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Abstract: Additively manufactured thin-walled structures through selective laser melting (SLM) are
of great interest in achieving carbon-neutral industrial manufacturing. However, residual stresses and
warpages as well as recoater crashes often occur in SLM, leading to the build failure of parts, especially
for large-scale and lightweight geometries. The challenge in this work consists of investigating how
the recoater affects the warpage and (sometimes) causes the failure of different thin-walled Ti6Al4V
parts (wall thickness of 1.0 mm). All these parts are printed on the same platform using a commercial
SLM machine. After the loose powder removal and before the cutting operation, a 3D-scanner is used
to obtain the actual warpage of each component. Next, an in-house coupled thermo-mechanical finite
element model suitable for the numerical simulation of the SLM process is enhanced to consider
the recoater effects. This numerical framework is calibrated to predict the thin-walled warpage
as measured by the 3D-scanner. The combination of numerical predictions with experimental
observations facilitates a comprehensive understanding of the mechanical behavior of different
thin-walled components as well as the failure mechanism due to the recoater. The findings show that
the use of a higher laser energy input causes larger residual stresses and warpage responsible for the
recoater crashes. Finally, potential solutions to mitigate the warpage and the recoater crashes in the
SLM of lightweight structures are assessed using the validated model.

Keywords: additive manufacturing; selective laser melting; recoater crashes; lightweight parts;
thermo-mechanical finite element simulation

1. Introduction

Selective Laser Melting (SLM) is one of the most used Additive Manufacturing (AM)
technologies allowing for the cost-effective production of metallic components with highly
complex geometries [1,2]. SLM is currently being adopted in different industrial sectors,
such as bio-medical, aerospace and automotive engineering [3,4]. The SLM uses a laser
heat source to selectively melt the metallic powder bed following a layer-by-layer sequence
till completing the 3D printing of the components.

Figure 1 shows the steps of the SLM process: (1) the recoater blade spreads a new
layer of metallic powder with a thickness of around 30~60 mm; (2) a high-energy laser
beam selectively melts the powder that defines the actual cross-section of the component
according to a pre-defined scanning sequence generated by the slicer; (3) the printing
platform is lowered to accommodate a new powder layer; (4) steps (1)~(3) are repeated
until completing the printing of the whole part; (5) the loose powder is removed and the
printed components are cut away from the base plate [5].

In SLM processes, the high-energy laser is very localized and the metallic powder
is melted at a very high scan speed (close to 1 m/s). Thus, a very small melting pool
is formed so that sharp temperature gradients (up to 107 ◦C/m) and significant cooling
rates often exceeding 105 ◦C/s are observed in the heat-affected zone surrounding the
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melting pool [6–8]. As a consequence, either large residual stresses (for thick components)
or warpages (for thin-walled structures) are generated. Hence, the SLM process often fails
because of excessive part distortion, cracking of the supporting structures due to the high
residual stresses, and recoater crashes [9–11].

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 2 of 21 
 

 

 

Figure 1. Schematic drawing of the workflow of the typical SLM process where the part shape is not 

fixed. 

In SLM processes, the high-energy laser is very localized and the metallic powder is 

melted at a very high scan speed (close to 1 m/s). Thus, a very small melting pool is formed 

so that sharp temperature gradients (up to 107 °C/m) and significant cooling rates often 

exceeding 105 °C/s are observed in the heat-affected zone surrounding the melting pool 

[6–8]. As a consequence, either large residual stresses (for thick components) or warpages 

(for thin-walled structures) are generated. Hence, the SLM process often fails because of 

excessive part distortion, cracking of the supporting structures due to the high residual 

stresses, and recoater crashes [9–11]. 

To reduce the carbon footprint, the manufacturing of lightweight structures is pre-

ferred, e.g., thin-walled titanium components used in the aerospace engineering sector, 

heat exchangers, and antennas [12–19]. Nonetheless, compared to thick and bulky com-

ponents, the AM fabrication of lightweight parts is more challenging because they are 

more prone to warpages; as the building height increases, the mechanical constraint grad-

ually reduces. Moreover, the temperature field increases because of the slow heat dissipa-

tion. Consequently, the residual stresses induced by the repeated laser melting and cool-

ing processes generates large deformations, which increase with the printing height fur-

ther from the building platform. When the vertical displacements at the top surface of the 

build exceed the pre-set thickness of the powder layer, the structural warpage of the build 

affects the recoating operation [20]. As a result: (i) the powder spreading is no longer uni-

form; (ii) the recoater deforms the underlying layers, plastifying the (hot) material; (iii) the 

warpage precludes the recoater’s movement, causing damages to the AM machine [21]; 

thus, the build-up fails before completing the whole printing. 

