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Abstract: Fabricating micro-structures on optical materials has received great interest in recent years.
In this work, micro-grooving experiments were performed on polycrystalline zinc selenide (ZnSe)
to investigate the feasibility of surface micro-structuring on polycrystalline soft-brittle material by
diamond turning. A photosensitive resin was coated on the workpiece before cutting, and it was found
that the coating was effective in suppressing brittle fractures at the edges of the grooves. The effect of
tool feed rate in groove depth direction was examined. Results showed that the defect morphology
on the groove surface was affected by the tool feed rate. The crystallographic orientation of grains
around the groove was characterized by electron backscatter diffraction (EBSD), and it was found that
the formation of defects was strongly dependent on the angle of groove surface with respect to the
cleavage plane of grain. The stress distribution of the micro-grooving process was investigated by the
finite element method. Results showed that the location of tensile stresses in the coated workpiece
was farther from the edge of the groove compared with that in the uncoated workpiece, verifying the
experimental result that brittle fractures were suppressed by the resin coating.

Keywords: ultraprecision cutting; soft brittle material; poly crystal; micro-structure; machinability;
surface integrity

1. Introduction

Many optical crystals, for example, potassium dihydrogen phosphate (KDP) [1],
calcium fluoride (CaF2) [2], zinc sulphide (ZnS), and zinc selenide (ZnSe) [3], have relatively
low hardness and high brittleness, which makes them very difficult to machine in a ductile
mode. In addition, commercial optical elements are usually made of polycrystalline
materials, for example polycrystalline zinc selenide (p-ZnSe), due to lower cost compared
to single crystal materials. In bulk polycrystalline materials, all grains have various crystal
orientations, which makes it difficult to achieve uniformly smooth surfaces by machining.

In recent years, the requirement for the performance of optical components is becom-
ing higher and higher [4]. Fabrication of micro-structure on material surface attracted
considerable attention because it can offer unique functions for optical components, such
as enhancement of sensitivity [5], increased field of view [6], and miniaturisation of compo-
nents [7]. Thus, creating micro-structure on polycrystalline soft-brittle materials is of great
importance for optics applications.

The fabrication of micro-structured surfaces can be realized by a variety of non-
mechanical methods, such as beam based processing, electrical machining, lithography, and
chemically assisted manufacturing [8]. As one of the mechanical methods, ultraprecision
diamond cutting is popularly used for micro-structure machining, because it can directly
create complex micro-structured surface with high accuracy and surface quality [9,10]. For
ultraprecision cutting of micro-structured surfaces on brittle materials, several studies have
been conducted. Mukaida et al. [5,11] and Zhu et al. [12] successfully generated microlens
arrays and structures with sinusoidal waves on single-crystal silicon wafers, respectively.
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Jasinevicius et al. [13] and Yan et al. [14] investigated diamond turning of Fresnel lenses
on single-crystal InSb and germanium, respectively. However, the investigation of micro-
structure cutting on polycrystalline soft-brittle materials are few.

Ductile machinability of polycrystalline soft-brittle material in ultraprecision dia-
mond cutting has been reported for a flat surface under strictly controlled conditions [15].
However, cutting of micro-structured surfaces, in particular, micro V-shaped grooves, on
polycrystalline soft-brittle material is more challenging due to the following reasons:

(1) The conventional ductile-regime machining model is not applicable to cutting of V-
shaped grooves. It is well known that in cutting of flat surfaces, crack-free machined
surface can be generated even if the cracks occur during cutting process, as long
as median cracks do not propagate to below the machined surface plane [16], as
illustrated in Figure 1a. However, when cutting V-shaped grooves, if cracks are
produced, the cracks will remain in the machined surface without being removed, as
illustrated in Figure 1b. Thus, to achieve crack-free machined surface, the initiation of
cracks must be completely suppressed.

(2) High stress concentration occurs at the apex of groove edge. Existing research on
machining V-shaped grooves has reported that high-stress region is located at the apex
of groove edge [17,18]. Owing to the low fracture toughness of brittle materials, lateral
cracks are likely to initiate at this region, causing material spalling, as illustrated in
Figure 1b.

