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Abstract: Nickel-titanium (NiTi) is a shape-memory alloy, a type of material whose name is derived
from its ability to recover its original shape upon heating to a certain temperature. NiTi falls under
the umbrella of metallic materials, offering high superelasticity, acceptable corrosion resistance, a
relatively low elastic modulus, and desirable biocompatibility. There are several challenges regarding
the processing and machinability of NiTi, originating from its high ductility and reactivity. Additive
manufacturing (AM), commonly known as 3D printing, is a promising candidate for solving problems
in the fabrication of near-net-shape NiTi biomaterials with controlled porosity. Powder-bed fusion
and directed energy deposition are AM approaches employed to produce synthetic NiTi implants.
A short summary of the principles and the pros and cons of these approaches is provided. The
influence of the operating parameters, which can change the microstructural features, including the
porosity content and orientation of the crystals, on the mechanical properties is addressed. Surface-
modification techniques are recommended for suppressing the Ni ion leaching from the surface of
AM-fabricated NiTi, which is a technical challenge faced by the long-term in vivo application of NiTi.

Keywords: additive manufacturing; 3D printing; NiTi; implant; powder-bed fusion; directed energy
deposition; surface modification; biomaterials

1. Introduction

Additive manufacturing (AM) technology, also known as rapid prototyping or three-
dimensional (3D) printing, is a digital manufacturing technique that fabricates engineer-
ing parts through the layer-by-layer addition of materials [1-3]. AM was described and
patented for the first time by Chuck Hull in the early 1980s [4]. AM technology has
demonstrated a great ability to manufacture pieces from ceramic [5-7], metallic [8-10], and
polymeric powders [11-13], as well as their mixtures [14,15], for diverse applications by
directly extracting the geometric data from computer-aided design (CAD) models [16,17].
In comparison to traditional manufacturing methods, AM can produce complex-shaped
objects with a simple production process, high flexibility, shorter production time, min-
imal waste of material, low cost, and near-net-shape results [18-20]. Nowadays, vari-
ous AM techniques are available for different applications, depending on the specific
requirements of each object [21,22]. The terminology for AM technology types has been
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standardized by ISO/ASTM. The foremost standard is “ISO/ASTM 52900: 2021, Ad-
ditive manufacturing—General principles—Fundamentals and vocabulary”, which was
published in November 2021 under ISO/TC 261 technical committee consideration [23].
However, some researchers have used trademarked terms in their published works. The
generalized standard and commercialized terms for AM technologies are listed in the first
and second columns of Table 1, respectively. The table also provides a brief description of
the technologies along with any recently published related works in the biomedical field.

Table 1. Generalized standard and commercialized terms, corresponding descriptions, and references

for AM technologies.

Generalized Standard Term

Commercialized Term

Short Description

Binder jetting

e ProJet color-jet
printing [24-26]

A liquid agent is selectively
dropped on top of powder
media, requiring subsequent
heating or infiltration.

Directed energy
deposition

e  Laser-engineered net
shape [27-29]

e  Electron-beam additive
manufacture [30]

A build platform or part is
selectively melted and fused
using the focused application
of heat and materials.

Material extrusion

e  Fused deposition
modeling [31,32]

e  Fused filament
fabrication [33,34]

The material is dispensed onto
the build platform, usually
using a heated nozzle.

Material jetting

Nanoparticle jetting [35]
Drop-on-demand [36]
PolyJet [37]

ProJet MultiJet

printing [38]

As each layer is solidified or
cured, droplets of media,
typically photopolymers, are
dispensed from the print head
to the build platform.

Powder-bed fusion

e  Selective laser
sintering [39,40]

e  Selective laser
melting [41,42]
Direct metal printing [43]
Direct metal laser
sintering [44]

. Electron-beam
melting [45]

e  MultiJet fusion [46]

The powder media are
bonded together by heating
and deposited on a build
platform.

Sheet lamination

e  Laminated object
manufacturing [47]

Objects are created by fusing
or gluing layers of material
together.

Vat photopolymerization

e  Stereolithography
apparatus [48]

o  Direct light
processing [49]

e  Continuous liquid
interface production [50]

Layer-by-layer curing is
achieved by selectively
exposing liquid photopolymer
to light.