Recoater crashes resulting from thermally-induced part deformations could be 

avoided by optimizing the process parameters, modifying the component design and its 

orientation in the building chamber, or optimizing the configuration of supporting struc-

tures [22–28]. For instance, Promoppatum et al. [25] investigated the influence of energy 

density (ED) on residual stresses and part deformations. They found that keyholing de-

fects can be generated if the energy input is higher than 2.94 J/mm2, and an optimal ED of 

2.0 J/mm2 is recommended. Wang et al. [26,27] studied how to improve the quality of the 

surface roughness of overhanging structures caused by the melting of the powder bed 

during SLM fabrication. They found that to avoid any damage to the recoating device, the 

use of low-energy input and short scanning tracks is recommended. Additionally, Yakout 

et al. [28] found that adopting excessively high energy power (>350 W) leads to improper 

layer melting, which favors the contact between the recoater and the asperities generated 

on the top surface of the build. Higher ED results in higher peak temperatures and a larger 

volume of the melting pool. Thus, higher thermal gradients and larger residual stresses 

are formed, contributing to more pronounced part warpages. Focusing on thin-walled 

Figure 1. Schematic drawing of the workflow of the typical SLM process where the part shape is not fixed.

To reduce the carbon footprint, the manufacturing of lightweight structures is pre-
ferred, e.g., thin-walled titanium components used in the aerospace engineering sector, heat
exchangers, and antennas [12–19]. Nonetheless, compared to thick and bulky components,
the AM fabrication of lightweight parts is more challenging because they are more prone to
warpages; as the building height increases, the mechanical constraint gradually reduces.
Moreover, the temperature field increases because of the slow heat dissipation. Conse-
quently, the residual stresses induced by the repeated laser melting and cooling processes
generates large deformations, which increase with the printing height further from the
building platform. When the vertical displacements at the top surface of the build exceed
the pre-set thickness of the powder layer, the structural warpage of the build affects the
recoating operation [20]. As a result: (i) the powder spreading is no longer uniform; (ii) the
recoater deforms the underlying layers, plastifying the (hot) material; (iii) the warpage
precludes the recoater’s movement, causing damages to the AM machine [21]; thus, the
build-up fails before completing the whole printing.

Recoater crashes resulting from thermally-induced part deformations could be avoided
by optimizing the process parameters, modifying the component design and its orientation
in the building chamber, or optimizing the configuration of supporting structures [22–28].
For instance, Promoppatum et al. [25] investigated the influence of energy density (ED)
on residual stresses and part deformations. They found that keyholing defects can be
generated if the energy input is higher than 2.94 J/mm2, and an optimal ED of 2.0 J/mm2

is recommended. Wang et al. [26,27] studied how to improve the quality of the surface
roughness of overhanging structures caused by the melting of the powder bed during SLM
fabrication. They found that to avoid any damage to the recoating device, the use of low-
energy input and short scanning tracks is recommended. Additionally, Yakout et al. [28]
found that adopting excessively high energy power (>350 W) leads to improper layer
melting, which favors the contact between the recoater and the asperities generated on the
top surface of the build. Higher ED results in higher peak temperatures and a larger volume
of the melting pool. Thus, higher thermal gradients and larger residual stresses are formed,
contributing to more pronounced part warpages. Focusing on thin-walled geometries,
characterized by poor structural stiffness, these distortions (e.g., vertical displacements) can
cause the recoater crashes. Additionally, Le et al. [29] analyzed the quality of the powder
bed as a function of the feedstock and different recoating strategies. Their results showed
that rubber recoating blades with a larger contact surface area and mid-range recoating
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velocities (10–80 mm/s) yield more uniform and compact powder layers, improving
the printing quality while reducing the risk of recoater damages. Finally, it was found
that the recoating speed directly affects the inter-layer cooling time and, thus, the heat
accumulated in the build as well as its mechanical response [30,31]. Hence, using the right
recoating speed helps to reduce the risk of the recoater impacting the deformed geometry
of the AM build.

