Three target tracking approaches that deserve attention are the Image-based (IBVS),
Position-based (PBVS), and Direct Visual Servoing approaches. In Kanellakis and Niko-
lakopoulos [81], IBVS was found to be the more effective approach for target tracking since
it directly tackles the control problem in the image space; it also has better robustness
when it comes to camera calibration and to depth estimation errors. Srivastava et al. [43]
tracked a maneuvering target using only vision-based feedback, IBVS. However, tracking is
difficult when using only monocular vision without depth measurements. This deficiency
is eliminated by an RL technique where optimal control policies are learned by LSPI to
track the target quadrotor. Two different basis functions (with and without velocity basis)
and four types of reward functions (only exponential reward, quadratic reward function
without velocity control, quadratic reward function with velocity control, asymmetric
reward function) are described in [43]. The basis function with a velocity basis shows better
performance than the basis function without a velocity basis.

In [57], the objective is to solve the problem of cable-suspended load transportation
utilizing three quadrotors. The trajectory planning method is based on a value-function
approximation algorithm with the aim to reach the final position as fast as possible while
keeping the load stable. This method includes two processes: trajectory planning and
tracking. The trajectory planning process consists of parameter learning and trajectory
generation. Training and learning help determine the parameter vector of the approximate
value function (parameter learning part). In the trajectory generation phase, the value
function is approximated by using the learned parameters from the former stage, and the
flight trajectory is determined via a greedy strategy. The effectiveness of the load trajectory
and the physical effect on the quadrotor flight were checked based on the trajectory tracking
process. The quadrotors are independent; in the trajectory tracking phase, positions
and attitudes are controlled with a hierarchical control scheme using PID controllers
(transmitting the position of the load to the controller of the quadrotor). The results show
that the actual value function is successfully estimated. Also, the value function confirms
that the proposed algorithm works effectively.

Xia et al. [64] use an RL control method for autonomous landing on a dynamic target.
Unlike other studies, position and orientation constraints for safe and accurate landing are
described. Adaptive learning and a cascaded dynamic estimator are utilized to create a
robust RL control algorithm. In the adaptive learning part, the critic network weight is
formulated and calculated in an adaptive way. Also, the stability of the closed-loop system
is analyzed.

Therefore, this part of the survey demonstrates how value-function-based RL algo-
rithms are implemented and tested for UAV navigation and control. In detail, Xu et al. [16]
integrated a DNN with a double DQN algorithm for quadrotor landing, yielding improved
results. Imanberdiyev et al. [31] employed model-based RL for efficient path planning,
outperforming traditional methods. Zeng et al. [46] introduced an RL-based algorithm with
tile coding for UAV path planning, showcasing enhanced convergence. Polvara et al. [32]
proposed a hierarchical RL approach using dual DQNs for UAV landing, exhibiting robust
performance. Ye et al. [61] developed a DRL-based control algorithm for UAV swarm
navigation, highlighting the efficacy of graph-based communication. Abo et al. [59] studied
UAV landing on dynamic platforms using Q-learning with adaptive quantization, achiev-
ing improved accuracy. Other reviewed studies explored RL algorithms for path planning,
trajectory optimization, target tracking, and formation control, with the aim to illustrate
the versatility and efficacy of RL techniques. Overall, value-function-based RL methods
offer powerful tools for UAV navigation and control, enabling efficient decision-making
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and adaptation to dynamic environments. These methods continue to be refined for a wide
range of UAV tasks, promising advancements in the underlying UAV technology.

3.3.2. Policy-Search-Based Algorithms

Value-function-based methods calculate the value of an agent’s every possible action
to choose the one based on the best value. The probability distribution over all available
actions plays a key role in policy-based methods and in the agent’s decision about the
action at each time step. A comparison of value-function-based and policy-search-based
algorithms is provided in Table 3.

Table 3. Comparison of value-function-based and policy-search-based methods.

Value-Function-Based Policy-Search-Based

Indirect policy optimization Direct policy optimization
Generally off-policy On-policy
Simpler algorithm Complex algorithm

Computationally expensive Computationally inexpensive
More iterations to converge Fewer iterations to converge

Kooi and Babuška [54] developed an approach using deep RL to land a quadrotor on
an inclined surface autonomously. Proximal Policy Optimization (PPO), Twin-Delay Deep
Deterministic Gradient (TD3), and Soft Action–Critic (SAC) algorithms were applied to
solve this problem. The TD3 and SAC algorithms successfully trained the set-point tracking
policy network, but the PPO algorithm was trained in a shorter time and provided a better
performance on the final policy. Trained policies may be implemented in real time.

Hu and Wang [53] utilized an advanced PPO RL algorithm to find the optimal stochas-
tic control strategy for a quadrotor speed. During training, actor and critic NNs are used.
They have the same nine-dimensional state vector (Euler angles, Euler angle derivatives,
errors between expected and current velocities after integration on the x, y, and z axes).
An integral compensator is applied to both NNs to improve speed-tracking accuracy and
robustness. The learning approach includes online and offline components. In the offline
learning phase, a flight control strategy is learned using a simplified quadrotor model,
which is continuously optimized in the online learning phase. In offline learning, the
critic NN evaluates the current action to determine an advantage value choosing a higher
learning rate to improve evaluation. In online learning, the action NN is composed of four
policy-trainable sub-networks. The state vector is used as input to the four sub-networks;
their outputs are the mean and variance of the corresponding four Gaussian distributions,
each normalized to [0, 1]. Parameters of the four policy sub-networks are also used in
the old policy networks that are untrainable. The old policy sub-network parameters are
fixed. The four policy sub-networks in the action NN are trained to produce new actions
in the next batch. When applying new actions to the quadrotor, new states are recorded
in a buffer. After the integration and compensation process, a batch of the state vector is
used as input to the critic NN. The batch of the advantage values is the output of the critic
NN; it is used to evaluate the quality of the actions taken to determine these states. The
parameters of the critic NN are updated by minimizing the advantage value per batch. The
policy network is updated per batch using the action vectors taken from the old policy
network, the state vector from the buffer, and the advantage value from the critic NN.

