
Citation: Rahman, M.M.; Farahani,

M.A.; Wuest, T. Multivariate

Time-Series Classification of Critical

Events from Industrial Drying

Hopper Operations: A Deep

Learning Approach. J. Manuf. Mater.

Process. 2023, 7, 164. https://doi.org/

10.3390/jmmp7050164

Academic Editor: Steven Y. Liang

Received: 17 August 2023

Revised: 5 September 2023

Accepted: 6 September 2023

Published: 8 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Manufacturing and
Materials Processing

Journal of

Article

Multivariate Time-Series Classification of Critical Events from
Industrial Drying Hopper Operations: A Deep
Learning Approach
Md Mushfiqur Rahman , Mojtaba Askarzadeh Farahani and Thorsten Wuest *

Department of Industrial and Management Systems Engineering, Benjamin M. Statler College of Engineering and
Mineral Resource, West Virginia University, Morgantown, WV 26506, USA; mr0143@mix.wvu.edu (M.M.R.);
ma00048@mix.wvu.edu (M.A.F.)
* Correspondence: thwuest@mail.wvu.edu

Abstract: In recent years, the advancement of Industry 4.0 and smart manufacturing has made a
large amount of industrial process data attainable with the use of sensors installed on machines.
This paper proposes an experimental predictive maintenance framework for an industrial drying
hopper so that it can detect any unusual event in the hopper, which reduces the risk of erroneous fault
diagnosis in the manufacturing shop floor. The experimental framework uses Deep Learning (DL)
algorithms to classify Multivariate Time-Series (MTS) data into two categories—failure or unusual
events and regular events—thus formulating the problem as a binary classification. The raw data
extracted from the sensors contained missing values, suffered from imbalancedness, and were not
labeled. Therefore, necessary preprocessing is performed to make them usable for DL algorithms and
the dataset is self-labeled after defining the two categories precisely. To tackle the imbalanced data
issue, data balancing techniques like ensemble learning with undersampling and Synthetic Minority
Oversampling Technique (SMOTE) are used. Moreover, along with DL algorithms like Convolutional
Neural Network (CNN) and Long Short-Term Memory (LSTM), Machine Learning (ML) algorithms
like Support Vector Machine (SVM) and K-nearest neighbor (KNN) have also been used to perform a
comparative analysis on the results obtained from these algorithms. The result shows that CNN is
arguably the best algorithm for classifying this dataset into two categories and outperforms other
traditional approaches as well as deep learning algorithms.

Keywords: industry 4.0; smart manufacturing; machine learning; deep learning; artificial intelligence;
time series; classification; predictive maintenance; polymer processing

1. Introduction

The advancement of smart manufacturing, which combines information technology
and operational technology, has enabled the collection and processing of large amounts of
industrial process data [1]. This progress has been facilitated by the installation of numerous
sensors in industrial equipment and machine tools on the shop floor, leading to an increase
in available data. In many cases, these sensors record the activity of manufacturing machine
tools over time, thus generating time-series data [2]. The analysis of time-series data has
proven valuable in extracting meaningful events in smart manufacturing systems [3].
While time-series data can be found in various domains such as healthcare [4], climate [5],
robotics [6], ecohydrology [7], stock markets [8], energy systems [9], etc., this paper focuses
on the plastic processing industry as a case study within the manufacturing domain. A
comprehensive review of time-series applications in manufacturing can be found in [10].

Sensors play a crucial role in the advancement of smart manufacturing systems,
collecting data for various key variables over time, and forming Multivariate Time-Series
(MTS) data. MTS data consists of multiple univariate time series (UTS), making MTS
more complex due to the correlation between different variables. This paper focuses on

J. Manuf. Mater. Process. 2023, 7, 164. https://doi.org/10.3390/jmmp7050164 https://www.mdpi.com/journal/jmmp

https://doi.org/10.3390/jmmp7050164
https://doi.org/10.3390/jmmp7050164
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com
https://orcid.org/0009-0006-3127-054X
https://orcid.org/0000-0002-6712-3633
https://orcid.org/0000-0001-7457-7927
https://doi.org/10.3390/jmmp7050164
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com/article/10.3390/jmmp7050164?type=check_update&version=1

J. Manuf. Mater. Process. 2023, 7, 164 2 of 25

the analysis of time-series data for classification, which involves identifying key events
and their respective classes within a dataset. Classification models aim to categorize
events based on specific patterns and assign them to corresponding categories. In MTS
classification, the time series is divided into segments, each belonging to a category with
distinct patterns.

Several algorithms have been developed to analyze MTS data. Traditional approaches
used prior to the evolution of smart manufacturing include simple exponential smooth-
ing [11], dynamic time warping [12,13], and autoregressive integrated moving averages [14].
Machine learning algorithms such as K-nearest neighbor [15], decision trees [16], and Sup-
port Vector Machine (SVM) [17] have also been employed. Some authors have combined the
K-nearest neighbor with distance measures like DTW [18,19] or Euclidean distance [20,21].
It has been shown that ensembling different discriminant classifiers, such as SVM and
nearest neighbor, along with other machine learning classifiers like decision trees and
random forests, can yield better results than using nearest neighbor with dynamic time
warping [12]. Traditional methods often struggle to identify important features within
time-series data and fail to capture correlations between variables, leading to the false
identification of categorical events [3]. Additionally, traditional approaches and machine
learning algorithms face challenges in handling the massive volume of data. Deep learning,
with its ability to handle large amounts of data using deep neural networks, has emerged
as a solution for extracting meaningful features from MTS data.

Deep learning techniques, including various neural network algorithms, have gained
significant attention in dealing with time-series problems, particularly MTS. Deep neural
networks can learn patterns in the data by capturing the correlations between variables,
surpassing traditional methods such as NN-DTW. While NN-DTW may perform well
for a small number of variables, it becomes more complex as the number of variables
increases [22]. In this paper’s case study, which involves twelve distinct temperature mea-
sures, deep neural networks are particularly relevant. The two most used neural networks
are Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). CNNs
are popular for computer vision tasks [23] and have been extensively applied to image
recognition [24], natural language processing [25–27], image compression, and speech
recognition [28]. CNNs have also been successful in handling MTS problems [3,22,29–34].
RNN, on the other hand, excels in sequential learning and performs well for univariate
time series, but its application to MTS classification is limited [35]. However, it shows
promise in dealing with time-series datasets containing missing values [36].

The research objective of this paper can be summarized as follows: studying the
versatility of MTS analysis in the context of the drying hoppers mechanism and patterns of
temperature profiles; understanding various parameters related to MTS and applying this
understanding to analyze the current material drying process and various events associated
with industrial drying hoppers; identifying different ways to address data labeling and
imbalance data issues of real manufacturing data; evaluating the performance of a set of
machine learning and deep neural network algorithms to classify the MTS data.