Lightweight structures are a critical component of many functional products. Thus,
the analysis of build failures related to part deformations and the powder recoating system
is of paramount importance for promoting their industrial application. At present, trial-
and-error approaches as well as the technician’s expertise operating the AM machines can
prevent the recoater from crashing. Alternatively, numerical simulation provides a feasible
and efficient approach to predict the thermal history and mechanical response during the
whole AM process [32–35]. Thus, it is possible to identify the underlying cause of possible
problems in the fabrication early and take the necessary measures to solve them. Kobir
et al. [33] developed a thermomechanical modeling approach based on graph theory to pre-
dict the probability of the occurrence of recoater crashes in the SLM fabrication process and
achieved high computational efficiency. Lu et al. [1] employed a coupled thermomechanical
model to investigate the influence of the substrate design on the mechanical response in
SLM of T-shaped Ti6Al4V parts. Their results showed that crack-free components can be
printed by adding grooves within the substrate. Chakraborty et al. [10] numerically ana-
lyzed the in-process failure during the SLM process of thin-walled RENE65 and RENE108
parts. The finite element (FE) simulations of the AM process clearly show that the thermal
stresses generated in thin-walled structures cause more pronounced warpages and, conse-
quently, these light-weight structures are more prone to printing failures. Vastola et al. [35]
simulated the SLM process to investigate the buckling phenomena of thin-walled tubular
components, analyzing different structural designs. They found that part distortions can be
mitigated by rounding the sharp edges in IN718 parts with a wall thickness of 0.4 mm. Li
et al. [36] numerically studied the effect of the scan length on the deformation of thin-walled
Ti6Al4V parts and found that the scan length of 4–6 mm is most suitable. Additionally,
Chen et al. [37] used a layer-by-layer FE model to study the influence of the part dimension
on the warpage of thin Ti6Al4V single-walls fabricated by SLM. They found that increasing
the part thickness helps to reduce maximum deformation.

Recent studies suggested that the structure and size of grains formed during AM
affect the strength and ductility of the printed material, as well as the residual stresses
on a micro-scale [2,4]. However, for macro residual stresses and part deformations, these
effects can be negligible when compared to the large thermal gradients induced by the
high-energy laser beam in AM. Specifically, this work aims to understand the complicated
interactions between the structural features of different thin-walled builds, thermal stresses,
part deformation, and recoater effects on a macro-scale.

In this study, three kinds of thin-walled geometries are analyzed: single-wall, open,
and closed structures. First, these structures are built using a SLM machine. Next, an
in-house coupled thermo-mechanical FE software is enhanced to consider the interaction
between the recoating system and the underlying printed layers. The validation and
calibration of this model are accomplished by comparing the numerical predictions with
the measured displacements obtained by a 3D-scanner. Finally, potential solutions are
suggested to mitigate the component warpage induced by the AM process.

2. Experimental Campaign

The 3D printing fabrication is performed using a RENISHAW RenAM 500Q, (Wotton-
under-Edge, UK) machine equipped with a 500 W YB-fiber laser system, with a wavelength
of 1070 nm and a laser spot diameter of 75 µm. The AM takes place in a high-purity argon
atmosphere in order to ensure a lower oxygen content (less than 1000 ppm) during the
whole printing process.
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In this work, gas-atomized Ti6Al4V powder with a particle size of 15~45 µm is used.
The powder is dried in a vacuum oven (vacuum degree < 80 kPa) at 120 ◦C for 3.0 h.
An annealed Ti6Al4V base-plate of 250 × 250 × 40 mm3 is adopted to build different
thin-walled structures. The scanning sequence is based on a 67◦ rotating deposition pattern.
Table 1 lists the optimized SLM processing parameters used in this research, guaranteeing
the fabrication of fully dense Ti6Al4V parts. A relatively high ED of 6.12 J/mm2 is adopted
to amplify the mechanical effects in lightweight parts.

Table 1. Printing parameters used for the SLM process.