In [53], the PPO and the PPO-IC algorithms were compared with the offline PPO
one and a well-tuned PID controller. The average linear velocity steady-state error of the
PPO-IC approaches zero faster, and it is smaller than that of PPO. The average accumulated
reward of the PPO-IC reaches a higher value. The PPO-IC converges closer to the targeted
velocity on the x-, y-, and z-axes than PPO. PPO-IC velocity errors on the x-, y-, and
z-axes are much smaller compared to the PPO errors. The Euler angle errors are also
smaller in the PPO-IC algorithm. In the offline learning phase, the nominal quadrotor
weight is increased by 10% in each step until it reaches 150% of the nominal weight. The
performance of the well-tuned PID controller and the proposed method were compared.
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When the quadrotor weight increased, the velocity error along the z-axis increased, too,
but the PPO-IC algorithm demonstrated stable behavior without fluctuations in speed
tracking. Moreover, 12 experiments were conducted when the nominal 0.2 m radius of the
quadrotor was increased from 50% to 550%, that is, from 0.1 m to 1.1 m. PID and PPO-IC
performed similarly when the radius was between 0.2 and 0.4 m. For higher values, the
PID performance decreased, even when convergence to the desired value was observed.
However, the PID controller could not control the quadrotor: it became unstable when the
radius increased to more than 1 m. On the contrary, changes in the radius value slightly
affected the performance of the PPO-IC algorithm.

Kahn et al. [34] and Bhan et al. [56] worked on failure avoidance and on compensating
for failures occurring during flights. In [34], a Policy Learning using Adaptive Trajectory
Optimization (PLATO) algorithm, a continuous, reset-free RL algorithm, was developed.
In PLATO, complex control policies are trained with supervised learning using model
predictive control (MPC) to observe the environment. Partially trained and unsafe policies
are not utilized in the action decision. During training, taking advantage of the MPC
robustness, catastrophic failures are minimized since it is not necessary to run the learned
NN policy during training time. It was shown that good long-horizon performance of the
resulting policy was achieved by the adaptive MPC. In [56], accommodation and recovery
from fault problems occurring in an octacopter were achieved using a combination of
parameter estimation, RL, and model-based control. Fault-related parameters are estimated
using an Unscented Kalman Filter (UKF) or a Particle Filter (PF). These fault-related
parameters are given as inputs to a DRL, and the action NN in the DRL provides a new
set of control parameters. In this way, the PID controller is updated when the control
performance is affected by the parameter(s) correlated with faults.

In [42], a DRL technique was applied to a hexacopter to learn stable hovering in a
state–action environment. The DRL used for training is a model-free, on-policy, actor–critic-
based algorithm called Trust Region Policy Optimization (TRPO). Two NNs are used as
nonlinear function approximators. Experiments showed that such a learning approach
achieved successful results and facilitated controller design.

Yoo et al. [18] combined RL and deterministic controllers to control a quadrotor. Five
different methods, the original probabilistic inference for learning control (PILCO), PD-RL
with high gain, PD-RL with low gain, LQR-RL, and LQR-RL with model uncertainty, were
compared via simulations for when the quadrotor tracks a circular reference trajectory. The
high-gain PD-RL approaches the reference trajectory quickly. The low-gain PD-RL behaves
less aggressively and reference trajectory tracking is delayed. The convergence rates of the
PD-RL and LQR-RL methods are better. The performance is also better when compared
to the original PILCO. The main advantages of combining a deterministic controller with
PILCO are simplicity and rapid learning convergence.

In [41], errors on the pith and roll angles were minimized to provide stability during
hovering. A user-designed objective function uses simulated trajectories to choose the best
action. The objective function also minimizes the cost of each state. The performance of
this controller is worse than a typical quadrotor controller’s performance. However, the
proposed controller achieved hovering for up to 6 s after training using 3 min of data.

Thus, this part of the survey focuses on value-function-based and policy-based meth-
ods. In detail, Kooi and Babuška [54] employed deep RL algorithms, PPO, to autonomously
land quadrotors on inclined surfaces, demonstrating PPO’s superior performance. Hu
and Wang [53] utilized an advanced PPO algorithm to optimize stochastic control strate-
gies for quadrotor speed, outperforming traditional PID controllers. Kahn et al. [34] and
Bhan et al. [56] addressed failure avoidance and fault compensation in UAV flights using RL
and model-based control techniques. Other techniques integrate RL with deterministic con-
trollers, enhancing trajectory tracking and stability during flight maneuvers. All reviewed
methods collectively showcase the effectiveness of policy-search-based RL techniques in
overcoming challenges in UAV control, from autonomous landing to fault tolerance and
trajectory tracking.
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3.3.3. Actor–Critic Algorithms

Actor–critic algorithms consist of both value-function-based and policy-search-based
methods. The actor refers to the policy-search-based method and chooses the actions in the
environment; the critic refers to the value-function-based method and evaluates the actor
using the value function.

In [58], three different RL algorithms, DDPG, TD3, and SAC, were applied to study
multirotor landing. Using the DDPG method did not result in successful landings. The
TD3 and SAC methods successfully completed the landing task. However, TD3 required a
longer training period and landing was not as smooth, most likely because of noise present
in the algorithm.

Rodriguez et al. [17] studied landing on a dynamic/moving platform using DDPG.
Slow and fast scenarios were tried in 150 test episodes. During the slow scenario, the
moving platform (the moving platform trajectory was periodic) velocity was 0.4 m/s,
and during the fast scenario, it was set to 1.2 m/s. The success rates were 90% and 78%,
respectively. Using a constant velocity on the z-axis resulted in landing failure on the
moving platform. This problem may be overcome by using the velocity on the z-axis as
a state, but this makes the training process more complicated, and learning the landing
process becomes more challenging.

Rubi et al. [47] solved the quadrotor path-following problem using a deep deterministic
policy gradient (DDPG) reinforcement learning algorithm. A lemniscate and one lap of a
spiral path were used to compare agents with different state configurations in DDPG and
in an adaptive Nonlinear Guidance Law (NLGL) algorithm. The agent has only two states:
distance error and angle error. According to the results, the adaptive NLGL has a lower
distance error than the two-state agent, but its distance error is significantly greater than
that of the agent with the future states on the lemniscate path.