(3) The two side surfaces of a V-shaped groove are in different relative positions with
respect to the cleavage planes and slip planes of crystal grains, as illustrated in
Figure 1b. Therefore, the material removal mechanism of the two sides of a V-shaped
groove is likely different.
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Figure 1. Machining models of (a) flat surface cutting using a round-nosed tool; (b) V-shaped groove
cutting using a V-shaped tool.

Pre-coating on the workpiece is considered as an effective method to improve the
surface integrity in cutting of brittle materials. Heidari et al. [19] reported that injecting
wax into the pores of porous silicon can suppress brittle fractures around the pores. The
wax completely filling the pores help to resist hydrostatic pressure around the pores,
and consequently prevent the propagation of cracks. Further, Lee et al. [20] reported
that the critical undeformed chip thickness of crack generation in single-crystal CaF2 is
increased, when applying permanent marker ink on the workpiece before cutting. They
likewise attributed the reason to the compressive stresses provided by the solidified ink
coating, which can suppress fluctuations of cutting force. Kalkhoran et al. [21] used a
wax coating during the micro-grooving of single-crystal silicon and found that the wax
coating improved the surface quality of the grooves. However, these studies did not clearly
demonstrate the role of the coating on stress distribution in the workpiece. Besides, it is
likewise unclear whether the pre-coating method is effective or not for groove cutting of
polycrystalline soft brittle materials.

In this study, micro V-shaped grooves cutting experiments were performed on p-
ZnSe to explore the feasibility of generating micro-structures on polycrystalline soft-brittle
materials in a ductile mode. The machined surface integrity for uncoated workpiece and
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coated workpiece were compared with each other. Meanwhile, the effect of pre-coating
on stress distribution in the workpiece during cutting was investigated by finite element
simulation. Finally, the effect of grain orientation on surface integrity was investigated by
electron backscatter diffraction (EBSD). The findings of this study will provide guidelines
for surface integrity improvements in diamond cutting of micro-structured surfaces on
polycrystalline soft-brittle materials.

2. Materials and Methods

A chemical vapor deposited (CVD) ZnSe wafer was used as workpiece. The grain size
of the workpiece ranges from 3 to 80 µm, and most grains are in the size of 30 to 50 µm.
The material hardness and fracture toughness are 1.6 ± 0.3 GPa and 0.87 ± 0.15 MPa·m1/2,
respectively. The characterization of microstructure distribution of the workpiece has been
described in detail in our previous study [15].

The micro V-shaped grooves cutting experiment was performed on an ultraprecision
lathe Nanoform X (AMETEK Precitech Inc., Keene, NH, USA). Figure 2a shows the exper-
imental setup. The workpiece was fixed on an aluminum block, 20 mm away from the
center of spindle. A single-crystal diamond V-shaped tool with an extremely sharpened
tool tip and an included angle of 60◦ was used, the scanning electron microscope (SEM)
image of which is shown in Figure 2b. The rake angle and relief angle of the tool are 0◦

and 5◦, respectively. Before cutting the V-shaped grooves, a precut was performed by a
diamond tool with a nose radius of 10 mm (R10 tool) to achieve a flat damage-free surface.
To make sure that the coating can tightly adhere to the workpiece surface, and that the
coating process can be done in situ, photosensitive resin was chosen as the coating material.
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Figure 2. (a) Experimental setup for off-axis diamond cutting of micro V-shaped grooves; (b) SEM image of the diamond
tool with an extremely sharpened tool tip.