Laser Power (W) Layer Thickness (µm) Scan Speed (mm/s) Hatch Spacing (µm) Laser Beam Diameter (µm)

300 40 700 70 70

Figure 2 shows the nominal CAD models of different thin-walled structures sent to
the slicing tool to generate the scanning sequence for the SLM machine. After build-up;
the actual printed parts are measured by the Breuckmann Smart SCAN3D scanner with a
measurement accuracy of 0.015 mm. The corresponding displacements causing the part
warpage are obtained by the Geomagic Control X software by comparing the scanned
images with the nominal CAD geometries. The thin-walled structures are not cut from the
substrate when their distortions are measured
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3. Computational Simulation

A coupled thermo-mechanical FE model implemented in the in-house COMET soft-
ware [38,39] is employed to simulate the SLM process. The fractional step method is used
to obtain a staggered solution. Thus, the thermal problem is solved first, followed by the
mechanical analysis, at each time-step of the AM process. A detailed description of the
thermo-mechanical model used for AM can be found in previous publications [40,41].

3.1. Thermal Problem

The balance equation governing the transient thermal analysis [40] can be written as:

.
H = −∇·q +

.
Q (1)
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where
.

H is enthalpy rate, q is heat flux and
.

Q is the volumetric heat source (per unit of
volume). Here,

.
Q is characterized by the total laser input

.
P and the actual energy efficiency

ηp, applied in the melting-pool volume V∆t
mp:

.
Q =

ηp
.
P

V∆t
mp

(2)

The heat flux, q, is defined by Fourier’s law:

q = −k∇T (3)

where k is the (temperature-dependent) thermal conductivity, and∇T is the thermal gradient.
Three different heat dissipation mechanisms are considered: (i) the heat conduction

through the substrate (the platform or previously deposited layers) and thought the sur-
rounding loose powder, (ii) heat convection, and (iii) radiation at the top surface to the
environment before the next layer is deposited.

The heat loss by convection is defined via Newton’s law:

qconv = hconv(T − Troom) (4)

where hconv is the Heat Transfer Coefficient (HTC) due to convection, T and Troom are the
surface temperature of the build and the ambient temperature, respectively.

The heat dissipation by radiation, qrad, is computed by Stefan–Boltzmann’s law: where
εrad is the surface emissivity and σrad is the Stefan–Boltzmann constant.

qrad = εradσrad

(
T4 − T4

room

)
(5)

3.2. Mechanical Analysis

The mechanical analysis is carried out by solving the balance of momentum and the
continuity equations [41]:

∇·s +∇p + b = 0 (6)(
∇·u− eT

)
− p

K(T)
= 0 (7)

where b represents the body force (per unit of volume), K(T) is the (temperature-dependent)
bulk modulus, and σ stands for the Cauchy stress tensor, which can be split into its spherical
p and deviatoric s parts, respectively:

σ = pI + s(u) (8)

The thermal strains, eT , are defined as following:

eT(T, fS) = ecool(T) + epc( fS) (9)

where ecool(T) and epc( fS) are the thermal deformations and the thermal shrinkage during
the liquid-to-solid phase change, expressed as:

ecool(T) = α(T − T0) (10)

epc( fS) = β fS (11)

where T0 is the initial temperature, fS is the solid fraction, α and β are the thermal expansion
and thermal shrinkage coefficients, respectively.

Due to the repeated heating and cooling cycles in the SLM process, the cycling thermal
loads during the metal depositions vary between room temperature (Troom) and the high
temperatures above the melting point (Tmelt) when the laser source is applied. Hence, the
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material behavior must be characterized within the entire temperature range, including
solid, mushy, and liquid phases. In this work, a J2-thermo-elasto-visco-plastic model [22]
is used for the solid phase for temperatures varying between Troom and the annealing
temperature, Tanneal . The von-Mises yield surface is defined as:

Φ(s, qh, T) = ‖s‖ −
√

2
3
[
σy(T)− qh

]
(12)

where σy is the (temperature-dependent) yield stress and qh, the stress-like variable control-
ling the isotropic strain hardening [40], expressed as:

qh(ξ, T) = −
[
σ∞(T)− σy(T)

][
1− e−δ(T)ξ

]
− h(T)ξ (13)

where ξ is the isotropic strain-hardening variable, σ∞ is the (temperature-dependent)
saturation flow stress, while δ and h are the parameters used to control the exponential and
linear hardening laws, respectively.