Orthopedic implants have been routinely used for decades to restore skeletal struc-
ture and joint movement for patients following bone fractures or defects, severe arthritis,
arthrosis or osteoporosis, and other abnormalities [51,52]. Historically, the gold-standard
materials for bone replacements have been metallic biomaterials, representing around
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70-80% of implants produced [53]. In the biomedical engineering field, researchers have
developed porous orthopedic implants that mimic the architecture of human bone [54,55].
The porous structure increases the body-fluid circulation inside the implant, promoting the
ingrowth of the new bone tissue [56-58]. Moreover, architected porous implants minimize
the stress-shielding effects as compared to a fully solid stem of identical geometry [59]. As
a concise summary, a synthetic NiTi implant should possess controlled porosity content to
minimize stress shielding, consisting of both large and small pores to transfer nutrients and
allow cell seeding, respectively [60]. AM technology is capable of fabricating porous metal-
lic biomaterials with topological pore architectures and accurate mechanical properties, and
patient-specific design has revolutionized the development of customized implants to meet
the anatomical needs of the individual patient [61,62]. Among all the established AM meth-
ods, PBF, DED, and BJ are used for the production of metallic materials (Figure 1) [63,64].
However, the most relevant AM techniques in NiTi biomaterial manufacturing are based
upon the PBF and DED methods. PBF technology is classified under two processes: laser
PBF (LPBF) [65-67] and electron-beam PBF (EPBF) [68].
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Figure 1. The well-known processes for AM-fabricated metallic implants: (A) laser powder-bed
fusion (LPBF), (B) electron-beam powder-bed fusion (EPBF), (C) directed energy deposition (DED)
with blown powder, and (D) the binder-jetting (BJ) process. Reproduced and adapted from [64] under
Creative Commons Attribution 4.0 International License (CC BY 4.0).
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Nickel-titanium (NiTi) alloys, which are binary Ni-Ti intermetallic alloys with around
54.5-57 wt.% (~~49.4-51.9 at.%) Ni, are considered to be alternative candidates to the
conventional metallic implants used in biomedical engineering [69,70]. NiTi is a shape-
memory alloy that was discovered in a serendipitous manner by William J. Buehler in 1959
while he was working on the mechanical properties of nickel alloys in the Naval Ordinance
Laboratory. NiTi is also named ‘nitinol’, which refers to the laboratory where it was
discovered (Nickel Titanium Naval Ordinance Laboratory) [71]. The shape-memory and
superelastic effects of NiTi are related to a reversible and thermo-elastic martensitic phase
transformation near ambient temperature, martensite twinning, martensite detwinning,
and the inhibition of slip by the formation of fine NisTi; precipitates in Ni-rich NiTi
alloys. [72,73]. Moreover, unique features of NiTi alloys, such as their elastic modulus
close to that of bone, high corrosion resistance, and good biocompatibility, have led to a
broad range of biomedical applications in bone implants, cardiovascular stents, orthodontic
wires, and dental braces [74-77]. The main drawback of NiTi alloys is that Ni ions are
released from the implant’s surface into the physiological environment through long-term
exposure [78,79]. It has been reported that Ni ions cause allergic and inflammatory reactions
near the implantation site [80]. The surface engineering of NiTi alloys is a powerful strategy
to suppress ion release, improve surface bioactivity, and increase corrosion resistance [81].

Typically, NiTi alloys have been manufactured by casting and powder metallurgy meth-
ods [82,83]. The vacuum arc remelting [84] and vacuum induction melting processes [85]
are categorized as casting methods, and sintering [86], self-propagating high-temperature
synthesis [87], hot isostatic pressing [88], metal injection molding [89], and spark plasma
sintering [90] are used as powder metallurgy techniques to produce NiTi alloys. Generally,
powder metallurgy routes can be used to fabricate porous Nili implants [83]. However, the
lack of control over the (i) porosity (e.g., pore size, porosity, the location of pores, and the in-
terconnectivity of pores); (ii) chemistry (intermetallic, impurity content, homogeneity); and
(iii) geometric flexibility is the main disadvantage of these methods [83,91]. Moreover, the
geometry of the produced parts is relatively simple, mainly comprising wire, rod, and thin-
plate shapes, due to the high reactivity of the Ti element and the poor machinability of NiTi
alloys [92,93]. For example, when the alloys are highly oxidized at high temperatures, they
become brittle and prone to cracking [94]. On the other hand, in cold working conditions,
work hardening and material deformation can lead to serious tool wear [95,96]. Therefore,
the past decade has seen increasing interest in using AM techniques coupled with surface
modification strategies to develop novel NiTi implants with complex porous geometries
and biofunctional properties to tackle these practical clinical challenges (Figure 2). The
current work aims to provide a short review of recent studies on AM-fabricated NiTi alloys
for biomedical implant applications. The PBF and DED techniques are attractive AM
technologies with multiple advantages that have been employed in recent years for the
fabrication of NiTi biomaterials; however, since B] has rarely been used for this purpose, it
was excluded from the main body of the present review.
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Figure 2. Patient-specific mandibular implants used in the reconstruction surgery of bony or seg-
mental defects according to the patient’s anatomy: (A) reconstructed CAD model for patient’s
mandible; (B) fabrication of inferior fixation plate ((Ba) Ti-6Al-4V fixation plate with standard geom-
etry as a reference piece, (Bb) reconstructed CAD model through Micro-CT, (Bc) porosity cell, and
(Bd) porous bone fixation plate); (C) porous tensile samples and NiTi fixation plates developed by
the LPBF technique; (D) scanning electron micrographs of surface-modified NiTi fixation plates; and
(E) patient-specific fixation plates mounted on a dried cadaver mandible. Reproduced and adapted
from [97,98] under Creative Commons Attribution 4.0 International License (CC BY 4.0).