Figure 3 schematically shows the experimental procedures. First, V-shaped grooves
were cut on the uncoated workpiece, as shown in Figure 3a,b. To cut a V-shaped groove,
the tool was incrementally fed along negative z-direction with a distance of fz during
the air-cutting period of each spindle revolution, until the depth of groove d reached the
predetermined value. To ensure the feed of Z-slide of machine tools stable during the
air-cutting period, the spindle rotation rate was set to 50 rpm. After cutting the V-shaped
grooves on the uncoated workpiece, the workpiece surface was coated with photosensitive
resin liquid. Followed by irradiating the resin with ultraviolet (UV) light for 30 min, the
resin fully cured. Then, the cured resin was flattened and thinned by the R10 tool to a
thickness of 20 µm, as illustrated in Figure 3c. Afterwards, other grooves were cut on the
coated workpiece under the same condition as that used for cutting the uncoated workpiece,
as shown in Figure 3d. Finally, the workpiece was cleaned by acetone in ultrasonic bath
to remove the resin, as illustrated in Figure 3e. The machining parameters for the micro
V-shaped grooves cutting experiment are summarized in Table 1. Due to the fact that
zinc selenide is toxic, and it is difficult to remove chip debris by coolant flushing [22],
all experiments were conducted under dry cutting condition, and the cutting chips were
collected by vacuum suction during cutting.
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Table 1. Machining parameters for micro V-shaped grooves cutting experiment.

Exp. No. Condition Spindle Rotation Rate S (rpm) Groove Depth d (µm) Feed Rate fz (nm/rev)

1–3 Uncoated workpiece
50

1, 6, 9 10
4–6 Coated workpiece 1, 6, 9 10
7–9 Coated workpiece 9 20, 40, 60

After finishing the micro V-shaped grooves cutting experiment, the grooves were
directly observed by a field-emission scanning electron microscope (FE-SEM), ZEISS MER-
LIN Compact (Carl Zeiss AG, Oberkochen, Germany), to check whether the resin was still
adhered to the workpiece surface after the grooves had been fabricated. Thereafter, the
workpiece was cleaned by an ultrasonic bath in acetone for 1 h to remove the remaining
resin and was observed by FE-SEM again. For further examining surface damage formation
on various crystal grains, the crystallographic orientations of the grains around the groove
were characterized by using a FE-SEM ZEISS GeminiSEM 500 (Carl Zeiss AG, Oberkochen,
Germany) equipped with an EBSD detector (AMETEK EDAX Inc., Mahwah, NJ, USA).

3. Results and Discussion
3.1. Effect of Resin Coating

Figure 4 shows the SEM images of typical morphologies of a V-shaped groove before
removing the resin coating. It can be clearly observed from Figure 4a that the resin coating
had been partially cut with the workpiece material and the remaining part was still adhered
tightly to the workpiece surface after cutting. For further observing the surface quality of
the machined workpiece and coating layer, as well as the features of workpiece-coating
interface, a close-up view of the region marked by a red box in Figure 4a is presented
in Figure 4b. On the workpiece surface, there were a lot of defects on the left (L) side of
the groove, while an extremely smooth surface was created on the right (R) side of the
groove. The difference in formation mechanisms of surface defects on the two sides will be
discussed in Section 3.3.

On the other hand, the groove surface of the resin coating showed a homogeneous
wave pattern, resulting a slightly rougher surface than the groove surface of the workpiece
material. The rough groove surface of the resin coating is thought to be due to the vis-
coelastic properties of resin and low cutting speed. Since the cured photosensitive resin is
a typical polymer material, the fracture strain is very low at room temperature. When the
resin is cut at a low cutting speed, fractures occur due to the lack of heat-softening effect at
a low cutting temperature [23,24]. Thus, the low fracture strain of the material may cause



J. Manuf. Mater. Process. 2021, 5, 17 5 of 15

an unstable cutting process, resulting in a rough groove surface on the resin coating. The
unstable cutting process caused by the resin coating, to some extent, may affect the groove
surface quality of the workpiece material.
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Figure 5 shows SEM images of the V-shaped grooves after removing the resin coating.
For the grooves cut on the uncoated workpiece (Figure 5a–c), there were considerable
spalling and cracks at the groove edge, although the extent of the damage to the L side
and R side of the grooves were different. The maximum crack with a width of 0.9 µm
was observed in the groove whose depth was 6 µm, as shown in Figure 5b. However, it
seems that the extent of the defects at the groove edge is not related to the depth of groove.
Similar defects can also be observed in the grooves with depth of 1 and 9 µm shown in
Figure 5a,c, respectively. Compared with the edge of the groove, the surface of the grooves
obtained a better surface quality, having less defects. This indicates that in the cutting of
V-shaped grooves on soft-brittle materials, the edges of the grooves are easily fractured,
even if the groove surfaces are removed in a ductile mode.