The deviatoric part of Cauchy’s stress tensor s can be written:

s = 2G(e− evp) (14)

where G is the (temperature-dependent) shear modulus, e are the total (deviatoric) strains
obtained from the total strain tensor ε(u) = ∇sym(u), and evp are the deviatoric visco-
plastic strains. The evolution laws of both the visco-plastic strain tensor and the isotropic
strain-hardening variable are obtained from the principle of maximum plastic dissipation as:

.
evp

=
.
γ

vp ∂Φ(s, qh, T)
∂s

=
.
γ

vp s
‖s‖ =

.
γ

vpn (15)

.
ξ =

.
γ

vp ∂Φ(s, qh, T)
∂qh

=

√
2
3

.
γ

vp (16)

where n represents the normal yield surface, and
.
γ

vp stands for the visco-plastic multiplier:

.
γ

vp
=

〈
Φ(s, qh, T)

η

〉 1
m

(17)

where 〈·〉 are the Macaulay brackets, m and η are the sensitivity rate and plastic viscosity,
respectively.

Ti6Al4V is characterized by a solid-state phase change (SSPC) which affects the me-
chanical behavior of the material. Denlinger et al. [42] proposed using an annealing temper-
ature of 690 ◦C to consider the SSPC-induced stress relaxation in the coupled thermal-stress
simulations of AM Ti6Al4V. A good agreement between the simulated and measured
results is proven. However, Chen et al. [43] investigated the wire-fed electron-beam AM
via variable temperature XRD measurements, and the annealing temperature is finally set
to 850 ◦C in their thermo-mechanical simulations. The difference in the definition of the
material constitutive laws used to simulate the mechanical behavior of AM Ti6Al4V is
identified as being mainly responsible for the non-unique annealing temperature definition.
In our previous numerical study [41], an annealing temperature of 750 ◦C was selected
based on the in situ strain measurements during AM.

When the temperature T increases to Tanneal , the yield stress σy gradually reduces
until vanishing and a mushy/liquid behavior can be observed. When T > Tanneal , the
deviatoric Cauchy stress is characterized by a purely viscous law, which can be deduced
from Equation (18) when σy → 0 [44]. Thus:

s = ηe f f
.
evp (18)
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where ηe f f = η
( .

γ
vp
)m

stands for the effective viscosity. Typically, a non-Newtonian be-
havior with m > 1 is adopted for the mushy phase (Tanneal < T < Tmelt), while Newtonian
behavior (m = 1) is used for the liquid phase (T ≥ Tmelt) [39].

3.3. Computational Modeling of SLM

In this work, a time-marching scheme is used to simulate the SLM process. The heat
source moves step-by-step from the location at time tn to the next position at time tn+1.
During this time step, ∆t = tn+1 − tn, a heat source is applied to the affected elements. The
birth-death-element technique is adopted to activate the corresponding elements belonging
to each layer, according to the actual building sequence defined by the slicing tool (e.g.,
Cura). Both the SLM machine and the software read the same input file defined in Common
Layer Interface (CLI) or g-code formats [45].

Figure 3 shows the FE meshes of five different thin-walled structures characterized by
the same wall thickness of 1.0 mm. The numbers of hexahedral elements and nodes used
for these geometries are listed in Table 2.
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Figure 3. 3D FE mesh models of different thin-walled structures.

In order to reduce the computational cost while preserving the simulation precision,
10 physical layers are lumped into one with an equivalent height of 0.4 mm [46]. The
meshes generated have a fixed size of approximately 0.5 × 0.5 × 0.2 mm3 for the built
parts, while a coarser mesh is utilized for the base plate [47].
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Table 2. Numbers of the FE elements and the nodes for different thin-walled geometries.