Rubi et al. [55] also used three different approaches to solve the path-following problem
using DDPG. The first agent utilizes only instantaneous information, the second uses a
structure (the agent expects the curve), and the third agent computes the optimal speed
according to the shape of the path. The lemniscate and spiral paths were used to test the
three agents. The lemniscate path was used in the training and test phases. The agents were
evaluated in tests but with the assumption that the third agent is also limited by a maximum
velocity of 1 m/s. For the lemniscate path, the agents were first tested with ground-truth
measurements. The second agent showed the best performance with respect to cross-track
error. When the agents were tested with the sensor model, the third agent showed slightly
better performance in terms of cross-track errors. Then, all agents were tested in the spiral
path. When the performance of the agents was compared in simulations with ground-truth
measurements and with sensor models, the third agent (with a maximum velocity of 1 m/s)
showed the best performance in terms of position error. In all tests, the third agent (without
a maximum velocity limitation) completed the tracks faster.

Wang et al. [45] handled the UAV navigation problem in a large-scale environment
using DRL. Two policy gradient theorems within the actor–critic framework are derived to
solve the problem, which is formulated as a partially observable Markov decision process
(POMDP). As opposed to conventional navigation methods, raw sensor measurements are
utilized in DRL; control signals are the output of the navigation algorithm. Stochastic and
deterministic policy gradients for POMDP are applied to the RL algorithm. The stochastic
policy requires samples from both the state and action spaces. The deterministic policy
requires only samples from the state space. Therefore, the RL algorithm with a deterministic
policy is faster (and preferred): it is called a fast recurrent deterministic policy gradient
algorithm (Fast-RDPG). For comparisons, four different large-scale complex environments
were built with random-height buildings to test the DDPG, RDPG, and Fast-RDPG. The
success rate of the Fast-RDPG was significantly higher in all environments. Fast-RDPG
had the lowest crash rate in one environment. DDPG provided the best performance with
respect to the average crash rate in all environments. Fast-RDPG had a much lower crash
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rate than RDPG. However, Fast-RDPG provided a much lower stray rate than the other
algorithms in all environments.

Li et al. [75] developed a new DRL-based flight resource allocation framework (DeFRA)
for a typical UAV-assisted wireless sensor network used for smart farming (crop growth
condition). DeFRA reduces the overall data packet loss in a continuous action space. A
DDPG is used in DeFRA, and DeFRA learns to determine the instantaneous heading and
speed of the quadrotor and to choose the ground device to collect data from the field. The
time-varying airborne channels and energy arrivals at ground devices cause variations
in the network dynamics. The network dynamics are estimated by a newly developed
state characterization layer based on LSTM in DeFRA. An MDP simultaneously handles
the control of the quadrotor’s maneuver and the communication schedule according to
decision parameters (time-varying energy harvesting, packet arrival, and channel fading).
The state space comprises the battery level, the data buffer length of all ground devices,
the battery level and location of the UAV, the channel gain between the UAV and the
ground devices, and the time-span parameter of the ground device. The UAV’s current
battery level depends on the battery level of the UAV in the previous time step, harvested
energy, and energy consumption. The quadrotor is required to keep its battery level equal
to or higher than the battery level threshold. The performance was compared with two
DRL-based policies, DDPG-based Movement Control (DDPG-MC) and DQNs-based Flight
Resource Allocation Policy (DQN-FRA), and with two non-learning heuristics, Channel-
Aware Waypoint Selection (CAWS) and Planned Trajectory Random Scheduling (PTRS).
DeFRA provides lower packet loss than other methods. The relation between the packet
loss rate and the number of ground devices was investigated according to all methods. The
DRL-based methods outperformed CAWS and PTRS. For up to 150 ground devices, DeFRA
and DDPG-MC showed similar performance and were better than the other methods, but
after increasing the number of ground devices to 300, DeFRA provided better performance
than DDPG-MC.

Pi et al. [48] created a low-level quadrotor control algorithm to hover at a fixed point
and to track a circular trajectory using a model-free RL algorithm. A combination of
on-policy and off-policy methods is used to train an agent. The standard policy gradient
method determines the update direction within the parameter space, while the TRPO
and PPO algorithms are designed to identify an appropriate update size. However, for
updating the policy, the proposed model establishes new updating criteria that extend
beyond the parameter space concentrating on local improvement. The NN output provides
the thrust of each rotor. The simulator was created in Python using the dynamic model of
Stevens et al. [82]. The effects of the rotation matrix and quaternion were investigated in
the learning process. The model with the quaternion may converge slower in the training
process than the model with the rotation matrix. However, both models showed similar
performance when tested.

Ma et al. [65] developed a DRL-based algorithm for trajectory tracking under wind
disturbance. The agent learns to determine the rotation speed of each rotor of a hexacopter.
A DDPG algorithm is used, but in addition to the existing DDPG algorithm, a policy relief
(PR) method based on an epsilon-greedy exploration-based technique and a significance
weighting (SW) method are integrated into the DDPG framework. The former method
improves the agent’s exploration skills and its adaptation to environmental changes. The
latter helps the agent update its parameters in a dynamic environment. In training, the
implementation of PR and SW methods in the DDPG algorithm provides better exploration
performance and faster convergence of the learning process, respectively, even in a dynamic
environment. This method reaches a higher average reward and has a lower position error
compared to the DDPG, DDPG with RP, and DDPG with SW. Also, this algorithm provides
higher control accuracy compared to the cascaded active disturbance rejection control
algorithm in terms of position, velocity, acceleration, and attitude errors.

Hwangbo et al. [35] proposed a method to increase UAV stabilization. An NN im-
proves UAV stability training with RL. Monte Carlo samples are produced by on-policy
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trajectories and are used for the value function. The value network is used to guide policy
training, and the policy network controls the quadrotor. Both are updated in every iteration.
A new analytical measurement method describes the distance between action distribution
and a new policy for policy optimization. This policy network gives an accurate reaction to
the step response. The policy stabilizes the quadrotor even under extreme situations. The
algorithm shows better performance than DDPG and Trust Region Policy Optimization
with a generalized advantage estimator (TRPO-gae) in terms of computation time.