2. Application of AM for NiTi Implants
2.1. Background

The various types of AM process were discussed in the previous section. The com-
mon AM approaches for fabricating NiTi products from metallic Ni and Ti powders are
LPBE EPBF, and DED. To fabricate a product with specific properties and performance
parameters, it is necessary to employ a favorable approach that achieves mechanical prop-
erties similar to those of human bone. Furthermore, the homogeneity and purity of the
AM-fabricated component are important factors for preserving its biocompatibility. The
surface finish and accuracy of the produced biomaterial, as well as the final costs of the
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product, should also be taken into account [99-101]. Considering the superelasticity of
shape-memory alloys, particularly NiTi with an approximately equal content of Ni and
Ti, the focus of their practical development has been on establishing and selecting the
optimum AM approach from the viewpoint of controlling the porosity and mechanical
behavior. Although the majority of AM routes are well-suited to manufacturing NiTi
implants, the selection of the most appropriate method greatly depends on technical and
economic considerations [102,103]. In summary, the ability of an approach to fabricate NiTi
with a desired chemical composition and acceptable physicomechanical characteristics, e.g.,
density, superelasticity, and shape-memory behavior, is of prime significance [104].

It is well-established that a difference between the elastic modulus of the bone and the
synthetic biomaterial can lead to the “stress-shielding” phenomenon after implantation
due to the fact that the stiffer biomaterial diminishes the physiologic load applied to the
bone, decreasing the density of the bone over time [105]. Therefore, a high level of control
over the material selection and fabrication technique employed is required to minimize the
mismatch between the stiffness of the biomaterial and the bone [41]. Among the potential
metallic implants, NiTi has the closest elastic modulus to that of cortical bone. While the
elastic modulus of the former in the martensitic state is 48 GPa, the modulus of the latter is
in the range of 15-35 GPa [106,107]. It is true that this difference is not excessive; however,
it should be minimized as much as possible through adjusting the operational factors.
A feasible way to achieve this goal is to increase the porosity content of the fabricated
NiTi biomaterials. Unlike traditional fabrication processes, such as casting, AM offers
the possibility to produce porous parts with complex geometries and controlled porosity.
Moreover, the powder metallurgy (PM) method lags behind AM in the fabrication of porous
NiTi biomaterials, since PM-fabricated parts have a high concentration of impurities that
can affect their mechanical and biological behavior [108,109].

The porosity content and pore size should be determined on the basis of the targeted
mechanical behavior. Furthermore, the effect of the porosity and pore size of the synthetic
implant on bone growth should not be neglected [110]. Direct bone formation is reported
when the biomaterial contains large pores. On the other hand, osteochondrosis occurs if
the porous biomaterial presents a smaller pore size [111]. Additionally, the pore shape
and interconnectivity may considerably affect the mechanical and biological properties of
the AM-fabricated NiTi biomaterial. To avoid stress concentration, it is recommended to
design the operating parameters in such a way that they facilitate the formation of round
pores, since edges can serve as stress-concentration sites where cracks are generated [112].
Interconnectivity can also change the movement and diffusion of oxygen and nutrients
throughout the pores. Thus, a porous material without interconnected pores is not able to
stimulate bone growth [113]. The following text is focused on overviewing the common
AM techniques for the fabrication of NiTi biomaterials.

2.2. Powder-Bed Fusion (PBF)
2.2.1. Laser Powder-Bed Fusion (LPBF)

LPBF, a layer-by-layer route, takes advantage of the production of complex samples
without the need for surface-finishing post-treatments. This method is by far the most
frequently employed technique for the production of NiTi components. During LPBE, the
powders are completely melted and fused by means of a laser to form specimens with a
density of about 99.9%. Considering the poor machinability of NiTi, this approach opens
up new opportunities to develop synthetic NiTi implants [114]. Overall, LPBF-fabricated
NiTi offers acceptable mechanical performance under compression. Although the tensile
mechanical properties of this material have not been addressed in detail, the production
of a defect-free component may contribute to achieving superior properties, since the
tensile behavior is highly sensitive to cracks and porosity [115,116]. By controlling the
porosity content, the technique allows the production of NiTi components with an elastic
modulus favorable for biomedical applications [117]. All in all, the microstructure of LPBF-
fabricated parts is heterogenous, since each layer undergoes various thermal histories. The
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‘heterogeneity’ of the microstructure refers to the variations in grain size, Ni dispersion,
etc., which can drastically change the mechanical performance of components [116,118].
Furthermore, the grain size distribution of LPBF-fabricated specimens is not uniform. Such
heterogeneity can noticeably affect the mechanical properties of a specimen [119,120].