2. Background and State of the Art
2.1. Manufacturing Process

In the polymer processing industry, dryers play a crucial role in supplying dry-heated
air that is blown upward through the to-be-dried material for several hours, while new
undried, cold/moist material is continuously loaded on top of the dryer module, steadily
moving downward through the dryer [37,38]. Modern drying hoppers are designed
with a cylindrical body and a conical hole at the bottom. They ensure even temperature
distribution and material flow by using spreader tubes to inject hot and dry air into the
chamber. The process involves recirculating the hot air to continuously dry the material
until the desired humidity level is achieved. Successful drying requires considering three
main factors: drying time, drying temperature, and the dryness of circulating air. Drying
time depends on the air temperature, initial dryness of the material, and target humidity.

J. Manuf. Mater. Process. 2023, 7, 164 3 of 25

Higher air dryness and temperature accelerate the drying process, but excessively high
temperatures may affect the material’s quality [39].

Monitoring the drying process is essential to avoid malfunctions. In a typical use
case, a six-zoned temperature probe continuously measures the temperature at different
heights within the vertically aligned drying chamber. This helps detect various disruptions
in the drying process, such as over- or under-dried material and heater malfunctions [39].
The drying hopper consists of a drying hopper monitor and a regen wheel, both of which
have a significant impact on polymer processing. The drying hopper monitor has eight
temperature sensors, while the regen has three temperature sensors, including dew point
temperature measurements for air delivery. Temperature sensors are used to measure these
twelve temperatures over a period of one year for this specific case study. Figure 1 depicts
a schematic of a drying hopper and sensor setup similar to the one used in this study.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 3 of 26

ule, steadily moving downward through the dryer [37,38]. Modern drying hoppers are
designed with a cylindrical body and a conical hole at the bottom. They ensure even
temperature distribution and material flow by using spreader tubes to inject hot and dry
air into the chamber. The process involves recirculating the hot air to continuously dry
the material until the desired humidity level is achieved. Successful drying requires con-
sidering three main factors: drying time, drying temperature, and the dryness of circu-
lating air. Drying time depends on the air temperature, initial dryness of the material,
and target humidity. Higher air dryness and temperature accelerate the drying process,
but excessively high temperatures may affect the material’s quality [39].

Monitoring the drying process is essential to avoid malfunctions. In a typical use
case, a six-zoned temperature probe continuously measures the temperature at different
heights within the vertically aligned drying chamber. This helps detect various disrup-
tions in the drying process, such as over- or under-dried material and heater malfunc-
tions [39]. The drying hopper consists of a drying hopper monitor and a regen wheel,
both of which have a significant impact on polymer processing. The drying hopper mon-
itor has eight temperature sensors, while the regen has three temperature sensors, in-
cluding dew point temperature measurements for air delivery. Temperature sensors are
used to measure these twelve temperatures over a period of one year for this specific
case study. Figure 1 depicts a schematic of a drying hopper and sensor setup similar to
the one used in this study.

Figure 1. A view of a drying hopper with different temperature zones [39].

The collected data are preprocessed by handling missing values, outliers, and ex-
traneous cases. The dataset contains temperature readings for twelve temperature
measures sampled at one-minute intervals over the course of a year. With a large
amount of data available for the main temperature zones in the dryer/hopper system
and additional zones in the regen and dryer regions, meaningful features can be extract-
ed via real-time analysis. By analyzing these data in real time, the production planner
can gain insights into the drying hopper’s performance and determine the necessary
maintenance actions. Figure 2 shows the temperature profiles obtained from the sensors.

Figure 1. A view of a drying hopper with different temperature zones [39].

The collected data are preprocessed by handling missing values, outliers, and extra-
neous cases. The dataset contains temperature readings for twelve temperature measures
sampled at one-minute intervals over the course of a year. With a large amount of data
available for the main temperature zones in the dryer/hopper system and additional zones
in the regen and dryer regions, meaningful features can be extracted via real-time analysis.
By analyzing these data in real time, the production planner can gain insights into the
drying hopper’s performance and determine the necessary maintenance actions. Figure 2
shows the temperature profiles obtained from the sensors.

J. Manuf. Mater. Process. 2023, 7, 164 4 of 25
J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 4 of 26

Figure 2. The temperature profile of the data gathered from the case study drying hopper.

2.2. Time-Series Classification in Manufacturing—Algorithms
MTS has gained popularity across various domains for different purposes, includ-

ing clinical diagnosis, weather prediction, stock price analysis, human motion detection,
and fault detection in manufacturing processes. The manufacturing industry, in particu-
lar, has seen a significant increase in the use of MTS data due to the deployment of sen-
sor systems in shop-floor machinery and machine tools. As a result, researchers in the
manufacturing domain have focused on MTS analysis, such as classification, to address
the challenges posed by these data. Temporal data mining, including MTS analysis, pre-
sents complexities arising from factors like spatial structure, time dependency, and cor-
relations among variables. Consequently, researchers have been developing a variety of
algorithms to handle these challenges. In this section, the current state of the art in MTS
classification is explored from two perspectives: the traditional approach and the Artifi-
cial Neural Network (ANN) approach, specifically deep learning.

2.2.1. Traditional Algorithms
The K-nearest neighbor algorithm with Dynamic Time Warping (DTW) is common-

ly used as a benchmark for classifying MTS data. In ref. [40], the authors used the Large
Margin Nearest Neighbor (LMNN) and DTW. Mahalanobis distance-based DTW is used
to calculate the relations among variables using the Mahalanobis matrix and LMNN is
used to learn the matrix by minimizing a renewed, non-differentiable cost function using
the coordinate descent method. This method is compared with other similarity measure
techniques of MTS and the authors claimed the superiority of their proposed method
over other techniques. This technique is also used by the authors in [41]. DTW multivar-
iate prototyping is used in evaluating scoring and assessment methods for virtual reality
training simulators. It classifies the VR data as novice, intermediate, or expert where 1-
NN DTW performed reasonably well; the only better algorithm for this case was RES-
NET, which is an advanced version of CNN [42]. Overall, using DTW as a dissimilarity
measure among features of time series and adapting the nearest neighbor classifier in
temporal data mining was very popular before the evolution of deep learning [43].

According to [38], there are two approaches that can be taken for MTS data using
DTW. One approach involves summing up the DTW distances of UTS for each dimen-
sion of the MTS. The other approach calculates the distance between two time-series da-
ta by summing up the distances between each corresponding pair of time-series data.

Figure 2. The temperature profile of the data gathered from the case study drying hopper.

2.2. Time-Series Classification in Manufacturing—Algorithms

MTS has gained popularity across various domains for different purposes, including
clinical diagnosis, weather prediction, stock price analysis, human motion detection, and
fault detection in manufacturing processes. The manufacturing industry, in particular, has
seen a significant increase in the use of MTS data due to the deployment of sensor systems
in shop-floor machinery and machine tools. As a result, researchers in the manufacturing
domain have focused on MTS analysis, such as classification, to address the challenges
posed by these data. Temporal data mining, including MTS analysis, presents complexities
arising from factors like spatial structure, time dependency, and correlations among vari-
ables. Consequently, researchers have been developing a variety of algorithms to handle
these challenges. In this section, the current state of the art in MTS classification is explored
from two perspectives: the traditional approach and the Artificial Neural Network (ANN)
approach, specifically deep learning.