As for the grooves cut on the coated workpiece (Figure 5d–f), the spalling and cracks
at the groove edge were effectively suppressed by the resin coating. The maximum width
of the spalling was ~0.18 µm, which was much less than that on the uncoated workpiece.
In addition, the surface of the grooves also became smoother. The improvement of surface
integrity in V-shaped grooves by using resin coating was verified. In Figure 5e, it is worth
noting that there are some striped features on the R side of the groove. This may be caused
by the tool chatter that occurred during cutting the resin coating, which has a low fracture
strain, as discussed in Figure 4b.
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Figure 5. SEM images of the V-shaped grooves after removing the resin coating (all grooves were cut at fz = 10 nm/rev).

It should be pointed out that the cured resin is difficult to completely remove from
the surface of the grooves even after cleaning. As shown in Figure 5, all the surfaces of
grooves are adhered with resin, especially for the grooves which were cut on the uncoated
workpiece (Figure 5c). This is because the grooves cut on the uncoated workpiece were
coated by the photosensitive resin liquid during the preparation of coated workpiece (See
Figure 3d). The resin flows into the grooves and is difficult to remove.

3.2. Effect of Tool Feed Rate

Figure 6 shows SEM images of V-shaped grooves cut on the resin coated workpiece
at different feed rates fz. When the feed rate was 20 nm/rev, the edge of the groove was
intact, although some defects were generated on the groove surface, as shown in Figure 6a.
Those defects consisted of dense pits with a submicron scale. By increasing the feed rate
to 40 nm/rev, craters with micron scale were observed on the R side surface of the groove,
as shown in Figure 6b. In the micro craters, there is a stepped structure that is vertical to
the cutting direction. Such stepped structures are the result of crack propagation, which
happened along two cleavage planes that are perpendicular to each other [15,25]. However,
on the L side surface of the groove, submicron-pits were observed, which were similar to
the submicron-pits shown in Figure 6a. In addition, the spalling occurred at the edge of
the groove when the surface defect was close to the edge, although the workpiece was
coated with resin. At the feed rate of 60 nm/rev, as shown in Figure 6c, severe damage
with micron-craters occurred on the L side surface of the groove and consequently caused
the spalling at the edge of the groove. On the other hand, a better surface integrity was
produced for the R side surface than the L side surface.

It can be concluded from the above results that when the feed rate is small, the defects
that appear as the submicron-pits may occur on the groove surface. However, if the feed rate
is increased, two kinds of surface defects, including submicron-pits and micron-craters, can be
generated on the groove surface. The spalling at the edge of the groove is also likely to occur.



J. Manuf. Mater. Process. 2021, 5, 17 7 of 15

J. Manuf. Mater. Process. 2021, 5, x FOR PEER REVIEW 7 of 16 
 

 

severe damage with micron-craters occurred on the L side surface of the groove and con-
sequently caused the spalling at the edge of the groove. On the other hand, a better surface 
integrity was produced for the R side surface than the L side surface. 

  

 

Figure 6. SEM images of V-shaped grooves cut at different feed rates: (a) 20 nm/rev; (b) 40 nm/rev; 
(c) 60 nm/rev. 

It can be concluded from the above results that when the feed rate is small, the defects 
that appear as the submicron-pits may occur on the groove surface. However, if the feed 
rate is increased, two kinds of surface defects, including submicron-pits and micron-cra-
ters, can be generated on the groove surface. The spalling at the edge of the groove is also 
likely to occur. 

It is worth noting that even at the same feed rate and the same side of the groove, the 
grains of different crystal orientations show different surface features, as shown in Figure 
6a. In Figure 6b,c, the L side surface and the R side surface of the groove within one grain 
also show different features. From these facts one may infer that the distribution and mor-
phology of defects are closely related to the crystallographic orientation of the grains and 
the angle of groove surface. This issue will be discussed further in the next section. 