In general, several operation factors, including the powder characteristics and prepa-
ration protocol, the laser power (energy density), the radius of the irradiated beam, the
scanning speed, the distance between the scan lines (hatch distance), the thickness of the
layer, the direction of laser scanning, and the atmosphere, can noticeably affect the overall
properties and performance of LPBF-fabricated NiTi biomaterials [121].

The factor “powder characteristics and preparation protocol” refers to the use of
high-purity powders as well as the proper combination of Ni and Ti powders, since there
would be no shape-memory effect if the Ni/Ti ratio was not adjusted correctly [122]. The
shape-memory effect refers to the occurrence of the martensite<+austenite transformation
within a certain temperature range. This is the most important property of NiTi that makes
it a potential biomaterial for use in dentistry, orthopedics, and cardiovascular stents. The
beginning and end of the transformation phase are determined by certain temperatures.
Any change in the composition of AM-fabricated NiTi can alter the temperature of trans-
formation. For instance, a 0.1% change in the Ni content leads to a 10-15 °C change in the
transformation temperature [123]. Furthermore, a change in the transformation temper-
ature may alter the mechanical behavior of an AM-fabricated part, since the mechanical
properties of austenite and martensite are different [124].

A high level of control over the energy density is required to produce LPBF-fabricated
NiTi implants with desired performance characteristics [125]. For instance, a higher porosity
content is obtained when the energy density is decreased [99,102]. The higher the porosity
content, the lower the density. Therefore, it is essential to calculate the input energy
density to achieve the desired physicomechanical properties. A critical challenge facing the
successful application of LPBF in the fabrication of synthetic NiTi implants is the depletion
of Ni, which may markedly affect the transformation temperatures [126]. Ni depletion
occurs when a higher energy density is applied. For example, Safdel et al. [127] assessed
the effect of volumetric energy densities in the range of 56-125 J/mm? on the Ni content of
LPBF-fabricated NiTi. They reported a decrease in Ni content with an increase in the energy
density due to the higher equilibrium vapor pressure of Ni, which makes it more susceptible
to evaporation at higher energy densities. Furthermore, a change in the Ni content, even
for 1 at.%, may affect the martensite transformation temperatures; phase composition; and,
in particular, the mechanical properties of an NiTi component [128,129]. It is reported that a
higher Ni content leads to a decreased transition temperature. Although there is no obvious
change in the grain size and texture of LPBF-fabricated NiTi, its mechanical properties,
such as its hardness and compressive strength, change with the Ni content [129]. Xue
et al. [130] have illustrated the possibility of tailoring the chemical composition of LPBF-
fabricated NiTj, i.e., the Ni content, by controlling the processing parameters, wherein there
is a meaningful correlation between the volumetric energy density and Ni evaporation.
Additionally, the input energy amount can determine the grain size of the NiTi produced
by LPBF [131]. When employing LPBF for the production of NiTi biomaterials, it is
recommended to use a lower energy density in order to diminish the risk of taking up a
higher concentration of impurities in the structure of the final component [124]. A lower
volumetric energy input not only leads to the generation of large, irregularly shaped pores
as a result of insufficient diffusion and bonding between the layers, but also increases
the porosity content [132,133]. The laser energy density determines the phase structure
of LPBF-fabricated NiTi, and it has been reported that the phase structure of NiTi parts
fabricated using LPBF under energy densities of 22.78 and 55.56 ] /mm? were composed
of B2 and B2 + B19, respectively. Although a double-layer passive film was formed over
both parts, the part containing the B19’ phase showed superior charge-transfer resistance.
On the other hand, the pitting propagated much more rapidly over this part due to the
galvanic effect that originated from the difference between the potential of the B2 and B19’
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phases [134]. In recent years, NiTi implants of various shapes have been developed by
the LPBF method, such as flat, mesh-like, and cage-like, which are shown in Figure 3A-C,
respectively [135].

Figure 3. LPBF-fabricated NiTi biomaterials: (A) flat, (B) mesh-like, and (C) cage-like. (D) ASC
vitality on flat NiTi, (E) ASC attachment on mesh-like NiTi, and (F) osteogenic ASC attachment
on LPBF-fabricated NiTi cages. Reproduced and adapted from [135] under Creative Commons
Attribution 4.0 International License (CC BY 4.0).

The orientation of austenitic crystals depends on the direction of the LPBF process.
The orientation of the crystals can alter the elastic recovery amount, with a higher elastic
recovery reported when the crystals are oriented vertically to the fabrication [136].