2.2.1. Traditional Algorithms

The K-nearest neighbor algorithm with Dynamic Time Warping (DTW) is commonly
used as a benchmark for classifying MTS data. In ref. [40], the authors used the Large
Margin Nearest Neighbor (LMNN) and DTW. Mahalanobis distance-based DTW is used
to calculate the relations among variables using the Mahalanobis matrix and LMNN is
used to learn the matrix by minimizing a renewed, non-differentiable cost function using
the coordinate descent method. This method is compared with other similarity measure
techniques of MTS and the authors claimed the superiority of their proposed method over
other techniques. This technique is also used by the authors in [41]. DTW multivariate
prototyping is used in evaluating scoring and assessment methods for virtual reality
training simulators. It classifies the VR data as novice, intermediate, or expert where 1-NN
DTW performed reasonably well; the only better algorithm for this case was RESNET,
which is an advanced version of CNN [42]. Overall, using DTW as a dissimilarity measure
among features of time series and adapting the nearest neighbor classifier in temporal data
mining was very popular before the evolution of deep learning [43].

According to [38], there are two approaches that can be taken for MTS data using DTW.
One approach involves summing up the DTW distances of UTS for each dimension of the
MTS. The other approach calculates the distance between two time-series data by summing
up the distances between each corresponding pair of time-series data. The authors argue
that the traditional belief that these two methods are equivalent for MTS classification is

J. Manuf. Mater. Process. 2023, 7, 164 5 of 25

not true, and their effectiveness varies depending on the specific case. They conducted
experiments on a wide range of MTS datasets to support their claim and justify the use of
different DTW approaches based on the problem at hand.

A parametric derivative DTW is another variant of the DTW used in temporal data
mining. This technique combines two distances, which are the DTW distance between MTS
and the DTW distance between derivatives of MTS. This new distance is used afterward for
classification with nearest neighbor rules [44]. Using a template selection approach based
on DTW so that the complex feature selection approach and domain knowledge can be
avoided is another approach used for classifying MTS in [45]. Another variant of DTW is
using DTW distance measured via integral transformation. Integral DTW is calculated as
the value of DTW on the integrated time series. This technique combines the DTW and
integral DTW with the 1-nearest neighbor classifier which shows no overfitting issue [46].

The symbolic representation of MTS is a traditional technique used for classification. It
involves learning symbols using supervised learning algorithms, considering all elements
of the time series simultaneously. Tree-based ensembles are utilized to detect interactions
between UTS columns, enabling efficient handling of nominal and missing values [47].
Another symbolic representation technique is MrSEQL, which transforms the time-series
data using symbolic aggregate approximation (SAX) [48] in the time domain and symbolic
Fourier approximation (SFA) [49] in the frequency domain. Discriminative subsequences
are extracted from the symbolic data and used as features for training a classification
model [50,51]. WEASEL + MUSE is another approach that uses SFA transformation to
create sequences of words. Feature selection is performed using a chi-squared model, and
logistic regression is employed to learn the selected features. These symbolic representation
methods provide alternatives to traditional DTW-based approaches in MTS classification
tasks [52].

One of the most extensive research on traditional methods for both MTS and UTS
can be found in [12], which highlights almost all of the above-mentioned traditional ap-
proaches in different categories like whole series similarity, phase-dependent intervals,
phase-independent shapelets, dictionary-based classifiers, and combinations of transforma-
tions. This paper is a great resource for any time-series classification enthusiast to gain an
overview of all the traditional methods. Another review paper that shows a brief overview
of different classification approaches for MTS can be found in [51].

Machine learning algorithms, including both nonlinear techniques and ensemble
learning techniques, have also been applied for time-series classification over the years.
Traditional classifiers like Naïve Bayes, Decision Tree, and SVM are the most popular.
Before using these algorithms, MTS data need to be converted into feature vector format.
This is why the authors in [17] segmented the time series to obtain a qualitative description
of each series and determined the frequent patterns. Afterward, the patterns that are highly
discriminative between the classes are selected, and the data are transformed into vector
format where the features are discriminative patterns.

2.2.2. Deep Learning Algorithms

ANN and deep learning, specifically Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN) such as Long Short-Term Memory (LSTM), have gained
significant popularity in the field of temporal data mining, particularly for time-series
classification. CNN has been widely used with a 1D filter in the convolutional layer, allow-
ing it to automatically discover and extract meaningful internal structures in input time
series via convolution and pooling operations. This eliminates the need for manual feature
engineering, which is typically required in traditional feature extraction methods [53]. The
combination of CNN and LSTM, leveraging the strengths of both algorithms, has also
shown excellent performance in time-series classification tasks. Researchers have proposed
various versions and adaptations of these algorithms, each showing promising results in
different case studies. The authors of [22,54] provided the summary and basics of the recent
algorithmic advance in the use of deep learning for MTS classification.

J. Manuf. Mater. Process. 2023, 7, 164 6 of 25

The authors in [29] used a tensor scheme with multivariate CNN for the time-series
classification where the model considers multivariate aspect and lag feature characteristics
simultaneously. Four stages were used in CNN architecture, which are the input tensor
transformations stage, univariate convolution stage, multivariate convolution stage, and
fully connected stage. In this method, they used an image-like tensor scheme to encode
the MTS data. This approach is taken because of the highly successful nature of CNN in
computing the vision for image classification.

Deconvolution has been utilized in time-series data mining, in addition to the convolu-
tion operation. In a study [55], the authors employed a deconvolutional network combined
with SAX discretization to learn the representation of MTS. This approach captured correla-
tions using deconvolution and applied pooling operations for dimension reduction across
each position of each variable. SAX discretization was used to extract a bag of features,
resulting in improved classification accuracy. Another variation of CNN called dilated
CNN treated MTS as an image and employed stacks of dilated and stridden convolutions
to extract features across variables [31]. Among other CNN approaches, multi-channel
deep CNN is widely utilized, where the model learns features from individual time series
and combines them after the convolution and pooling stages. The combined features are
then fed into a multilayer perceptron (MLP) for final classification [34].

In [56], the authors performed a principal component analysis for feature extraction
and reduced the number of MTS variables to two so that they could identify the most
useful two components in the machine. The time series are encoded into images using
Gramian Angular field (GAF) and the images are used as input for the CNN. Another
similar research can be found in [57] where three techniques of converting MTS data into
images have been used and tested, which are GAF, Gramian Angular Difference Field
(GADF), and Markov Transition Field (MTF). It has been found that different approaches to
converting MTS into images do not affect the classification performance, and a simple CNN
can outperform other approaches. In semiconductor manufacturing, it has been tested that
MTS- CNN can successfully detect fault wafers with high accuracy, recall, and precision [3].