Thin-Walled Structures Number of FE Elements Number of Nodes

Cylindrical part
Semi-cylindrical part

Square part
L-shape part

Single-wall part

244,480
145,280
339,840
219,560
65,680

352,320
204,450
477,309
295,959
94,395

3.4. Material Properties and Boundary Conditions

Temperature-dependent Ti6Al4V material properties used for both the printed parts
and the substrate are shown in Table 3 [38]. The environment temperature is set to 23 ◦C dur-
ing the whole SLM process. The loose powder surrounding the SLM parts is not included
in the computational domain, and an equivalent boundary condition (HTC = 5 W/(m2·◦C)
is used to consider its effect [34]. The heat loss at the top surface of the last printed layer is
defined by a heat convection coefficient of 12.7 W/(◦C·m2) and an emissivity of 0.7 [48].
The laser efficiency during the SLM process of Ti6Al4V is set to η = 0.4 [1]. An initial
temperature of 23 ◦C is set for the new elements in the building layers. The bottom surface
of the substrates is fixed as in the actual SLM machine.

Table 3. Temperature-dependent material properties of Ti6Al4V.

Temperature
(◦C)

Density
(kg/m3)

Specific Heat
(J/(kg·◦C))

Thermal
Conductivity
(W/(m·◦C))

Poisson’s
Ratio

Young’s
Modulus

(GPa)

Thermal
Dilatancy

(µm/m/◦C)

Yield Stress
(MPa)

20
205
500
995

1100
1200
1600
1650
2000

4420
4395
4350
4282
4267
4252
4198
3886
3818

546
584
651
753
641
660
732
831
831

7.0
8.75
12.6
22.7
19.3
21.0
25.8
35
35

0.345
0.35
0.37
0.43
0.43
0.43
0.43
0.43
0.43

110
100
76
15
5
4
1

0.1
0.01

8.78
10.0
11.2
12.3
12.4

12.42
12.5
12.5
12.5

850
630
470
13
5
1

0.5
0.1

0.01

3.5. Modeling of the Recoater Action

In the deposition process, contact between the recoater and the component happens
when the warpages of the printed thin-walled structure reach the threshold of the used
SLM machine (≈40 µm). In this instance, the friction force between the recoater and the part
acts on the top surface of the newly deposited layer. The accumulated effect of this lateral
force increases as both the height of the part and its warpages increase. Therefore, the effect
of the recoater force is similar to that of the vertical gravity load of the deposited material.

In this work, the recoater action is modeled as an external volumetric load in the
direction of the recoater blade (Y-axis), gradually applied to the growing structures with
continuous layer-by-layer element activation in the mechanical simulations. Specifically, a
lateral Y-directional volumetric force of 2.2× 10−3 N/mm3 is applied to the newly activated
elements according to the model calibration against the experimental measurements.

4. Results and Discussion

In this section, the warpage and build failures of three types of lightweight geometries
with increasing structural stiffness are investigated and discussed: (i) single-wall structures;
(ii) open structures; and (iii) closed geometries, as shown in Figure 4. The corresponding
geometrical dimensions are shown in Table 4. Note that the actual height of the printed
components does not reach the nominal value and a rough top surface for all the thin-
walled structures appears. This is due to the contact between the recoater blade and the
top surface of the builds during the powder spreading process in the final stage of the AM
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process [27]. If the contact occurs when the solidified material is still hot and deformable,
proceeding with the building process can lead the recoater blade to crash [10].
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Figure 4. Thin-walled structures: nominal CAD model in blue, while printed parts are depicted in
yellow color. The roughness of the top surfaces induced by the recoater is highlighted in red. (W1,
W2, etc. are the sample names.)

Table 4. Geometrical dimensions of different thin-walled structures.

Part Shape Horizontal Size
(mm) Wall Thickness (mm) Designed Building

Heights (mm)
Actual Building

Heights (mm)

Cylinder
Semi-cylinder

L-shape
Square

Single-wall

Ø50.0
Ø50.0

50.0 × 50.0
50.0 × 50.0
50.0 × 1.0

1.0
1.0
1.0
1.0
1.0

70.0
70.0
70.0
70.0
70.0

≈62.0
≈62.0
≈62.0
≈62.0
≈50.0

To calibrate the thermo-mechanical FE model for the SLM process, the predicted part
warpages are compared to the measured displacements (by 3D-scanner) with respect to the
nominal CAD geometries.