It is necessary to conduct the LPBF NiTi fabrication process under an atmosphere of
inert gas, such as argon, not only to avoid possible contamination but also to enhance the
quality and physical properties of the produced material. For biomedical applications, more
emphasis should be placed on controlling the concentration of contaminants, since they
can lead to toxicity in human cells. In addition to the atmosphere, the porosity content of
AM-fabricated NiTi can affect its biocompatibility. A variety of oxide phases, e.g., TisNi, O,
can be formed if the process runs under an oxygen-containing atmosphere. The oxides not
only alter the transformation temperatures but also affect the mechanical behavior of the
fabricated NiTi. The influence of oxides on the mechanical behavior greatly depends on
their grain size and dispersion [137]. It has been illustrated that employing a mixture of 50%
argon + 50% helium gas, instead of Ar gas alone, causes a 40% increment in the build rate.
Helium possesses a high heat capacity and thermal conductivity; therefore, employing such
a mixture can also improve the density and stability of the AM-fabricated part [138]. The
flow rate of the carrier gas plays a critical role in determining the spheroidizing efficiency,
which alters the fluidity of the synthesized NiTi powders and, subsequently, the final
performance of the AM-fabricated part. For instance, Shi et al. [139] evaluated the influence
of the carrier gas flow, in the range of 1.5-5 L /min, on the morphology of NiTi powders
and observed that powders with a smooth surface were obtained when using a 3 L/min
gas flow. Studies on LPBF-fabricated porous NiTi scaffolds for autologous adipose-derived
stem cells (ASCs) have confirmed the effective mechanical properties and successful activity
of osteogenic stem cells in a salty biological medium [135]. Figure 3D shows cells adhered
to flat NiTi implants with the healthy spindle-shaped appearance that is typical of ASCs.
Moreover, the optical microscopy image in Figure 3E proves that the ASCs tend to expand
and grow between the gaps and pores of LPBF-fabricated mesh-like NiTij, as indicated by
the arrow. The complete settling of cells was further confirmed by the SEM image that
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offered a closer look into the cage pores (Figure 3F). Although both dense and porous NiTi
implants prepared by LPBF demonstrate favorable biocompatibility, the Ni ion release from
the surface of the former is slightly lower than that of the latter. It should be noted that the
concentration of the leached ions is too low to cause cytotoxicity in both cases [123,140].

The scanning speed is a factor that can vary the martensite<+austenite transformation,
with a higher scanning speed producing austenitic NiTi at room temperature [141]. Further-
more, the higher the scanning speed, the lower the porosity content [99]. A higher scanning
speed not only changes the grain structure of the AM-fabricated NiTi, but also reduces the
size of the grains. Larger pores may be formed when applying higher scanning speeds.
Moreover, an increased scanning speed can improve the surface quality and decrease the
content of micropores. The surface roughness of LPBF-fabricated NiTi may be slightly
enhanced with an increase in the scanning speed [142]. A lower scanning speed for LPBF
can lead to an enhanced transformation temperature, i.e., stabilized martensite [141]. The
finer grains formed as a result of a higher scanning speed enhance the fracture stress while
slightly decreasing the fracture strain [143]. Moreover, Xue et al. [130] reported that an
increase in the scanning speed from 0.83 to 1.08 m/s seriously enhanced the ultimate tensile
strength and percentage of elongation to failure. The scanning speed affects the corrosion
resistance of LPBF-fabricated NiTi in simulated body fluid (SBF)—it has been reported that
an increase in the scanning speed from 413 to 1357 mm/s results in a decrease in the charge
transfer resistance by 46%. Although the corrosion mechanism is attributed to the pitting
corrosion of the oxide layer due to the corrosive action of C1~ and PO, ions, the reason
why a change in the scanning speed leads to a change in the corrosion resistance has not
been addressed [144].

The hatch distance, which is the distance between the two consecutive laser scans,
is usually kept constant to avoid the generation of structural defects [145,146]. However,
it has been proven that a change in the hatch distance can vary the morphological and
microstructural features, including grain size and morphology. For instance, an increase
in the hatch distance from 100 to 120 pm leads to an enlargement in the grain size of
AM-fabricated NiTi from 190 to 478 nm [145]. On the other hand, Obeidi et al. [147]
demonstrated that the hatch distance has less influence on the physical properties of LPBEF-
fabricated NiTi compared to the laser power and scanning speed. Figure 4 schematically
represents the relationship between the important parameters involved in the LPBF process
and the physical properties of AM-fabricated NiTi. The schematic clearly shows the need
for future in-depth R&D work to correlate the processing parameters with the properties.

It is well-established that a change in the porosity content, surface roughness, and
grain size can profoundly affect the final mechano-corrosion and biological performance of
the produced material. For instance, the higher the porosity content, the lower the elastic
modulus and corrosion resistance. On the other hand, a smaller grain size can improve
the hardness and strength of the material in accordance with the Hall-Petch strengthening
mechanism [148-151]. The surface roughness of the material determines its biological
response; it is reported that a substrate with a higher surface roughness facilitates protein
absorption, promoting osteoblast cell adhesion [152]. In SBF medium, LPBF-fabricated
bulk NiTi shows similar corrosion resistance to that manufactured by conventional routes.
However, an increase in the porosity content of LPBF-fabricated NiTi degrades its corrosion
performance, due to the higher surface area exposed to the corrosive medium and the
presence of edges in the microstructure. The degraded corrosion resistance can lead to the
generation of corrosion by-products, particularly Ni ions. Thus, precise control over the
porosity content is required to avoid the release of Ni ions beyond the threshold value [153].
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Figure 4. Schematic illustration of the relationship between the important parameters involved in the
LPBF process and the physical properties of AM-fabricated NiTi.