3.3. Formation Mechanism of Surface Defects 
To investigate the formation mechanism of surface defects in the grooving process, a 

double-groove cutting experiment was conducted on the coated workpiece, as illustrated 
in Figure 7. Two grooves that are parallel and close to each other were cut at the same feed 
rate of 20 nm/rev. In this case, if the two grooves are through the same crystal grain, the 
features of the machined surface in the two grooves should be the same because the cut-
ting conditions, including the grain orientation, cutting direction, and feed rate, for the 
two grooves are exactly the same. For example, as shown in Figure 7, in grain I, if the 
cracks appear on the R side of one groove, then cracks should also appear on the R side of 
the other groove. Similarly, in grain II, if the cracks appear on the L side of one groove, 
then cracks should also appear on the L side of the other groove. 

Figure 6. SEM images of V-shaped grooves cut at different feed rates: (a) 20 nm/rev; (b) 40 nm/rev; (c) 60 nm/rev.

It is worth noting that even at the same feed rate and the same side of the groove,
the grains of different crystal orientations show different surface features, as shown in
Figure 6a. In Figure 6b,c, the L side surface and the R side surface of the groove within one
grain also show different features. From these facts one may infer that the distribution and
morphology of defects are closely related to the crystallographic orientation of the grains
and the angle of groove surface. This issue will be discussed further in the next section.

3.3. Formation Mechanism of Surface Defects

To investigate the formation mechanism of surface defects in the grooving process, a
double-groove cutting experiment was conducted on the coated workpiece, as illustrated
in Figure 7. Two grooves that are parallel and close to each other were cut at the same
feed rate of 20 nm/rev. In this case, if the two grooves are through the same crystal grain,
the features of the machined surface in the two grooves should be the same because the
cutting conditions, including the grain orientation, cutting direction, and feed rate, for
the two grooves are exactly the same. For example, as shown in Figure 7, in grain I, if the
cracks appear on the R side of one groove, then cracks should also appear on the R side
of the other groove. Similarly, in grain II, if the cracks appear on the L side of one groove,
then cracks should also appear on the L side of the other groove.

Figure 8 shows the SEM image of a typical area covering the double grooves taken in In-
lens Duo mode, which enables both Inlens SE (secondary electrons) and BSE (backscattered
electrons) detectors for high-resolution topographical imaging of surfaces, to distinguish
where the grain boundaries are. Along the direction perpendicular to the cutting direction,
grain boundaries make up many zigzag shapes. It is supposed that each zigzag shape
corresponds to a grain boundary, as schematically illustrated in Figure 8b. In addition, in
grains with different crystallographic orientations, surface defects appear on different sides
of the groove. In the same grain, the L side surface for both groove I and II exhibit the same
feature. These results verify the hypothesis of Figure 7.
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To further understand the dependence of defects formation mechanism on the grain
orientation and the direction of side of groove, the crystallographic orientations of grains
around the groove were characterized by EBSD analysis. It should be pointed out, however,
that the groove surface cannot be directly detected by EBSD, owing to the working principle
of EBSD that the target surface must be tilted by an angle of 70◦ to the orthogonal axis of
the incident electron beam, and then EBSD detector receives the back scattered electron
in an approximately horizontal direction [26]. Therefore, the crystallographic orientation
of the workpiece surface next to the groove was characterized, as outlined by a red box
in Figure 8a. The inverse pole figure (IPF) map of the corresponding region is presented
in Figure 8b. It shows that there are two grains (A and B) with different crystallographic
orientations. The orientations of the Gains A and B represented by Miller index are
(1 0 5) [25-8-5] and (23 13-16) [4 4 9], respectively. The misorientation angle between grains
A and B along Line PP’ was extracted from the IPF map, as plotted in Figure 8c. The
misorientation angle between the two grains is 60◦, which indicates that grains A and B are
twin pairs having a coherent twin boundary around <111> [27]. From the above analysis, it
can be inferred that the grains located within the SEM image area are dominated by grain
A and grain B (Figure 8a).

As discussed in Section 3.2, the surface defects might be caused by the brittle fractures
that occurred along cleavage planes. Therefore, it is necessary to find the relationship
between the groove surface and the cleavage plane of the grain. The angle between the
groove surface and grain’s cleavage plane can be calculated by:

θ = arccos
nC · lC

|nC| · |lC|
, (1)

where nC is the normal vector of groove surface in crystal coordinate system (CCS). lC is
the normal vector of grain’s cleavage plane in crystal coordinate system, which is {1 1 0} for
ZnSe [28].