Mitakidis et al. [67] also studied the target tracking problem. A CNN-based target
detection algorithm is used on an octocopter platform to track a UGV. DDPG-RL is applied
in a hierarchical controller (instead of a position controller). The CNN learns to detect the
UGV, and the DDPG-RL algorithm learns to determine the roll, pitch, and yaw actions in
the outer loop of the controller. These actions are taken from the NN output, normalized to
the range [−1, 1], but these normalized values are multiplied by a spectrum of acceptable
values. While the roll and pitch actions span between −3 and 3 degrees, the yaw action
ranges between −5 and 5 degrees. An experiment was conducted with a low-altitude
octocopter and with the manual control of a UGV. Fluctuations were observed in the
distance error due to the aggressive maneuver of the UGV, but overall, the results are good.

Li et al. [51] studied the target tracking problem in uncertain environments. The
proposed approach consists of a TD3 algorithm and meta-learning. The used algorithm
is named meta twin delay deep deterministic policy gradient (meta-TD3). TD3 learns to
control the linear acceleration of the UAV and the angular velocity of the heading angle.
The state space includes the position of the quadrotor in the x-y plane, the heading angle,
the linear velocity, the angle between the motion direction and the straight line between
the UAV and the target, and the Euclidean distance between the UAV and the target. Meta-
learning overcomes the multi-task learning challenge. Tasks are trajectories of the ground
vehicle that is followed. A reply buffer is built for the task experience. When the agent
interacts with the environment, the state space, the action space, the reward value, and
the next-step state space that corresponds to the task are saved into the reply buffer. The
method provides a significant improvement in the convergence value and rate. Meta-TD3
adapts to the different movements of the ground vehicle faster than the TD3 and DDPG
algorithms. Meta-TD3 tracks the target more effectively.

Panetsos et al. [60] offer a solution to the payload transportation challenge using a DRL
approach. An attitude PID controller is used in the inner loop of the cascaded controller
structure, while a position controller in the outer loop is replaced with a TD3-based DRL
algorithm. The DRL algorithm in the outer loop learns to create the reference Euler angles,
the roll and pitch, and the reference translational velocity of the octocopter on the z-axis.
The method controls the system successfully to reach the desired waypoints.

Wang and Ye [62] developed consciousness-driven reinforcement learning (CdRL)
for trajectory tracking control. The CdRL learning mechanism consists of online attention
learning and consciousness-driven actor–critic learning. The former selects the best action.
The latter increases the learning efficiency based on the cooperation of all subliminal actors.
Two different attention-learning methods are utilized for online attention learning: short-
term attention learning and long-term attention learning. The aim of the former is to select
the best action. The latter selects the best action to sustain the system’s stability. The
long- and short-term attention arrays are combined to make a decision about which actor
should be given more attention. This learning algorithm was compared with Q-learning;
the position error in the proposed algorithm was lower than in Q-learning. The same was
also seen in the velocity error. However, this method was slightly better than Q-learning
when it comes to attitude error. The UAV was successfully controlled to track the desired
trajectory by the CdRL algorithm.

Xu et al. [83] created a benchmark using PPO, SAC, DDPG, and DQN algorithms for
single-agent tasks and multi-agent PPO (MAPPO), heterogeneous-agent PPO (HAPPO),
multi-agent DDPG (MADDPG), and QMIX algorithms for multi-agent tasks with different
drone systems. Single-agent tasks include hovering, trajectory tracking, and flythrough.
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Multi-agent tasks cover hover, trajectory tracking, flythrough, and formation. To increase
the task variation, the payload, inverse pendulum, and transportation challenges are
integrated into the single- and multi-agent tasks. The learning performance differs based
on specific tasks.

Thus, applications of actor–critic RL as applied to UAV control have been summarized
in this subsection. Studies like [58] tested algorithms like DDPG, TD3, and SAC for multi-
rotor landing, with SAC and TD3 performing well. Rubi et al. [47,55] examined quadrotor
path following, while Wang et al. [45] focused on UAV navigation in complex environments,
favoring Fast-RDPG. Li et al. [75] introduced DeFRA for UAV-assisted networks, outper-
forming heuristics. Pi et al. [48] addressed low-level quadrotor control, and Ma et al. [65]
developed a DDPG-based algorithm for trajectory tracking under wind. Various other stud-
ies explored target tracking, payload transportation, and consciousness-driven RL for tra-
jectory control, demonstrating RL’s effectiveness in diverse UAV applications. Xu et al. [83]
established a benchmark for UAV tasks, evaluating different RL algorithms’ performance.

4. Online Learning

In online learning, an agent learns and is updated during the system operation by
incorporating collected data from sensors to make and improve decisions while also
interacting with the environment. The agent learns in real time, enhancing its decision
and prediction capabilities (with respect to the assigned mission). Before proceeding, it
is important to mention three more perspectives that further clarify what online learning
is (compared to the definition provided in Section 2) and also offer a more ’rounded’ and
more ’open-minded’ point of view to consider.

Srinivasan and Jain [84] stated that the intelligent behavior of an agent may be limited
given the extreme difficulty in developing knowledge structures and rule bases, which
completely describe the task of the agent if the task is complex by nature. This problem can
be partially overcome by causing the agent to learn on its own during this task.

Hoi et al. [19] define online learning as a method of ML based on which data arrive
in sequential order, and where a learner aims to learn and to update the best prediction
for future data at every step. Online learning is able to overcome the drawbacks of batch
learning because the predictive model can be updated instantly for any new data instances.

According to Otterlo and Wiering, online learning is defined as “an important aspect
during the learning task (during the learning process) is the distinction between online
and offline learning. The difference between these two types is influenced by factors such
as whether one wants to control a real-world entity or whether all necessary information
is available. Online learning performs learning directly on the problem instance. Offline
learning uses a simulator of the environment as a cheap way to get many training examples
for safe and fast learning” [85].

The literature review (from 2015) reveals that 11 papers have used online-learning-
based algorithms to control multirotor UAVs in particular quadrotors. Their review and
comparison provide a more accurate understanding of what the research is all about, what
is being learned, why and how it is learned, and what results have been produced.

Table 4 summarizes online learning approaches that have been applied to multirotor
UAVs. The table mainly includes the publication year of the paper, the adopted or derived
learning model, the application task/domain, the advantages of the algorithm, and the
approaches that the proposed algorithm is compared with.