Apart from the abovementioned operating factors, the shape and geometry of LPBF-
fabricated NiTi produced under the same processing parameters are of prime significance
for realizing the microstructure-related and mechanical properties of a component. The
results of a comparative study confirmed that rectangular parts have a higher critical stress
than oval-shaped parts of the same thickness. Moreover, regardless of the geometry, the
thinner the LPBF-fabricated NiTij, the higher the strength. This is ascribed to the formation
of smaller grains in thinner materials as a result of the higher cooling rate [154].

One feasible strategy to enhance the mechanical and biological behavior of LPBF-
fabricated NiTi is to fill the open pores with bioactive ceramic and/or polymeric materials,
including the calcium phosphate family and poly-ether-ether ketone [155]. Such an attrac-
tive approach can be considered as a potential future direction in this field.

In another process classified as LPBE, laser energy is utilized to sinter the powders
by supplying the power to melt and fuse them. These powders are stacked layer by layer
in the desired 3D model. The powders used in this approach can be metallic, ceramic,
or polymeric. This type of LPBF system has a much lower main-process energy level
and assistive areal heating. Due to the need for high-powered lasers, this type of LPBF
system is considered an expensive method. Moreover, to achieve a higher accuracy, post-
machining may be required [156,157]. NiTi biomaterials produced by this type of LPBF
system bear multiple advantages over those fabricated by conventional casting methods,
including a higher homogeneity and controlled pore size and composition. LPBF-fabricated
NiTi products made using the sintering method are biocompatible and show no toxicity
against fibroblast cells [67,100]. Shishkovsky et al. [67] fabricated homogenous synthetic
NiTi implants using this type of LPBF system, applying a laser energy of 100-300 J/cm?
and requiring no surface-finishing machining. The results of the in vivo experiments
confirmed that the LPBF-fabricated NiTi caused no cytotoxicity to surrounding tissue. The
authors reported that while the highly porous LPBF-fabricated NiTi enabled cell adhesion,
it displayed insufficient microhardness.
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2.2.2. Electron Powder-Bed Fusion (EPBF)

EPBF utilizes a focused electron beam to scan along a layer composed of powders.
The beam causes localized melting, followed by solidification. This process achieves the
fabrication of NiTi biomaterials with low residual stress and impurities, since it is carried
out under a vacuum. Moreover, the higher energy of the electron beam compared to the
laser can result in a shorter fabrication time and lower production cost. The process is able
to manufacture dense specimens. While LPBF-fabricated NiTi shows higher strength and
hardness, NiTi produced by EPBF offers superior elongation [100,158]. Zhou et al. [159]
used the EPBF method under a beam current of 12 mA to manufacture NiTi parts. The
microstructure of the EPBF-fabricated parts comprised an austenitic B2 phase with a small
amount of NiyTiz and NiTi, precipitates, as well as an R phase. The NiTi parts produced
by EPBF exhibited high superelasticity along with excellent reversible strain. On the other
hand, the results of the practical experiment carried out by Hayat et al. [160] proved the
lack of superelasticity in EPBF-fabricated NiTi, owing to the generation of the NiTi, and
Ni;Ti phases. Therefore, controlling the phase composition of EPBF-fabricated NiTi is a
challenge that remains to be addressed in the production of implants for clinical purposes,
since the shape-memory effect is of prime importance in such applications.

The operating factors involved in the EPBF technique, such as the contour scanning
strategies, can alter the surface roughness and, subsequently, the mechanical properties of
the produced parts [161,162]. Thus, there is a drastic need for future in-depth research to cor-
relate the processing parameters with the final characteristics of EPBF-fabricated materials.

2.3. Directed Energy Deposition (DED)

The DED approach provides NiTi implants with a high degree of homogeneity and
excellent mechanical properties, particularly microhardness. During DED, a laser beam is
utilized to generate a melt pool, and software is used to construct the desired geometry.
When the desired geometry is achieved, the fabrication of the material proceeds layer by
layer. The limitations of this approach include its expensiveness, slow operating rate, and
inappropriate surface finish [157,163,164]. The application of a laser allows AM-fabricated
NiTi to retain a significant fraction of high-temperature austenite at room temperature
because of the high cooling rate [165]. Krishna et al. [166] fabricated porous NiTi for
biomedical applications via the DED route, achieving 12-36% porosity. They studied the
influence of the operating factors on the physical features, transformation temperatures,
and mechanical characteristics of the DED-fabricated NiTi. The reported results confirmed
that there is an inverse relationship between the laser power and the porosity content.
A decrease in the laser power leads to lower temperatures, which can only partially
melt the powders. The liquid metal present at the interface between the partially melted
powders leads to the formation of pores. The DED-fabricated NiTi with 12-36% porosity
exhibited reversible strain in the range of 2-4% and an elastic modulus of 18 GPa, making
it appropriate for use as a load-bearing biomaterial.