According to the geometry of the V-shaped tool, the normal vector of L side and R
side surface of the groove in sample coordinate system (SCS) are nLe f t

S =
[
0,
√

3
2 , 1

2

]
and

nRight
S =

[
0,−

√
3

2 , 1
2

]
, respectively, as illustrated in Figure 8e,f. The relationship between

the crystal coordinate system and the sample coordinate system is given by:

nC = nS × g−1, (2)

where g−1 is the inverse of rotation matrix g. The rotation matrix g can be expressed as:

g =

 u r h
v s k
w t l

 (3)

[r, s, t] = [u, v, w]× [h, k, l] (4)
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Figure 8. (a) SEM image of a typical area in the double groove taken in Inlens Duo mode; (b) 
schematic drawings of the grain boundary plane which corresponds to the grain boundary in SEM 
image; (c) IPF map of the region outlined by red box in SEM image; (d) misorientation angle profile 
along Line PP’ indicated in IPF map. Schematic diagram of the spatial relationship between V-
shaped groove and (e) grain A and (f) grain B. 

Figure 8. (a) SEM image of a typical area in the double groove taken in Inlens Duo mode; (b) schematic drawings of the
grain boundary plane which corresponds to the grain boundary in SEM image; (c) IPF map of the region outlined by red
box in SEM image; (d) misorientation angle profile along Line PP’ indicated in IPF map. Schematic diagram of the spatial
relationship between V-shaped groove and (e) grain A and (f) grain B.

Table 2 lists the angle between the most favorable cleavage plane and the groove
surface in grains A and B, respectively. In grain A, the cleavage plane makes an angle of
86.5◦ to the L side surface of the groove, and 60.5◦ to the R side surface of the groove. Then,
it was observed from Figure 8a that the surface defects occurred on the L side surface of
the groove in grain A, rather than the R side surface. On the other hand, in grain B, the
cleavage plane makes an angle of 44.8◦ to the L side surface of the groove, and 79.4◦ to
the R side surface of the groove. As seen from Figure 8a, in grain B, the surface defects
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occurred on the R side surface of the groove, rather than the L side surface. These results
reveal that if the groove surfaces are approximately perpendicular to the grain’s cleavage
plane, surface defects are very easily to occur.

Table 2. Calculated angle between the most favorable cleavage plane and the surface of groove.

Grain No. Cleavage Plane
Groove Surface

Angle (Deg.)
Direction Normal Vector in SCS Normal Vector in CCS

A 1

(1 0 −1)

Left
[
0,
√

3/2, 1/2
]

[0.3523, 0.8263, 0.4394] 86.5

Right
[
0,−
√

3/2, 1/2
]

[−0.1562,−0.8263, 0.5411] 60.5

B 2 Left
[
0,
√

3/2, 1/2
]

[0.8497, 0.5044,−0.1535] 44.8

Right
[
0,−
√

3/2, 1/2
]