4.1. Single-Wall Structures

Figure 5 shows the uncompleted build of 3 single-wall parts and the corresponding
nominal CAD geometries. Note that large distortions, up to 3 mm, are measured at the
top surface of the builds. The lower section of the walls deforms in the recoating direction
while the upper part is opposite to it. This depends on the induced thermal stresses and the
interaction with the recoating system. Hereby, the residual longitudinal (σxx) and vertical
(σzz) stresses are shown in Figure 6. It can be seen that high tensile stresses are generated at
the top and the bottom layers as well as at both lateral edges, while the central area of the
single-wall presents compressive stresses. This leads to the buckling of the thin-walls when
any out-of-plane load such as the recoating process is applied.

Tensile stresses appear when the first layers are printed on the thick and cold substrate
which induces a strong mechanical constraint. Similarly, at the top surface as well as at the
edges of the wall, high thermal gradients (up to 1 × 107 ◦C/m) are induced and the faster
cooling at these locations results in large tensile stresses [1]. These residual stresses induce
the warpage of thin-walled structures because of their poor structural stiffness. A similar
phenomenon has been previously reported through numerical studies in references [10,37].
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4.2. Open Thin-Walled Structures

The 3D-printing of two different open structures (semi-cylindrical and L-shape parts)
is investigated in this section. Figures 7 and 8 show the displacement distributions of two
semi-cylindrical parts (SC1 and SC2) with different orientations with respect to the recoating
system, as shown in Figure 4. The predicted warpage profiles are in good agreement with
the experimental results.
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the build.

It can be seen from Figure 7 that large displacements (up to 0.4 mm) are produced
in the central region of the SC1 sample. The observed bulging is due to the residual
stresses induced by the SLM fabrication process. Similar to the single-wall parts, these
open semi-cylindrical geometries suffer of high tensile stresses along the top and bottom
circumferential sides as well as at both vertical edges. As shown in Figure 9, the external
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surface of the inner region is characterized by tensile stresses, while the inner surface is
compressed. This produces the bulging, as also reported in [49,50].
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The bulging also induces vertical displacements which interfere with the powder
spreading by the recoating system. As a consequence, the top surface presents a roughness
deteriorating the printing job until, eventually, the recoater crashes. This interference also
provokes the appearance of forces typically in the recoater advancing Y-direction, and,
consequently, forcing bending in this direction (see Figure 7a).

Similar considerations apply for the semi-cylindrical (SC2) structure, as shown in
Figure 8. In this case, the bulging is even more pronounced (approximately 0.5 mm).

The comparison between the predicted and measured out-of-plane displacements
of the two L-shape parts, namely the L1 and L2 samples, is shown in Figures 10 and 11,
respectively.

The difference in the manufacturing process between these two thin-walled structures
is due to their orientations with respect to the recoating movement. In particular, sample
L2 has one of the two walls parallel to the movement of the recoater (see Figure 4). Thus,
its structural stiffness to the recoater loading is higher than the one of sample L1. This can
be easily appreciated when comparing the warpages of L1 and L2 and keeping in mind
that the recoater loading is in the Y-direction.

Figure 12 shows the residual stresses for the two L-shaped parts. The stress distribu-
tions are similar for both cases, mainly depending on the thermal deformations during the
printing process. As for the single-wall builds, the L-shaped structures present high tensile
stresses at the external edges as well as at the top and bottom layers. At the sharp corner, a
similar vertical stress concentration can also be appreciated. Similar stress results can be
found in [51,52]. This stress field is responsible for the pronounced double buckling shown
in Figures 10 and 11.
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Figure 10. L−shape (L1) part: comparison between the (a) experimental and (b) simulated displace-
ment distributions. (c) The deformation distribution along the lines KL and MN, which are located at
the center of the two outer surfaces of the build, respectively. The negative value of the displacements
in the experimental results means that the distortion is towards the inside of the CAD geometry.
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4.3. Closed Thin-Walled Structures

In this section, the mechanical behavior of two closed structures, the hollow cylindrical
and square geometries, is studied to assess the influence of recoater interference during the
SLM process.
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Figure 13 compares the simulated displacement distributions and the experimental
3D-scan measurements for the cylindrical part. Figure 14 shows the corresponding residual
stress field. Note that compressive stresses are produced on the inner surface of the
cylinder while its external surface suffers tensile stresses. Thus, the cylinder contracts in
the radial direction during the cooling process, and relatively small radial displacements
are generated due to the higher structural stiffness of closed geometries compared to the
open ones [53,54]. However, also in this case, a large Y-displacement, up to 0.5 mm, can be
appreciated (Figure 13). Moreover, the build is uncompleted due to the collision between
the scraper and the distorted part.
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Figure 14. Hollow cylindrical part: residual stresses in three orthogonal directions.