Yang et al. [86] developed optimal control protocols to solve the distributed output
synchronization problem for leader–follower multi-agent systems. The adopted RL algo-
rithm solves the underlying non-homogeneous algebraic Riccati equations (AREs) in real
time: this is basically a distributed optimal tracking problem. Solving the AREs guarantees
the synchronization of the followers’ and the leader’s outputs. A distributed observer is
derived to forecast the leader’s state and to produce the reference signal for each follower.
The advantage of the proposed RL algorithm is that it does not require knowledge of the
quadrotor dynamics. This method gives better results than the adaptive control approach
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developed by Das and Lewis [87]. Moreover, when the transient response of the output
synchronization error for each follower is compared, the error in [86] converges to zero
faster than in [87].

A neural proactive closed-loop controller was developed in [88] that learns control
parameters. The proposed solution provides two advantages. The first is computational
inexpensiveness due to using only three neurons instead of a neural network. The second
is that the learning process can be completed within a few trials. No knowledge of the
UAV dynamic model is required. This technique was used for quadrotor speed adaptation
and obstacle avoidance following the detailed block diagram configuration shown in
Figure 6. For performance evaluation purposes, an MPC and the proposed method were
implemented and compared. The MPC requires knowledge of the quadrotor dynamic
model. Thus, the neural proactive controller method is more appealing. It also provides
robust results for speed adaptation even in the presence of wind disturbances. This
approach was implemented and tested on UAVs with different dynamics in a Gazebo
environment with different maximum flying speeds. The neural proactive controller
generates a control command 56.32% faster (on average) than the MPC; it is also 99.47%
faster than the MPC in total learning and optimization time. The UAV is trained within
3–4 trials, adapting its speed, and learns to stay away from obstacles at a safe distance.

Figure 6. Online learning controller scheme of [88]. (A) The input module. (B) The neural control
module with the ICO learning mechanism. (C) The output mapping module. (D) The flight controller
(Pixhawk/PX4).
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Shin et al. [89] applied online learning to optimize speed parameters with the aim to
complete missions in less time (i.e., drone races through gates). A pre-trained actor network,
modified to be suitable for online training, detects a specific object. The control network,
which comprises the online learning component, provides the UAV’s optimized linear
velocity and acceleration in the x-, y-, and z-directions, as well as the distance to a gate to
pass through with maximum velocity and without collisions. Each gate and the gate center
are detected by a monocular camera system. The UAV coordinates are determined based
on the provided information, and a loss function is used to make sure that the quadrotor
passes through the center of the gate. The maximum velocity, acceleration, and threshold
distance (which determines whether or not the quadrotor reaches the gate location) are
parameters that are optimized for each gate. They are updated each time the quadrotor
passes through each gate. As opposed to several conventional navigation approaches, this
method requires a single neural network to control the quadrotor. The evolution-based
approach is combined with the gradient-based method, and this cooperation provides
an advantage to increase the system performance in drone racing. The derived network
successfully handled all race processes in environments with demanding obstacle avoidance
and navigation requirements. When tested in real time, the quadrotor completed the race
track in around 180 s on the first try, but in about 60 s after about 9000 times.

Sarabakha and Kayacan [90] proposed an online-learning-based control method to
improve UAV trajectory tracking. The total thrust and the three torques around the x-, y-,
and z-axes are used as control inputs. The online learning component learns to update
the weight of a DNN to improve the control performance. This method consists of two
phases: pre-training, called offline learning, and post-training, called online learning. In
pre-training, supervised learning is used to control the quadrotor by mimicking a PID
controller (using an input–output dataset for a set of trajectories). When the quadrotor is
controlled by the trained DNN controller, a fuzzy logic system (FLS) keeps training the
DNN online by providing feedback about its performance. The advantage of using the
fuzzy mapping in the online learning phase is that the computation time is considerably
reduced. Also, this provides an opportunity for real-time applicability. The offline-learning-
based performance is not different from the classic PID controller performance. However,
online learning allows for the system to accurately predict the evolution and desired signal
estimation. This approach was tested in slow circular, fast circular, and square-shaped
trajectories. The performance of the well-tuned PID controller used in offline training,
the offline-trained DNN, and the online training approach was compared, with the last
one clearly showing better performance for the slow and fast circular trajectories. The
square-shaped trajectory was not used in the offline training phase. When the three were
implemented and tested in the square-shaped trajectory, again, the online learning method
slightly outperformed the other approaches.

O’Connell et al. [91] proposed Neural-Fly, which includes an online learning phase to
overcome instabilities caused by wind effects. The approach includes offline and online
learning. In offline learning, the DNN output is a set of basis functions that represent
aerodynamic effects. The latter phase is an online adaptive control phase that learns to
adapt the control system to new wind conditions rapidly and robustly. For offline learning,
the domain adversarially invariant meta-learning (DAIML) algorithm is developed to
learn aerodynamic effects under wind-invariant conditions. A stochastic gradient descent
method is used in the DAIML algorithm for training. For online learning, a Kalman
Filter-based adaptation algorithm estimates the wind-dependent linear coefficients. The
position tracking error and the aerodynamic force prediction error terms are utilized in
this estimation under wind-variant conditions. The online learning component provides
an advantage of fast adaptation to wind variations. Also, the other advantage of the
proposed approach is that it can be used to control several quadrotors without the need
to pre-train each UAV. The proposed control algorithm was tested with the quadrotor in
the Caltech Real Weather Wind Tunnel. Neural-Fly shows better performance than the
nonlinear tracking controller found in [92], an L1 adaptive controller, and an incremental
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nonlinear dynamic inversion controller when the quadrotor is subjected to time-variant
wind profiles.

Jia et al [93] provided a solution to the trajectory tracking problem by combining a
fuzzy logic method, a radial basis function (RBF) NN, and a classical PID controller. The
PID output and the current UAV position information are provided to the RBF NN as
input values, and the network learns to adjust controller parameters. The fuzzy logic
component selects the initial controller parameters, while the RBF NN adjusts them. Both
are combined to create a new set of parameters for the PID controller. In the fuzzy logic
component, a database created from expert knowledge is used to decide on the initial con-
troller parameters. However, this dataset cannot be used in the RBF NN component since
the adopted algorithm is an unsupervised learning method. However, the combination of
both methods overcomes this limitation and provides online learning abilities. When the
fuzzy logic system adjusts the PID gains, the RBF NN tweaks the PID parameters in real
time to overcome PID weaknesses caused by environmental disturbances. When compared
with PID and fuzzy-PID (FPID) controllers, this approach shows better performance for
trajectory tracking.