[−0.1051, 0.9252,−0.3645] 79.4

1 Miller index of grain A is (1 0 5) [25 −8 −5]. 2 Miller index of grain B is (23 13 −16) [4 4 9].

It is worth noting that in Figure 8a, on the R side surface of the groove I, the grain
B with a narrow area (pointed by the green arrow) exhibits a crack-free surface, which is
different from the grain B with a large area on its right side. In addition, by observing the
SEM image shown in Figure 9, which was captured by HE-SE (high efficiency secondary
electron) detector, narrow areas without cracks are found in the damaged surfaces in both
grains A and B. These narrow areas always occur at the beginning of cutting of a new
grain, as indicated by the green lines in Figure 9. This indicates that the grain boundary
can block the stress spreading into the adjoining twin, and the cracks are initiated when
the accumulated stress concentration exceeds a critical point. It is likewise observed from
Figure 9 that in the groove I, the extent of damage on the L side surface of grain A is more
severe than that on the R side surface of grain B. This might be attributed to the fact that
the most favorable cleavage plane of grain A becomes almost perpendicular to the groove
surface, while this is not the case for grain B.
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Figure 10 shows schematic models of the formation mechanism of surface defects
during the microgrooving process. When the tool feed rate is small, the undeformed chip
thickness is also small, as shown in Figure 10a. Thus, the plowing effect is significant. The
part of material below the segment point will not be separated from the workpiece [29].
Rather, the material is pressed by the tool and passes through below the tool tip, resulting
in a plastic/elastic deformation layer. If this layer is formed in a grain in which the
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cleavage plane is vertical to the groove surface, tearing effects along the cleavage planes
will occur during the elastic recovery of machined surface. Consequently, submicron-pits
will generate on the groove surface.
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When the feed rate is large, the undeformed chip thickness also becomes large, as
shown in Figure 10b. Under this condition, a relatively high tensile stress will be generated
in material along the cutting direction [25]. If such a stress state happens in a grain in
which the cleavage plane is vertical to both cutting direction and groove surface, cracks
can easily occur beneath the tool and propagate along both horizontal cleavage plane and
vertical cleavage plane, which causes severe defects as micron-craters on the groove surface.
However, if such a stress state happens in a grain in which the cleavage plane is not vertical
to the groove surface, but crosses the groove surface at a large angle, cracks may still occur
due to the high tensile stresses, resulting in the surface defects as submicron-pits.

3.4. FEM Simulation of Stress Distribution

To clarify the reason that coating is effective in preventing initiation of cracks at the
edge of grooves, the stress distribution of microgrooving process was investigated by
finite element method (FEM) simulation using a commercially available software ABAQUS.
Figure 11a shows the 3D simulation model of microgrooving process. The size of workpiece
and coating were 500 × 800 × 220 nm and 500 × 800 × 80 nm, respectively, which were
meshed by 106,400 and 159,600 eight-node linear brick elements (C3D8R). The cutting tool
with an edge radius of 40 nm was meshed by quadratic tetrahedral elements (C3D10M)
and was set as rigid body due to significantly high hardness of diamond tool compared to
p-ZnSe. In the simulation configuration, as shown in Figure 11b, first the tool cut into the
workpiece at a depth of cut of 30 nm. Then the tool fed 30 nm and cut the workpiece for
the second time. The cutting speed was 0.2 m/s.
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Figure 11. (a) 3D simulation model of microgrooving process; (b) schematic of simulation configura-
tion showing two paths of cutting tool.

This simulation aimed at exploring the role of coating, thus the workpiece (p-ZnSe)
was simplified as an isotropic material. The material properties of workpiece and coating
in ABAQUS model are listed in Table 3. It should be noted that these parameters cannot
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correspond exactly to the real values. However, the simulation results can be considered as
a guidance for understanding the effect of pre-coating on cutting of a soft-brittle material,
because there is only one variable factor in this simulation, uncoated workpiece or coated
workpiece. To model the adhesion of coating to workpiece, the surface interaction property
between workpiece and coating was defined as a contact cohesive interface.

Table 3. Material properties of p-ZnSe and resin in ABAQUS model [30,31].

Material p-ZnSe Resin

Young’s modulus E (GPa) 70.3 2.7
Shear modulus G (GPa) 28.9 2.98

Critical tensile strength σc (MPa) 41.3 35.5
Critical shear strength τc (MPa) 57.8 20.2

Poisson’s ratio ν 0.28 0.2
Density ρ (g/cm3) 5.266 1.1

It has been widely accepted that the tensile stress is mainly responsible for the crack
nucleation during cutting brittle materials. The tensile stresses along the cutting direction
and the direction normal to the workpiece surface are responsible for the radial cracks and
lateral cracks, respectively. Figure 12 shows a schematic diagram of crack generation in
cutting groove on brittle materials. If the radial cracks and lateral cracks intersect with each
other, the spalling of material is very likely to occur at the edge of the groove. Therefore,
the tensile stresses along the cutting direction and the direction normal to the workpiece
surface were examined after completing the simulation of the second cut. Although the
simulated stress values in this study may be not quantitatively accurate, the results are
adequate to achieve a qualitative comparison.
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Figure 12. Schematic diagram of crack generation in cutting groove on brittle materials.