Similar considerations apply for the hollow square part in terms of both warpage (see
Figure 15) and stress distributions (see Figure 16). The higher stiffness of this geometry
compared to the single-wall or the L-shape structures implies a smaller distortion of the
build. However, in Figure 15a, the same bulging phenomenon can be appreciated, being
more pronounced in the surfaces orthogonal to the recoating direction.
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5. Proposed Strategies to Reduce the Warpage of Thin-Walled Structures

This numerical study demonstrates that the residual stresses generated by the AM
fabrication process can lead to large distortions and buckling phenomena, particularly
when thin-walled structures are printed. The structural stiffness of the geometry is one of
the key factors to mitigate the final warpage of the builds. A possible strategy to mitigate
the distortions during the AM process is the component integration, as shown in Figure 17.
This implies that the manufacturing process must include two stages: (i) 3D printing and
(ii) separation of parts (e.g., cutting). The effectiveness of this procedure is evident for the
geometries investigated in this work. However, more complex geometries can be placed on
the base platform, keeping in mind these results; different components to be printed could
share some of the surfaces, edges, etc.
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The benefits of component integration not only include increased global stiffness
of the thin-walled structures but also an improved temperature field. In fact, the stress
concentration at the lateral edges is due to their faster cooling. Thus, agglomerating the
parts and integrating them by sharing some of the geometrical features (edges, surfaces,
etc.) can produce a more uniform temperature field. Thus, the temperature gradients
responsible for the thermal stress concentrations can be effectively mitigated.

Geometry compensation is another possibility to guarantee the geometrical precision
of thin-walled lightweight structures fabricated by SLM [55,56]. This is an inverse engi-
neering strategy used to modify the nominal CAD geometry considering the part warpage
predicted by the numerical simulation to iteratively compensate the initial CAD model.
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Figure 18 demonstrates the effectiveness of using geometric compensation after one
iteration. Observe that high residual stresses still persist. However, these can be addressed
through post annealing treatment.
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Finally, using a softer scraper in the current SLM machine would also be beneficial for
reducing part deformations and damages to the recoating system.

6. Conclusions

In this work, the 3D-printing of different lightweight geometries of Ti6Al4V is in-
vestigated. In-house FE thermo-mechanical software has been enhanced to consider the
recoating effects. The numerical framework has been calibrated using the experimental re-
sults obtained by a 3D scanner. The following validation has demonstrated good agreement
between the simulated displacements and the experimental measurements of different
thin-walled structures. Finally, the validated model is used to analyze the residual stress
evolution during the whole printing process.

The major conclusions of this study are the following:

1. The recoating system affects the residual warpage of the build. Thus, the orientation
of the part on the build-plate with respect to the recoating direction makes a difference.
This effect is more pronounced when open structures are considered. The higher
structural stiffness of the closed-structures mitigates this phenomenon.

2. The vertical displacements at the top surface of the build are amplified by the bulging
phenomenon shown by these kinds of structures. The interference between the recoat-
ing system and the roughness generated by the non-uniform powder bed spreading
generates increased loading in the direction of the recoater’s movement. The induced
bending is more pronounced when these loads are orthogonal to the thin surfaces.
Thus, the orientation of the lightweight structures on the base platform is relevant.
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3. Open lightweight structures are more prone to warpage due to their reduced structural
stiffness compared to closed ones. However, higher residual stresses appear on the
latter and can be relaxed through post-annealing treatment. Therefore, component
integration is a possible solution to increase the overall stiffness of the build to better
resist the thermal stresses induced by the fabrication process as well as generate a
more uniform temperature field, thus lowering temperature gradients and stress
concentrations.

4. Geometry compensation is a good inverse engineering strategy to modify the original
nominal geometry, accounting for the part warpage due to the AM process and
ensuring optimal geometrical accuracy in SLM-parts.
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