Combining CNN, LSTM, and DNN has been another highly used approach over the
years. In [58], the authors proposed a combined architecture abbreviated as CLDNN and
applied it to large vocabulary tasks which outperformed three individual algorithms. A
similar approach named MDDNN has been used to predict the class of a subsequence in
terms of earliness and accuracy. The attention mechanism is incorporated with the deep
learning framework in order to identify critical segments related to model performance [59].
The proposed framework used both the time domain and frequency domain via fast Fourier
transformation and merged them for prediction. Another similar research that focused on
early classification can be found in [30].

Apart from LSTM, other recurrent network variants like bidirectional RNN (BiRNN),
bidirectional Long Short-Term Memory (BiLSTM), Gated Recurrent Unit (GRU), Bidirec-
tional Gated Recurrent Unit (BiGRU) have been adapted to use in MTS classification. In [60],
the authors used MLSTM-FCN, which is the combination of LSTM, squeeze and excitation
(SE) block, and CNN, in which the SE block is integrated within FCN to leverage its high
performance for MTS classification. A similar approach of using an excitation block has
also been used in [32].

Multi-scale entropy and inception structure ideas have been used with the LSTM-
FCNN model for MTS classification. The subsequences of each variable have been con-
volved using a 1D convolutional kernel with different filter sizes to extract high-level
multi-scale spatial features. Afterward, LSTM has been applied to further process and
capture temporal information. Both these spatial and temporal features are used as input
to the fully connected layer [33]. In addition to CNN, the Evidence Feed Forward Hidden
Markov Model (EFF-HMM) has been combined with LSTM to classify MTS. According
to [61], learning EFF-HMM is based on the mistakes of the LSTM that outperformed other
state of the art in human activity recognition.

J. Manuf. Mater. Process. 2023, 7, 164 7 of 25

3. Methodology

In this section, the overall methodology is depicted with an emphasis on the conducted
preprocessing steps. Figure 3 illustrates an overview of the proposed methodology.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 7 of 26

to the fully connected layer [33]. In addition to CNN, the Evidence Feed Forward Hid-
den Markov Model (EFF-HMM) has been combined with LSTM to classify MTS. Accord-
ing to [61], learning EFF-HMM is based on the mistakes of the LSTM that outperformed
other state of the art in human activity recognition.

3. Methodology
In this section, the overall methodology is depicted with an emphasis on the con-

ducted preprocessing steps. Figure 3 illustrates an overview of the proposed methodol-
ogy.

Figure 3. Overview of the proposed MTS classification framework.

3.1. Data Preprocessing
3.1.1. Dataset Exploration and Missing Values

In this case study, there are twelve distinct temperature measures, and the raw data
obtained from the machine tool undergo preprocessing to remove missing values and
outliers. The temperature values for these twelve variables are measured using sensors
over a period of one year, although the obtained data file only contains sensor readings
for six months. The final dataset is prepared using a sampling interval of one minute.
Since temperature values for all twelve variables are measured over time, the dataset
represents MTS data. The dataset can be represented as an n*m matrix, where m refers to
the number of UTS and n refers to the length of each time series. The timestamps in the
dataset are in UNIX format (Epoch time). Based on the timestamps, ideally, we should
have 264,960 data points available, yet the dataset includes 263,476 points, indicating
that the dataset contains 1484 missing values.

Missing values are a common issue in the time-series analysis, particularly in the
manufacturing domain. Various reasons can lead to missing data, such as power outages
at sensor nodes, local interference [62], or data missing during preprocessing steps. In
this study, two approaches were employed to address the missing value problem. Firstly,
if the missing values occur during time steps without any preceding or subsequent
events of the same length, they are filled using a moving average. Secondly, if time steps
within an event have missing values, they are imputed using the moving average of the
sixty observations within the event, either occurring before or after the missing time
steps. These approaches aim to address and mitigate the impact of missing values in the
time-series data analysis process with as little bias as possible.

3.1.2. Dataset Labeling
In this case study, three major events that occur regularly and affect operations have

been identified: the startup procedure, cleaning cycle, and conveying issues [37]. These three
events are shown as a snapshot of a visualization in the dataset in Figure 4. However,
these events exhibit significant variation, making it difficult to define and label them
precisely without having access to the domain expert. Moreover, having a limited num-
ber of samples in each event poses difficulty for a multiclass classification. Therefore, the

Figure 3. Overview of the proposed MTS classification framework.

3.1. Data Preprocessing
3.1.1. Dataset Exploration and Missing Values

In this case study, there are twelve distinct temperature measures, and the raw data
obtained from the machine tool undergo preprocessing to remove missing values and
outliers. The temperature values for these twelve variables are measured using sensors
over a period of one year, although the obtained data file only contains sensor readings for
six months. The final dataset is prepared using a sampling interval of one minute. Since
temperature values for all twelve variables are measured over time, the dataset represents
MTS data. The dataset can be represented as an n*m matrix, where m refers to the number
of UTS and n refers to the length of each time series. The timestamps in the dataset are in
UNIX format (Epoch time). Based on the timestamps, ideally, we should have 264,960 data
points available, yet the dataset includes 263,476 points, indicating that the dataset contains
1484 missing values.

Missing values are a common issue in the time-series analysis, particularly in the
manufacturing domain. Various reasons can lead to missing data, such as power outages
at sensor nodes, local interference [62], or data missing during preprocessing steps. In this
study, two approaches were employed to address the missing value problem. Firstly, if the
missing values occur during time steps without any preceding or subsequent events of the
same length, they are filled using a moving average. Secondly, if time steps within an event
have missing values, they are imputed using the moving average of the sixty observations
within the event, either occurring before or after the missing time steps. These approaches
aim to address and mitigate the impact of missing values in the time-series data analysis
process with as little bias as possible.

3.1.2. Dataset Labeling

In this case study, three major events that occur regularly and affect operations have
been identified: the startup procedure, cleaning cycle, and conveying issues [37]. These three
events are shown as a snapshot of a visualization in the dataset in Figure 4. However, these
events exhibit significant variation, making it difficult to define and label them precisely
without having access to the domain expert. Moreover, having a limited number of samples
in each event poses difficulty for a multiclass classification. Therefore, the primary objective
of this study is to categorize events as either failures (unusual events) or regular events,
rather than specifically detecting and classifying different types of unusual events. Unusual
events are identified, selected, and labeled as one class, while the remaining events that
represent the steady state are classified separately. If this approach proves successful, the
subsequent goal is to identify the class of any labeled unusual event (beyond the steady
state). This would enable valuable applications, such as providing context for process

J. Manuf. Mater. Process. 2023, 7, 164 8 of 25

planners and operators, predicting necessary maintenance steps, and informing the design
of future systems.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 8 of 26

primary objective of this study is to categorize events as either failures (unusual events)
or regular events, rather than specifically detecting and classifying different types of un-
usual events. Unusual events are identified, selected, and labeled as one class, while the
remaining events that represent the steady state are classified separately. If this approach
proves successful, the subsequent goal is to identify the class of any labeled unusual
event (beyond the steady state). This would enable valuable applications, such as
providing context for process planners and operators, predicting necessary maintenance
steps, and informing the design of future systems.