Zhang et al. [94] investigated the problem of adaptive control and offered a real-time
brain-inspired learning control (RBiLC) method as a solution. Three attitude angle errors
are set as the input, and an NN provides the control parameter increment as the output.
In the RBiLC method, a PID controller is used, and the controller parameter is updated
in each interaction. A DRL method learns the controller parameter rate. The algorithm
uses the Nesterov momentum technique for gradient descent. Controller stability and the
convergence of the tracking error were demonstrated. The quadrotor takes off and reaches
a 10-meter altitude, and then it hovers for 3 s in this position with the initial controller
parameters. The learning algorithm is activated using a switch system, and the RBiLC
algorithm updates PID gains in real time in an environment with wind disturbances. This
approach learns controller parameters in 3 to 5 min, which is a much shorter time than in
offline learning methods. This method shows significant improvement in stabilization in
roll and pitch angles, but the performance is not the same in the yaw angle. Under wind
disturbances, the method provides a shorter rise time and steady-state time for roll and
pitch when compared to the classic PID controller.

Shiri et al. [95] studied the online path planning problem using NN-based oppor-
tunistic control. An online-trained NN learns to solve the Hamilton–Jacobian–Belmann
(HJB) equation in real time. The opportunistic HJB, oHJB, control algorithm learns whether
it will upload the control action (aHJB), which is the output of the NN, or the current
online-trained NN (mHJB). A base station (BS) is utilized to handle the online learning
algorithm. The UAV state is downloaded to the BS. First, the NN is trained online in the BS
to solve the HJB in real time. Then, the output of the trained NN (the control action aHJB)
is uploaded to the UAV. Secondly, the current online-trained NN (represented by mHJB) is
uploaded to the UAV (instead of the aHJB), and the mHJB is fed the current states. Then,
the UAV takes an action that is locally assessed by the uploaded mHJB in real time. The
oHJB control provides the decision mechanism to switch from the aHJB to mHJB according
to the connection between the multirotor UAV and the BS. Based on the oHJB, the UAV can
keep taking actions using the last uploaded mHJB, even if it loses connection with the BS.
Since the size of the trained NN model in the BS is larger than the size of the action space, a
trade-off occurs between uploading delays and control robustness against poor channel
conditions. The oHJB arrives at the targeted location in a shorter time than aHJB and mHJB.
The aHJB and mHJB may fail to arrive at the desired location.
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Table 4. Online learning papers.

Year Paper Task Algorithm Model-Free or Model-Based Advantages Compared with Offline Part Sim/Exp

2018 Yang et al. [86] Navigation and
synchronization [86] Model-free

Solves inhomogeneous
algebraic Riccati equations
online

Adaptive control approach
in [87] No Sim

2018 Wang et al. [96] Environment exploration Data-driven approach based
on Gaussian process Model-free Reduces possible crashes in

the online learning phase - No Sim

2019 Sarabakha and
Kayacan [90] Trajectory tracking Back-propagation Model-free - Offline-trained network, PID

controller Yes Sim

2019 He et al. [97] Agile mobility in a dynamic
environment StateRate Model-free

Finely adjusts the prediction
framework, and onboard
sensor data are effectively
used

Previous OPT,
signal-to-noise rate (SNR),
SampleRate, CHARM

Yes Sim

2019 Wang et al. [98] Robust control DPG-IC Model-free Elimination of the steady
error PID controller, DDPG Yes Sim

2020 Shin et al. [89] Speed optimization SSD MobileNet Model-free Quicker object detection
time - No Sim

2020 Shiri et al. [95] Path Planning oHJB Model-free
The algorithm keeps
working even if UAV loses
the connection with BS

aHJB, mHJB No Sim

2022 Jaiton et al. [88] Speed optimization Neural proactive control Model-free Computationally
inexpensive MPC No Exp

2023 O’Connell et al. [99] Stabilization DAIML Model-free
Can control a wide range of
quadrotors and not require
pre-training for each UAV

Mellinger and Kumar [92],
L1 adaptive controller,
incremental nonlinear
dynamic inversion controller

Yes Exp

2023 Jia et al. [93] Trajectory tracking RFPID Model-based Strong learning ability PID, Fuzzy-PID No Sim

2023 Zhang et al. [94] Stabilization RBiLC Model-free

Significant improvement in
stabilization in roll and pitch,
but does not show the same
performance in yaw

PID No Exp
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Wang et al. [96] used a data-driven approach (Gaussian processes) to learn quadrotor
models applied in partially unknown environments. Barrier certificates are learned and
utilized to adjust the controller to not encroach on an unsafe region. A safe region is certified,
and it is progressively spread with new data. Collecting more data points about system
dynamics reduces uncertainty and maximizes the volume of the safe region. Discretizing
the state space helps sample a finite number of points to affirm the barrier certificates;
so, adaptive sampling decreases the number of required sampling points. Also, the state
space is adaptively sampled by enhancing the Lipschitz continuity of the barrier certificates
without taking any risk on safety guarantees. Sampling the most uncertain state in the
safe set of the system boosts the learning efficiency during the exploration phase. A kernel
function is utilized to decide on data relevance, and 300 data points are chosen in the
recursive Gaussian process by eliminating irrelevant data points online. The approach
reduces the possibility of an accident occurring during the online learning phase. The
adaptive sampling strategy provides significantly better results in decreasing the required
sample points. The quadrotor never violates safe and unsafe regions; it uses barrier
certificates to regulate the learning algorithms. A high probability of safety guarantee is
produced by a Gaussian process for the dynamic system, and this process learns unmodeled
dynamics to help the quadrotor successfully stay within the safe region. No information
is provided related to real-time applicability, but the authors report that they keep the
Gaussian process interface time under 20 ms, and this allows for a suitable opportunity for
online learning. When the tracking error of the learning-based controller is compared to
the tracking error without Gaussian process inference, the tracking error is much smaller in
the learning-based controller.