Figure 13a,b shows simulated distribution of the tensile stress along the cutting direction
(σy) in uncoated workpiece and coated workpiece, respectively. It can be observed that a thin
layer of material near the groove surface is under compressive stress, which is surrounded
by a tensile stress field. This stress distribution is similar to that in an indentation test [32].
The pressure-induced densification and shear-induced plastic flow dominate the material
in the small contact zone beneath the tool. After the tool passes, elastic recovery of the
densified/deformed layer occurs, consequently the tensile stress tends to be enhanced along
the boundary of the densified/deformed layer and the bulk, causing crack generation. In the
uncoated workpiece, σy was concentrated closely to the edge of the groove and was featured
by a sharp corner. However, in the coated workpiece, σy was distributed relatively farther from
the edge of the groove and presented a smooth transition. That is, the compressive/tensile
stress boundary near the edge of the groove was an arc without sharp edges and was farther
away from the apex of the groove edge. As a result, radial cracks should be less likely to occur
at the edge of the groove in the coated workpiece.



J. Manuf. Mater. Process. 2021, 5, 17 13 of 15

Figure 13 

Figure 13. FEM-simulated tensile stress along cutting direction (y-axis direction) in: (a) uncoated 
workpiece; (b) coated workpiece. 

Figure 13. FEM-simulated tensile stress along cutting direction (y-axis direction) in: (a) Uncoated workpiece; (b) coated workpiece.

Figure 14a,b shows simulated distribution of the tensile stress along the direction
normal to the workpiece surface (σz) in uncoated workpiece and coated workpiece, respec-
tively. Similarly, in the uncoated workpiece, the σz was distributed very close to both the
edge of the groove and the surface of the workpiece. The feature of the stress distribution
pattern near the edge of the groove was likewise characterized as a sharp corner. However,
in the coated workpiece, the σz was distributed relatively far from the edge of the groove
and the surface of the workpiece. In addition, the feature of the stress distribution pattern
near the edge of the groove presented a smooth transition. Therefore, lateral cracks should
be less likely to occur at the edge of the groove in the coated workpiece. Based on the
foregoing analysis, it can be concluded that the resin coating was able to make distribution
of tensile stresses (both σy and σz) away from the edge of the groove and the workpiece
surface, consequently suppressed brittle fractures at the edge of the groove.Figure 14 
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workpiece; (b) coated workpiece.

4. Conclusions

Micro V-shaped grooves cutting experiments were conducted on polycrystalline zinc
selenide. The effect of resin pre-coating of workpiece surface on the cutting behavior was
investigated through experiments and FEM simulation. The mechanisms for surface defect
formation were revealed. The major conclusions are summarized as follows:

(1) Application of a solidified coating layer of cured photosensitive resin on the workpiece
surface before machining significantly suppressed brittle fractures at the edge of
the groove, which solves the edge chipping problem in brittle materials grooving,
although the side surfaces of the groove are unaffected.
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(2) When the tool feed rate is small (<20 nm/rev), submicron-pits were observed on the
groove surface. Further increasing the feed rate, not only submicron-pits but also
micron-craters were observed on the groove surface.

(3) The two side surfaces of the V-shaped groove show distinctly different morphologies.
The formation of defects is strongly dependent on the angle of groove surface with
respect to cleavage plane of grain.

(4) FEM simulation results demonstrated that the resin coating was able to make the
tensile stresses along the cutting direction and the direction normal to the workpiece
surface distributed away from the edge of the groove and the workpiece surface.

The results of this study demonstrate that workpiece pre-coating is an effective method
to prevent crack formation at the groove edges when cutting micro V-shaped grooves on
brittle polycrystalline materials. This finding provides a reference for surface integrity
improvements in surface micro-structuring of such materials. As the coating material,
photosensitive resin has been attempted and its effectiveness demonstrated. However,
resin tightly adheres to the workpiece surface, which is difficult to completely remove from
the surface of the grooves even after cleaning. In addition, the low fracture strain of cured
resin may make the cutting process unstable. Therefore, other coating materials will be
attempted in the future to achieve both good machinability and strong adhesion property
with the workpiece.
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