Figure 4. Three major events in case study operation. Startup procedure (a), cleaning cycle (b), and
conveying issue (c) (adapted from [37]).

Two approaches can be used to label the data, focusing on either one main event or
multiple major events: manual labeling and semi-supervised learning. Manual labeling
requires significant time and effort from an expert who has a deep understanding of the
process, making it a costly and time-consuming task, especially for datasets spanning a
long period. Although manual labeling provides accurate labels, it may not be feasible
for large datasets. The semi-supervised learning approach, on the other hand, requires only
a small amount of labeled data, which are then used to predict the classes of the remain-
ing unlabeled dataset. This enables the labeling of the entire dataset, which can be fur-
ther trained to identify classes in the test set or future datasets. In this case study, manual
labeling by a subject matter expert is performed to obtain the final labeled dataset. The
labeling process aims to convert the dataset into a binary classification format, where
steady state or regular events are treated as one class, and any unusual patterns or be-
haviors are treated as the other class. During labeling, we consider the whole one-hour
window as an event if any major event happens anytime during that time window.

To label the time-series data, the original event duration data files are required. A
sample rate of 60,000 is used to convert the time durations from the event duration da-
taset into milliseconds. An iterable variable is created with the time column of the origi-
nal data. Using this variable and the event markings data, a column of 1 s and 0 s is gen-
erated to match the rows of the original dataset, indicating whether each minute is part
of an event or non-event. However, labeling a minute of data may not accurately define
an event, so instead, one hour of data consisting of sixty minutes or sixty rows is consid-
ered as an example. Each hour of data is treated as a subsequence, and subsequences are
extracted from the long sequence of data with a specific length of sixty minutes (e.g.,
from 5:01:00 AM to 6:00:00 AM).

The labeling process involves assigning labels to each sixty-minute subsequence ex-
tracted from the time-series data. The sliding window algorithm is used to extract these
subsequences, where a window length and sliding step need to be defined. In this case,
the window length is set to sixty minutes, and the sliding step is also set to sixty
minutes. The primary labeling assigns the same label to all sixty rows or minutes within
each hour. After extracting the subsequences, the label for each hour is determined based
on the labels assigned to all sixty rows or minutes within that hour. The sliding window
algorithm is a common technique used for extracting subsequences from a longer time

(a) (b) (c)

Figure 4. Three major events in case study operation. Startup procedure (a), cleaning cycle (b), and
conveying issue (c) (adapted from [37]).

Two approaches can be used to label the data, focusing on either one main event or
multiple major events: manual labeling and semi-supervised learning. Manual labeling
requires significant time and effort from an expert who has a deep understanding of the
process, making it a costly and time-consuming task, especially for datasets spanning a
long period. Although manual labeling provides accurate labels, it may not be feasible for
large datasets. The semi-supervised learning approach, on the other hand, requires only a
small amount of labeled data, which are then used to predict the classes of the remaining
unlabeled dataset. This enables the labeling of the entire dataset, which can be further
trained to identify classes in the test set or future datasets. In this case study, manual
labeling by a subject matter expert is performed to obtain the final labeled dataset. The
labeling process aims to convert the dataset into a binary classification format, where steady
state or regular events are treated as one class, and any unusual patterns or behaviors are
treated as the other class. During labeling, we consider the whole one-hour window as an
event if any major event happens anytime during that time window.

To label the time-series data, the original event duration data files are required. A
sample rate of 60,000 is used to convert the time durations from the event duration dataset
into milliseconds. An iterable variable is created with the time column of the original data.
Using this variable and the event markings data, a column of 1 s and 0 s is generated to
match the rows of the original dataset, indicating whether each minute is part of an event
or non-event. However, labeling a minute of data may not accurately define an event,
so instead, one hour of data consisting of sixty minutes or sixty rows is considered as an
example. Each hour of data is treated as a subsequence, and subsequences are extracted
from the long sequence of data with a specific length of sixty minutes (e.g., from 5:01:00
AM to 6:00:00 AM).

The labeling process involves assigning labels to each sixty-minute subsequence
extracted from the time-series data. The sliding window algorithm is used to extract these
subsequences, where a window length and sliding step need to be defined. In this case,
the window length is set to sixty minutes, and the sliding step is also set to sixty minutes.
The primary labeling assigns the same label to all sixty rows or minutes within each hour.
After extracting the subsequences, the label for each hour is determined based on the labels
assigned to all sixty rows or minutes within that hour. The sliding window algorithm is a
common technique used for extracting subsequences from a longer time series, allowing for
the extraction and labeling of multiple subsequences of a sixty-minute length [34]. In our
case, the length of the time series, n, is 264,960; the window length, L, is 60; and the sliding
step, p, is 60. So, m = (264,960 − 60)/60 + 1 = 4416. Hence, using a window length of sixty
and sliding step of sixty, 4416 subsequences can be extracted from this time-series data.

After labeling each subsequence, the dataset can be viewed as a three-dimensional
dataset with dimension N*L*M, where N represents the number of examples or subse-

J. Manuf. Mater. Process. 2023, 7, 164 9 of 25

quence, L represents the window or time-series length, and M represents the number of
sensors or input variables of the MTS. Each subsequence has a dimension of L*M. In this
case, L = 60 and M = 12, so, each subsequence has 60×12 = 720 features of the MTS. A basic
summary of the labeled dataset is provided in Table 1.

Table 1. The dataset statistics after preprocessing and labeling.

Dataset Statistics Variable Types

Number of Variables 13 Numeric 12
Number of Observations 264,960 Categorical 1

Missing Cells (%) 0%
Duplicate Rows (%) 0.5%
Total size in memory 26.3 MiB

Data normalization, specifically via scaler transformation techniques, is highly recom-
mended for machine learning and deep learning algorithms when dealing with skewed
datasets. Skewed datasets can lead to imbalanced weights and distance measures between
examples, affecting the performance of models such as SVM and K-nearest neighbor. For
instance, in the given dataset, the delivery air temperature differs significantly from other
temperatures in the drying hopper. By applying data normalization, the input variables
are transformed to a standardized range, such as 0 to 1, making the learning process easier
for algorithms, especially deep learning algorithms. Scaling helps avoid issues like high
error gradient values and uncontrollable weight updates. Overall, pre-processing transfor-
mations, like data normalization, improve the performance and stability of models during
learning [63]. Data normalization changes the distribution of the input variables, as shown
in Figure 5.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 9 of 26

series, allowing for the extraction and labeling of multiple subsequences of a sixty-
minute length [34]. In our case, the length of the time series, n, is 264,960; the window
length, L, is 60; and the sliding step, p, is 60. So, m = (264,960 − 60)/60 + 1 = 4416. Hence,
using a window length of sixty and sliding step of sixty, 4416 subsequences can be ex-
tracted from this time-series data.