He et al. [97] solved the time-varying channel(s) problem on air-to-ground links
caused by UAV mobility in dynamic environments. In the offline learning phase, the
agent learns to minimize the prediction loss function in the prediction network and the
evaluation loss function in the evaluation network. In online learning, the aim is to learn
to minimize the difference between two networks. A state-optimized rate adaptation
algorithm called StateRate was developed to solve this problem using the onboard UAV
sensors. The evaluation and prediction networks are exploited in online training. The
received signal strength indicator and the channel state information are used as inputs
for both networks; the prediction network, additionally, uses the UAV’s states as input.
The output of the evaluation NN is used for supervision and compared with the output
of the prediction network by using a fully connected layer. The StateRate algorithm
accurately predicts the optimal rate. The rate prediction is handled as a multi-class
classification problem using online learning. Retraining the pre-trained NN is not suitable,
and StateRate with online learning provides an advantage to overcome this unsuitable
situation. This method was applied and tested in a commercial quadrotor (DJI M100) and
showed better performance than the best-known rate adaptation algorithms applied in
UAVs with 2–6 m/s velocity.

Wang et al. [98] have worked on the robust control of a quadrotor using a DRL-based
controller. The method includes both offline and online learning. During offline learning, an
offline learning control policy is learned. The actor network learns the normalized thrusts
produced by each rotor between 0 and 1. During online learning, the offline control policy
continues to be optimized. In the offline phase, the Deterministic Policy Gradient-Integral
Compensator (DPG-IC) algorithm is trained with random actor and critic NN weights
in an episodic structure. In the online learning phase, the trained DPG-IC is used as the
initial NN structure that is trained continuously. The offline DPG-IC also runs alongside
the online algorithm. The system switches to the offline algorithm when the states are close
to the safety limits, and the quadrotor goes back to the safe range. The aim of the online
learning phase is to close the gap between the simplified model and the model with real
flight dynamics. The main advantage of DPG-IG is that it removes the steady-state error. A
well-tuned PID controller showed similar performance compared to the offline DPG-IC
policy when the size of the quadrotor was increased from 0.12 m to 0.4 m, but for larger
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sizes, the PID controller was not stable, while the proposed method showed successful
performance for sizes up to 1 m. The PID controller and the offline DPG-IC algorithm
were also compared for different payloads. The payload of the quadrotor increased by 10%
each step; the PID could not control the quadrotor with a 30% increased payload. On the
other hand, the proposed offline learning method successfully controlled the quadrotor
with up to a 50% payload increase. Then, the performance of the online learning policy
was compared with that of the offline learning policy. The model was used with a 0.4 m
radius and 20% increased payload. After only 200 online training steps, the performance
was significantly increased.

In summary, since RL is built on the interaction between the agent and environment
and is based on a reward system, RL algorithms are useful for online learning, and they are
widely preferred for applications related to the control of multirotor UAVs.

5. Discussion and Conclusions

This survey provides summary results that are combined in four tables. The two main
tables reflect offline and online learning techniques and algorithms. Both tables offer a
clear picture of the publication year, the adopted method, the task/mission, and also what
is being learned. Coupled with the provided information for each method, the reader
acquires information about the applicability and implementability of each technique, as
well as about the specific application the approach has been developed for. The other
two tables offer specific details on RL approaches and on the value-function-based and
policy-search-based methods. Overall, this survey provides a comprehensive overview of
the evolving landscape of multirotor UAV navigation and control, particularly focusing on
the integration of learning-based algorithms over the past decade.

Online learning allows for an agent to continuously learn and update its decision-
making process using real-time data, enhancing its capabilities to complete different mis-
sions. In online learning, as opposed to offline learning, the agent has the ability to learn
directly from problem instances. In this survey, 11 papers following online learning for
multirotor UAV control demonstrate efficacy in tasks such as trajectory tracking, speed
adaptation, obstacle avoidance, and path planning. The used techniques include neural
network-based controllers, RL algorithms, and adaptive control methods. These meth-
ods offer advantages such as computational efficiency, real-time adaptability, and robust
performance in dynamic environments or under disturbances, like wind gusts.

A common characteristic of online learning techniques is that all methods are model-
free, except for the proposed approach in [93].

Four reviewed articles include both offline and online learning phases, while seven
articles have only online learning phases. The online learning phase (used after offline
learning) provides an opportunity to learn how to compensate for differences between
basic and complex UAV models and for environmental disturbances or to reduce errors.
Applying online learning directly without an offline learning phase helps considerably
reduce the training time. For example, in [88], only 3–4 trials are required for learning, while
in [89], learning occurs in every attempt, reducing mission completion time. However, an
important observation in online learning algorithms is that NNs cannot be used alone; they
are always combined with auxiliary components, such as conventional controllers, fuzzy
logic systems, and optimization or adaptation algorithms, to decrease computational cost
and learning time or to increase adaptation abilities. In addition, the BS may be used to
increase the computational capacity, and 5G technology helps transfer the trained agent
or output of the NNs to the multirotor UAVs, as shown in [95]. Reducing the number of
neurons also offers advantages because of the reduction in the computational cost [88].