It is possible to tailor the phase composition, surface energy, and corrosion resistance
of DED-fabricated NiTi through controlling the laser power—the application of a higher
laser power leads to decreased surface energy and superior corrosion resistance. The
decreased surface energy is attributed to the enlarged grain size, i.e., the decreased area
of the grain boundary. Since grain boundaries are high-energy sites, a decrease in the
grain boundary area not only reduces the surface energy but also enhances the corrosion
protection performance [165].

Zheng et al. [167] provided a comparative insight into the phase composition, mi-
crostructure, mechanical properties, and deformation mechanisms of AM-fabricated Ti-
50.8 at.% Ni produced through LPBF and DED. The results indicated that the ductility and
yield strength achieved by DED were 2% and 700 MPa, respectively, which are remarkably
different from those of LPBE, i.e., 8% and 100 MPa. They also reported that the grain size
of the DED-fabricated sample was much larger than that of the LPBF-fabricated sample.
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Indeed, the fine grains and holes in the LPBF samples displayed uniform deformation
during the tensile test, resulting in better elongation.

In another study, Buciumeanu et al. [168] assessed the tribo-corrosion properties
of NiTi and Ti-6Al-4V alloys fabricated by the DED process. The tribo-corrosion tests
were carried out in phosphate-buffered saline (PBS) solution at 37 °C under open-circuit
potential (OCP) to simulate the body environment and temperature. They reported that
the DED-fabricated NiTi alloy exhibited superior tribo-corrosion performance than the
DED-fabricated Ti-6Al-4V alloy. The wear tracks after the tribo-corrosion studies are shown
in Figure 5. The widths of the wear tracks were about 210 and 420 um in the DED-fabricated
NiTi and Ti-6Al-4V alloys, respectively. Moreover, as seen in Figure 5A, the wear track in
the DED-fabricated NiTi was smoother. The narrower and smoother wear track indicates
the lower level of surface degradation in the DED-fabricated NiTi samples.

Figure 5. SEM images of wear tracks: (A) DED-fabricated NiTi alloy and (B) DED-fabricated Ti-6Al-
4V alloy. Reproduced and adapted from [168] under Creative Commons Attribution 4.0 International
License (CC BY 4.0).

3. Surface Modification of AM-fabricated NiTi Implants

A critical challenge facing the successful long-term in vivo application of NiTi bioma-
terials is the release of Ni ions from their surfaces upon exposure to corrosive physiological
media containing Cl~ ions and oxygen species, as well as wear between the joints. The
leached ions can lead to lung cancer, allergies, chronic bronchitis, and cardiovascular
diseases. Although it is possible to decrease the concentration of the leached Ni ions
with a change in the porosity content of the AM-fabricated NiTij, it is essential to put
forward a feasible strategy to tackle this problem. The application of an appropriate
surface-modification technique as a potential solution not only suppresses the release of the
ions but also provides new functions to the NiTi [169-176]. Surface treatment methods that
allow the control of the chemistry and morphology, e.g., passivation/controlled oxidation
or mechanical/electrolytic polishing, are more resistant to Ni ion leaching, with some
surfaces showing Ni ion release below the detection limit of the method used [177,178].
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A nanometer-thick oxide layer mainly comprising titanium dioxide (TiO,) is formed
on the surface of NiTi and can contribute to its corrosion resistance; however, to achieve
superior performance, it is better to deposit a biocompatible and corrosion-resistant layer,
such as calcium phosphate or bioactive polymers. There is a broad spectrum of coating
methods that could be used to apply protective layers on NiTj, including electrochemical
deposition, sol-gel processes, anodization, plasma electrolyte oxidation, sputtering, and
plasma spraying. The pros and cons of these methods are reported elsewhere [179-182].
Es-Souni et al. [183] fabricated 1000 nm thick TiO, nanotubes with tube diameters of
around 40 nm on NiTi by anodization (Figure 6A,B). In the next step, nanotubes were
functionalized by the photografting of biopolymer brushes. The authors reported that the
biopolymer layer covered the surface of the nanotubes and their walls, inhibiting protein
and bacteria adhesion to the anodized NiTi surfaces (Figure 6C,D). They concluded that
any Ni ion release would be prevented by not only the electrochemically controlled surface
chemistry but also the presence of the polymeric layer, which was expected to further hinder
ionic diffusion because of its insulating properties (ionic and electronic conductivity is
required for the diffusion of charged species, e.g., the diffusion of a Ni** ion is accompanied
by the diffusion of two electrons, which necessitates the aforementioned conductivity).
Deng et al. [184] employed the DED system to manufacture NiTi biomaterials with similar
mechanical properties to bone. A nanoporous composite layer containing a mixture of
Ni, Ti, and hydroxyapatite (HAp) nanoparticles was applied on the surface of the AM-
fabricated NiTi via pulsed laser sintering under a laser power of 50 kHz. The aim of the
addition of HAp nanoparticles was to enhance the biocompatibility. The deposited layer
improved the adhesion of osteoblastic cells and collagen expression due to the synergistic
effects of the porous surface and the presence of HAp biocompatible nanopowders on
the surface.