After labeling each subsequence, the dataset can be viewed as a three-dimensional
dataset with dimension N*L*M, where N represents the number of examples or subse-
quence, L represents the window or time-series length, and M represents the number of
sensors or input variables of the MTS. Each subsequence has a dimension of L*M. In this
case, L = 60 and M = 12, so, each subsequence has 60×12 = 720 features of the MTS. A
basic summary of the labeled dataset is provided in Table 1.

Table 1. The dataset statistics after preprocessing and labeling.

Dataset Statistics Variable Types
Number of Variables 13 Numeric 12

Number of Observations 264,960 Categorical 1
Missing Cells (%) 0%

Duplicate Rows (%) 0.5%
Total size in memory 26.3 MiB

Data normalization, specifically via scaler transformation techniques, is highly rec-
ommended for machine learning and deep learning algorithms when dealing with
skewed datasets. Skewed datasets can lead to imbalanced weights and distance
measures between examples, affecting the performance of models such as SVM and K-
nearest neighbor. For instance, in the given dataset, the delivery air temperature differs
significantly from other temperatures in the drying hopper. By applying data normaliza-
tion, the input variables are transformed to a standardized range, such as 0 to 1, making
the learning process easier for algorithms, especially deep learning algorithms. Scaling
helps avoid issues like high error gradient values and uncontrollable weight updates.
Overall, pre-processing transformations, like data normalization, improve the perfor-
mance and stability of models during learning [63]. Data normalization changes the dis-
tribution of the input variables, as shown in Figure 5.

Figure 5. Change in distribution before normalization (left) and after normalization (right) (creat-
ed based on [64]).

3.1.3. Addressing the Imbalance Dataset Issue
The dataset used in this study faces the challenge of imbalanced classification, in

which one class has significantly fewer examples than the other. Imbalanced datasets are

Figure 5. Change in distribution before normalization (left) and after normalization (right) (created
based on [64]).

3.1.3. Addressing the Imbalance Dataset Issue

The dataset used in this study faces the challenge of imbalanced classification, in
which one class has significantly fewer examples than the other. Imbalanced datasets
are common in real-world scenarios, especially in manufacturing, where failure events
are rare compared to normal operations. While imbalanced datasets are very common
in manufacturing settings and in fault detection problems, it is crucial to deal with the
issue as a preprocessing step before fitting any ML algorithm to the dataset. DL algorithms
are more sensitive in this sense and struggle more with imbalanced data due to their
assumption of balanced datasets. To address this issue, the study explores four techniques:
undersampling, oversampling, SMOTE, and ensemble learning with undersampling.

The simplest technique to address the imbalanced data issue is random undersampling,
where a portion of the majority class data is dropped to achieve a balanced dataset for

J. Manuf. Mater. Process. 2023, 7, 164 10 of 25

binary classification. In our case study, there are 845 examples in the minority class and
3571 examples in the majority class. The dataset is divided into training and test sets, with
the first 80% of the data used for training and the remaining portion for testing. After the
split, there were 791 training examples from the minority class and 2742 training examples
from the majority class. Randomly selecting 791 examples from the majority class, a total
of 1582 examples are used for training with a classification algorithm. The number of
test examples after the split is 883, which are used to evaluate the algorithm. However,
random undersampling can result in the loss of valuable information without considering
the importance of the removed examples in determining the decision boundary between
the classes [65].

Oversampling is another technique that can be utilized to deal with imbalanced datasets.
The simplest oversampling technique involves duplicating the minority class randomly
until it is equal in size to the majority class, thus achieving a balanced dataset. In our
case, 791 training examples from the minority class are duplicated randomly to create
2742 examples, which are then added to the training dataset. This technique increases the
number of training examples from 3533 to 5484. However, random oversampling can lead
to overfitting, and the duplicated examples may not provide meaningful information to the
dataset [66].

A more sophisticated approach called the Synthetic Minority Oversampling Technique
(SMOTE) can be used, which synthesizes new data points based on existing examples [66].
SMOTE is a method that synthesizes new examples for the minority class. The technique,
originally described in [67], is based on selecting examples that are nearest in the feature
space. It creates a synthetic example by randomly selecting a neighbor from the K-nearest
neighbors of a minority class example [68]. A line is then drawn in the feature space
to connect the minority example and the selected neighbor. The synthetic examples are
generated as a convex combination of the minority example and its nearest neighbors.
SMOTE can produce as many synthetic examples as needed to achieve a balanced dataset.
In this study, SMOTE will be used to oversample the minority class and balance the class
distribution. The advantage of SMOTE over random oversampling is that the synthetic
examples it generates are more reasonable and closer to the minority examples in the feature
space. However, SMOTE has some drawbacks, such as not considering the majority class,
which can lead to the creation of ambiguous examples that may not accurately represent the
dataset. The visuals of undersampling, oversampling, and SMOTE techniques are shown
in Figure 6.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 11 of 26

Figure 6. Different techniques to deal with imbalanced datasets.

Ensemble learning is a powerful technique that can be used to deal with imbal-
anced data. Ensemble learning combines the results of multiple learning techniques to
improve overall performance. In the context of dealing with imbalanced data, ensemble
learning with undersampling can be employed. This involves dividing the majority class
into segments and combining each segment with the minority class to train the dataset.
An example of this approach is illustrated in Figure 7, where 3000 majority-class exam-
ples are divided into three segments, each containing 1000 randomly selected examples.
These three sets of data, along with the entire minority class, are then used to train three
classifiers. During testing, each classifier predicts the class for a given example, and the
class with the majority vote is chosen as the ensemble prediction. In this study, three dif-
ferent approaches to ensemble learning are explored and their results are presented. By
leveraging the collective knowledge of multiple classifiers, ensemble learning aims to
enhance classification performance and address the challenges posed by imbalanced da-
tasets [69].

Figure 7. Ensemble learning method [69].

3.2. Selection and Application of DL Networks
The following DL network architectures are used in this work: CNN network,

LSTM network, and a combination of CNN and LSTM networks. The three variants are
illustrated in Figures 8–10, respectively. CNNs have gained widespread popularity due
to their significant contributions to computer vision tasks. They have been extensively
used in image recognition, natural language processing, and speech recognition. While
initially developed for computer vision, CNNs have become one of the most popular
deep neural networks for tackling time-series problems, particularly MTS problems. In

Figure 6. Different techniques to deal with imbalanced datasets.

Ensemble learning is a powerful technique that can be used to deal with imbalanced
data. Ensemble learning combines the results of multiple learning techniques to improve
overall performance. In the context of dealing with imbalanced data, ensemble learning with
undersampling can be employed. This involves dividing the majority class into segments
and combining each segment with the minority class to train the dataset. An example of

J. Manuf. Mater. Process. 2023, 7, 164 11 of 25

this approach is illustrated in Figure 7, where 3000 majority-class examples are divided into
three segments, each containing 1000 randomly selected examples. These three sets of data,
along with the entire minority class, are then used to train three classifiers. During testing,
each classifier predicts the class for a given example, and the class with the majority vote is
chosen as the ensemble prediction. In this study, three different approaches to ensemble
learning are explored and their results are presented. By leveraging the collective knowl-
edge of multiple classifiers, ensemble learning aims to enhance classification performance
and address the challenges posed by imbalanced datasets [69].