Learning algorithms, in general, have witnessed wide applicability in diverse applica-
tions. They can be used in combination with other approaches, too. However, one of their
limitations is proof of stability. There is limited literature, which has been reviewed, where
proof of stability is shown [86,94,96,99].
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Overall, online learning emerges as a powerful tool for enhancing UAV control and
navigation in complex scenarios, but it still includes significant limitations, as mentioned
before. Given that, eventually, there will be ‘almost infinite computational power’ that
will require ‘almost zero computational time’ to return results, this survey paper offers a
starting point for subsequent studies on what is hard real-time implementable.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned aerial vehicle
RL Reinforcement learning
DRL Deep reinforcement learning
SARSA State–Action–Reward–State–Action
DDPG Deep deterministic policy gradient
ANN Artificial neural network
ML Machine learning
DL Deep learning
MDP Markov decision process
AI Artificial Intelligence
DNN Deep neural network
NN Neural network
TLD Tracking–Learning–Detection
GCS Ground control station
CNN Convolutional neural network
VIO Visual-inertial odometry
RMLP Recurrent multilayer perceptron
LSTM Long Short-Term Memory
PID Proportional–Integral–Derivative
LQR Linear–Quadratic Regulator
RGB Red–blue–green
MAE Mean Absolute Error
SSD Single-Shot Detection
LOS Line-Of-Sight
MAV Micro aerial vehicle
DSO Direct sparse odometry
LSTMCNN LSTM Layers interleaved with convolutional 1D layers
CLSTM Convolutional 1D Layers cascaded with LSTM layers
DP Dynamic programming
MC Monte Carlo
TD Temporal Difference
DQN Deep Q-Network
AR Augmented reality
GAT Graph attention network
FANAT Flying ad hoc network
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GAT-FANET GAT-based FANET
DRGN Deep Recurrent Graph Network
SDRGN Soft deep recurrent graph network
GRU Gated recurrent unit
MAAC Multi-actor attention critic
DGN Graph Convolutional Reinforcement Learning
AMLQ Adaptive multi-level quantization
RRT Rapidly exploring random tree
RSS Received signal strength
HMM Hidden Markov model
DTW Dynamic time warping
DDQN Double DQN
LSPI Least-Square Policy Iteration
ADP Approximate dynamic programming
SOL Structured online learning-based algorithm
PWM Pulse-width modulation
IBVS Image-based Visual Servoing
PBVS Position-based Visual Servoing
PPO Proximal Policy Optimization
PPO-IC Proximal Policy Optimization-Integral Compensator
TD3 Twin-Delay Deep Deterministic Gradient
SAC Soft Action–Critic
PLATO Policy Learning using Adaptive Trajectory Optimization
MPC Model predictive control
UKF Unscented Kalman Filter
PF Particle Filter
TRPO Trust Region Policy Optimization
PILCO Probabilistic inference for learning control
NLGL Nonlinear Guidance Law
POMDP Partially observable Markov decision process
RDPG Recurrent deterministic policy gradient algorithm
DeFRA DRL-based flight resource allocation framework
DQN-FRA DQNs-based Flight Resource Allocation Policy
CAWS Channel-Aware Waypoint Selection
PTRS Planned Trajectory Random Scheduling
DDPG-MC DDPG-based Movement Control
PR Policy relief
SW Significance weighting
TRPO-gae Trust Region Policy Optimization with a generalized advantage estimator
UGV Unmanned Ground Vehicle
meta-TD3 Meta twin delay deep deterministic policy gradient
CdRL Consciousness-driven reinforcement learning
MAPPO Multi-agent PPO
HAPPO Heterogeneous-agent PPO
MADDPG Multi-agent DDPG
ARE Algebraic Riccati equation
FLS Fuzzy logic system
DAIML Domain adversarially invariant meta-learning
RBF Radial basis function
FPID Fuzzy-PID
RBiLC Real-time brain-inspired learning control
HJB Hamilton–Jacobian–Belmann equation
BS Base station
DPG-IC Deterministic Policy Gradient-Integral Compensator



Drones 2024, 8, 116 31 of 34

References
1. Martinez, C.; Sampedro, C.; Chauhan, A.; Campoy, P. Towards autonomous detection and tracking of electric towers for aerial

power line inspection. In Proceedings of the 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando,
FL, USA, 27–30 May 2014; pp. 284–295.

2. Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: Current status and future perspectives. Int. J.
Coal Sci. Technol. 2019, 6, 320–333. [CrossRef]

3. Olivares-Mendez, M.A.; Fu, C.; Ludivig, P.; Bissyandé, T.F.; Kannan, S.; Zurad, M.; Annaiyan, A.; Voos, H.; Campoy, P. Towards
an autonomous vision-based unmanned aerial system against wildlife poachers. Sensors 2015, 15, 31362–31391. [CrossRef]
[PubMed]

4. Bassoli, R.; Sacchi, C.; Granelli, F.; Ashkenazi, I. A virtualized border control system based on UAVs: Design and energy efficiency
considerations. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–11.

5. Carrio, A.; Pestana, J.; Sanchez-Lopez, J.L.; Suarez-Fernandez, R.; Campoy, P.; Tendero, R.; García-De-Viedma, M.; González-
Rodrigo, B.; Bonatti, J.; Rejas-Ayuga, J.G.; et al. UBRISTES: UAV-based building rehabilitation with visible and thermal infrared
remote sensing. In Proceedings of the Robot 2015: Second Iberian Robotics Conference: Advances in Robotics, Lisbon, Portugal,
19–21 November 2015; Springer: Berlin/Heidelberg, Germany, 2016; Volume 1, pp. 245–256.

6. Li, L.; Fan, Y.; Huang, X.; Tian, L. Real-time UAV weed scout for selective weed control by adaptive robust control and machine
learning algorithm. In Proceedings of the 2016 ASABE Annual International Meeting. American Society of Agricultural and
Biological Engineers, Orlando, FL, USA, 17 July–20 July 2016; p. 1.

7. Carrio, A.; Sampedro, C.; Rodriguez-Ramos, A.; Campoy, P. A review of deep learning methods and applications for unmanned
aerial vehicles. J. Sens. 2017, 2017, 3296874. [CrossRef]

8. Polydoros, A.S.; Nalpantidis, L. Survey of model-based reinforcement learning: Applications on robotics. J. Intell. Robot. Syst.
2017, 86, 153–173. [CrossRef]

9. Choi, S.Y.; Cha, D. Unmanned aerial vehicles using machine learning for autonomous flight; state-of-the-art. Adv. Robot. 2019,
33, 265–277. [CrossRef]

10. Azar, A.T.; Koubaa, A.; Ali Mohamed, N.; Ibrahim, H.A.; Ibrahim, Z.F.; Kazim, M.; Ammar, A.; Benjdira, B.; Khamis, A.M.;
Hameed, I.A.; et al. Drone deep reinforcement learning: A review. Electronics 2021, 10, 999. [CrossRef]

11. Brunke, L.; Greeff, M.; Hall, A.W.; Yuan, Z.; Zhou, S.; Panerati, J.; Schoellig, A.P. Safe learning in robotics: From learning-based
control to safe reinforcement learning. Annu. Rev. Control. Robot. Auton. Syst. 2022, 5, 411–444. [CrossRef]

12. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
13. Levine, S.; Kumar, A.; Tucker, G.; Fu, J. Offline reinforcement learning: Tutorial, review, and perspectives on open problems.

arXiv 2020, arXiv:2005.01643.
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