Figure 6. (A) Surface SEM micrographs of nanotubes at different magnifications; (B) cross-sectional
SEM micrograph of nanotubes; (C) surface SEM micrograph of bacteria adhered to nanotubes without
biopolymer coatings; (D) high-magnification micrograph showing that adherent bacteria on the non-
functionalized nanotubes caused damage to the nanotube layer. Reproduced and adapted from [183]
under Creative Commons Attribution 4.0 International License (CC BY 4.0).

Recently, an innovative surface-finishing strategy was proposed by Ma et al. [78],
whereby they employed ultrasonic nanocrystal surface modification to suppress the Ni ion
release from the surface of AM-fabricated NiTi. The technique comprised the simultaneous
application of ultrasonic striking and burnishing, resulting in a superior surface finish
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together with a lower porosity content. The finished parts showed lower surface roughness
as well as higher hardness and resistance against both corrosion and wear.

4. Concluding Remarks and Future Horizons

NiTi shape-memory alloys are multifunctional materials with a wide range of biomed-
ical applications, including stents, dental braces, and bone fixation implants. Over the
past two decades, AM processes have shown success in producing metallic implants with
porous structures and a low elastic modulus. These two features facilitate osseointegration
for improved implant fixation and reduced stress-shielding effects at the bone—implant
interface. Compared with traditional manufacturing processes for NiTi, such as casting
and PM routes, AM can produce near-net-shape parts with reduced costs, material waste,
energy consumption, and production durations. This study provided a review of the
current state-of-the-art AM techniques for producing NiTi alloys for biomedical implant
applications. To date, various AM methods such as LPBF, EPBF, and DED have allowed the
layer-by-layer fabrication of patient-specific NiTi implants. Various performance criteria
are taken into account for optimizing AM process parameters, including productivity, ma-
terial composition, density requirements, residual stresses, mechanical properties, surface
quality, and geometric accuracy. The laser power, radius of the irradiated beam, scanning
speed, distance between scan lines, thickness of the layer, direction of laser scanning, and
atmosphere were found to be the most important processing parameters that determine
the behavior of LPBF-fabricated NiTi implants. The processing parameters considerably
influence the microstructure-related features of AM-fabricated NiTi biomaterials, including
the porosity content, grain size, pore type, and orientation of austenitic crystals, which can
profoundly affect their mechanical behavior, particularly the elastic modulus. Since the
elastic modulus of a biomaterial is of prime importance for avoiding bone loss through
stress shielding, it is crucial to optimize these parameters.

Significant efforts must be made in the fabrication of NiTi shape-memory alloys for
biomedical applications in order to reach important milestones. The role of the operating
factors for each technique should be addressed, with emphasis placed on establishing
mechanisms that govern changes in the final material properties. Therefore, in-depth R&D
work is of prime significance in this field. Another important task for the future is to control
the porosity content and characteristics in such a way as to achieve an elastic modulus close
to that of human bone, together with favorable blood circulation and biocompatibility.

Generally, the performance of AM-fabricated NiTi alloys is limited, owing to surface
imperfections, low surface quality, and defects introduced through layer-by-layer deposi-
tion processes. Moreover, the high Ni content in NiTi alloys poses the risk of harmful Ni
ions being released into body fluids, causing inflammatory and allergic reactions around
the implantation site. Studies in recent years have shown that post-fabrication surface-
modification techniques offer promise for enhancing the corrosion resistance and biocom-
patibility of AM-fabricated NiTi implants. However, many surface-engineering methods
remain largely unexplored for AM-fabricated NiTi alloys. Therefore, we expect that future
research directions include advanced and multifunctional surface coatings with promising
in vitro and in vivo results in terms of cytocompatibility and osteogenic differentiation.
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Abbreviations

AM Additive manufacturing

ASCs  Autologous adipose-derived stem cells
BJ Binder jetting

CAD  Computer-aided design

DED  Directed energy deposition

EPBF  Electron-beam powder-bed fusion
HAp  Hydroxyapatite

LPBF Laser powder-bed fusion

NiTi  Nickel-titanium

OCP  Open-circuit potential

PBF Powder-bed fusion

PBS Phosphate-buffered saline

PM Powder metallurgy

SBF Simulated body fluid

SEM  Scanning electron microscopy
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