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 11 of 26

Figure 6. Different techniques to deal with imbalanced datasets.

Ensemble learning is a powerful technique that can be used to deal with imbal-
anced data. Ensemble learning combines the results of multiple learning techniques to
improve overall performance. In the context of dealing with imbalanced data, ensemble
learning with undersampling can be employed. This involves dividing the majority class
into segments and combining each segment with the minority class to train the dataset.
An example of this approach is illustrated in Figure 7, where 3000 majority-class exam-
ples are divided into three segments, each containing 1000 randomly selected examples.
These three sets of data, along with the entire minority class, are then used to train three
classifiers. During testing, each classifier predicts the class for a given example, and the
class with the majority vote is chosen as the ensemble prediction. In this study, three dif-
ferent approaches to ensemble learning are explored and their results are presented. By
leveraging the collective knowledge of multiple classifiers, ensemble learning aims to
enhance classification performance and address the challenges posed by imbalanced da-
tasets [69].

Figure 7. Ensemble learning method [69].

3.2. Selection and Application of DL Networks
The following DL network architectures are used in this work: CNN network,

LSTM network, and a combination of CNN and LSTM networks. The three variants are
illustrated in Figures 8–10, respectively. CNNs have gained widespread popularity due
to their significant contributions to computer vision tasks. They have been extensively
used in image recognition, natural language processing, and speech recognition. While
initially developed for computer vision, CNNs have become one of the most popular
deep neural networks for tackling time-series problems, particularly MTS problems. In

Figure 7. Ensemble learning method [69].

3.2. Selection and Application of DL Networks

The following DL network architectures are used in this work: CNN network, LSTM
network, and a combination of CNN and LSTM networks. The three variants are illustrated
in Figures 8–10, respectively. CNNs have gained widespread popularity due to their signif-
icant contributions to computer vision tasks. They have been extensively used in image
recognition, natural language processing, and speech recognition. While initially developed
for computer vision, CNNs have become one of the most popular deep neural networks for
tackling time-series problems, particularly MTS problems. In time-series applications, 1D
filters are used on subsequences of the long time series to perform dimensionality reduction.
The CNN network in this study consists of two 1D-convolution layers, each followed by
a dropout layer and a pooling layer at the end. The output is then connected to a fully
connected dense layer and a single output neuron with a sigmoid activation function to
perform the binary classification.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 12 of 26

time-series applications, 1D filters are used on subsequences of the long time series to
perform dimensionality reduction. The CNN network in this study consists of two 1D-
convolution layers, each followed by a dropout layer and a pooling layer at the end. The
output is then connected to a fully connected dense layer and a single output neuron
with a sigmoid activation function to perform the binary classification.

Figure 8. The CNN network architecture.

LSTM is a special type of RNN with gated cells that control the flow of information,
allowing it to retain important long-term information while discarding irrelevant short-
term information. This addresses the problem of exploding and vanishing gradients.
LSTM uses a repeating chain-like structure with interacting layers in each unit. The
LSTM network in this study comprises an individual hidden layer of LSTM with a drop-
out layer, followed by a common fully connected feedforward layer and a single output
neuron with a sigmoid activation function to perform the binary classification.

Figure 9. The LSTM network architecture.

The CNN-LSTM, a combination of CNN and LSTM, is effective for capturing inter-
nal features in sequential data like time series or image sequences. This architecture,
which may also include an MLP, is suitable for datasets with both 2D and 1D structures,
where the input or output exhibits temporal characteristics. For instance, the drying
hopper temperature profile contains spatial features like peak temperature values and
specific patterns, along with temporal dependencies, making the CNN-LSTM network a
logical choice for processing such data. The CNN-LSTM architecture in this study em-
ploys 1D-CNN layers in the feature extraction process of input data incorporated with
LSTMs to support sequence forecasting, as shown in Figure 10.

Figure 8. The CNN network architecture.

J. Manuf. Mater. Process. 2023, 7, 164 12 of 25

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 12 of 26

time-series applications, 1D filters are used on subsequences of the long time series to
perform dimensionality reduction. The CNN network in this study consists of two 1D-
convolution layers, each followed by a dropout layer and a pooling layer at the end. The
output is then connected to a fully connected dense layer and a single output neuron
with a sigmoid activation function to perform the binary classification.

Figure 8. The CNN network architecture.

LSTM is a special type of RNN with gated cells that control the flow of information,
allowing it to retain important long-term information while discarding irrelevant short-
term information. This addresses the problem of exploding and vanishing gradients.
LSTM uses a repeating chain-like structure with interacting layers in each unit. The
LSTM network in this study comprises an individual hidden layer of LSTM with a drop-
out layer, followed by a common fully connected feedforward layer and a single output
neuron with a sigmoid activation function to perform the binary classification.

Figure 9. The LSTM network architecture.

The CNN-LSTM, a combination of CNN and LSTM, is effective for capturing inter-
nal features in sequential data like time series or image sequences. This architecture,
which may also include an MLP, is suitable for datasets with both 2D and 1D structures,
where the input or output exhibits temporal characteristics. For instance, the drying
hopper temperature profile contains spatial features like peak temperature values and
specific patterns, along with temporal dependencies, making the CNN-LSTM network a
logical choice for processing such data. The CNN-LSTM architecture in this study em-
ploys 1D-CNN layers in the feature extraction process of input data incorporated with
LSTMs to support sequence forecasting, as shown in Figure 10.

Figure 9. The LSTM network architecture.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 13 of 26

Figure 10. The CNN-LSTM network architecture.

In this paper, in addition to the mentioned deep learning algorithms, several ma-
chine learning algorithms are used along with deep learning techniques to perform a
comprehensive evaluation of these algorithms on the drying hopper use case dataset.
Both non-linear algorithms like K-nearest neighbors, classification, and regression tree,
SVM, and naïve Bayes, as well as ensemble algorithms like bagged decision trees, ran-
dom forest, extra trees, and gradient boosting, are used to evaluate the performances of
these algorithms compared to the deep learning algorithms and traditional methods like
dynamic time warping with K-nearest neighbor.

3.3. Performance Metrics
In this study, accuracy, precision, recall, and f1 scores with the below definitions are

used as performance measures. To calculate these measures, four terms need to be intro-
duced, which are True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN). For the rest of this paper, non-events are identified as the positive class,
whereas events are identified as the negative class, where FP refers to the events wrong-
ly identified as non-events, TN refers to the events accurately identified as events, FN re-
fers to the non-events wrongly identified as events, and TP refers to non-events accurate-
ly identified as non-events. Accuracy is defined as the ratio between correctly classified
examples and the total number of examples. It can be misleading, especially in the case
of an imbalanced dataset. Precision is defined as the ratio between correctly predicted
positive class and all predicted positive class examples, or the definition can be provided
in terms of negative class as well. It is a common measure to identify the percentage of
examples from a class that are correctly identified in terms of predicted labels. Recall is
defined as the ratio between the examples that are actually positive and the examples
that are predicted as negative, but actually positive. This definition can be extended to
the negative class perspective as well. It is also a measure to identify the percentage of
examples from a class that are correctly identified in terms of the actual labels. The F1
score is probably the most suitable performance measure that considers the data imbal-
ance issue. It is a more structured performance measure using precision and recall. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ 𝑇𝑃 ൅ 𝑇𝑁𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑃 ൅ 𝐹𝑁 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ 𝑇𝑃𝑇𝑃 ൅ 𝐹𝑃 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ 𝑇𝑃𝑇𝑃 ൅ 𝐹𝑁 (3)

𝐹1 ൌ 2 ൈ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൈ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൅ 𝑅𝑒𝑐𝑎𝑙𝑙 (4)

Figure 10. The CNN-LSTM network architecture.

LSTM is a special type of RNN with gated cells that control the flow of information,
allowing it to retain important long-term information while discarding irrelevant short-term
information. This addresses the problem of exploding and vanishing gradients. LSTM uses
a repeating chain-like structure with interacting layers in each unit. The LSTM network in
this study comprises an individual hidden layer of LSTM with a dropout layer, followed by
a common fully connected feedforward layer and a single output neuron with a sigmoid
activation function to perform the binary classification.

The CNN-LSTM, a combination of CNN and LSTM, is effective for capturing internal
features in sequential data like time series or image sequences. This architecture, which
may also include an MLP, is suitable for datasets with both 2D and 1D structures, where
the input or output exhibits temporal characteristics. For instance, the drying hopper
temperature profile contains spatial features like peak temperature values and specific
patterns, along with temporal dependencies, making the CNN-LSTM network a logical
choice for processing such data. The CNN-LSTM architecture in this study employs 1D-
CNN layers in the feature extraction process of input data incorporated with LSTMs to
support sequence forecasting, as shown in Figure 10.

In this paper, in addition to the mentioned deep learning algorithms, several machine
learning algorithms are used along with deep learning techniques to perform a comprehen-
sive evaluation of these algorithms on the drying hopper use case dataset. Both non-linear
algorithms like K-nearest neighbors, classification, and regression tree, SVM, and naïve
Bayes, as well as ensemble algorithms like bagged decision trees, random forest, extra trees,
and gradient boosting, are used to evaluate the performances of these algorithms compared
to the deep learning algorithms and traditional methods like dynamic time warping with
K-nearest neighbor.

J. Manuf. Mater. Process. 2023, 7, 164 13 of 25

3.3. Performance Metrics

In this study, accuracy, precision, recall, and f1 scores with the below definitions
are used as performance measures. To calculate these measures, four terms need to be
introduced, which are True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN). For the rest of this paper, non-events are identified as the positive class,
whereas events are identified as the negative class, where FP refers to the events wrongly
identified as non-events, TN refers to the events accurately identified as events, FN refers
to the non-events wrongly identified as events, and TP refers to non-events accurately
identified as non-events. Accuracy is defined as the ratio between correctly classified
examples and the total number of examples. It can be misleading, especially in the case of
an imbalanced dataset. Precision is defined as the ratio between correctly predicted positive
class and all predicted positive class examples, or the definition can be provided in terms
of negative class as well. It is a common measure to identify the percentage of examples
from a class that are correctly identified in terms of predicted labels. Recall is defined as the
ratio between the examples that are actually positive and the examples that are predicted
as negative, but actually positive. This definition can be extended to the negative class
perspective as well. It is also a measure to identify the percentage of examples from a
class that are correctly identified in terms of the actual labels. The F1 score is probably the
most suitable performance measure that considers the data imbalance issue. It is a more
structured performance measure using precision and recall.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2 × Precision × Recall

Precision + Recall
(4)

4. Results

In this chapter, the experimental setup is described and the results are shown. Fur-
thermore, a comparative analysis was performed on the deep learning algorithms and
traditional techniques dedicated to time series.

4.1. Experimental Setup

In this paper, the Python programming language was used for data preprocessing,
model development, experimental runs, and evaluation. A variety of Python frameworks
like Pandas and Numpy for data preprocessing and neural network frameworks like Ten-
sorflow and Keras were used for model development and experimentation. The experiment
was run on Windows 10, Intel® core TM i5-3337U CPU @ 1.8 GHz.

The dataset in this study suffered from class imbalance, with only 22.39% of examples
belonging to class 1. The distribution of different classes in the dataset is in Table 2. When
deep learning models such as CNN, LSTM, and MLP were trained on the imbalanced data,
the test accuracy was misleadingly high at 94.34%, primarily due to the majority class
overwhelming the predictions. To address this issue, three techniques were employed:
ensemble learning, oversampling, and SMOTE. In ensemble learning, the training dataset was
divided into groups, and multiple models were trained on each group. Majority voting
was used to combine the predictions. Three different approaches were taken for ensemble
learning, each with different groupings of the data.

J. Manuf. Mater. Process. 2023, 7, 164 14 of 25

Table 2. Training and test set in the case study dataset.

Dataset Class No. of Examples Percentage

Training Set Event (class 1) 791 22.39%
Non-event (class 0) 2742 77.61%

Test Set
Event (class 1) 50 5.66%

Non-event (class 0) 833 94.34%

Approach 1: The 2742 training examples of class 0 were divided into five groups. The
first three groups had 548 examples each, the other two groups had 549 examples each.
Then, 548 or 549 examples from class 1 were chosen randomly. These 548 examples from
class 1 and class 0 were combined and shuffled to obtain one group of datasets for training.
In this way, five groups of training sets were generated; each of them was trained using a
separate model, and majority voting was used.

Approach 2: The 2742 training examples of class 0 were divided into three groups. The
first two groups had 791 examples each and the last group had 1160 examples. Afterward,
791 examples of class 1 were combined with each group to build three groups of datasets.
Each group was shuffled properly before training. In this way, three groups of training sets
were generated; each of them was trained under a separate model using majority voting.

Approach 3: The 2742 training examples were divided into three equal segments
where each of the groups had 914 examples. Afterward, 791 examples were combined and
shuffled with each of the three groups. This way, each training dataset had 1705 training
examples. Majority voting was used similarly.

For oversampling, examples from the minority class were randomly chosen and
combined with the majority class to balance the data. SMOTE, a synthetic oversampling
technique, was also utilized. The effectiveness of these techniques was evaluated in terms
of precision and recall.

4.2. Hyperparameter Tuning

To use deep learning algorithms, hyperparameter tuning was a very important step. A
lot of hyperparameters exist in a deep learning algorithm from which the ideal combination
needs to be selected for optimal performance. Table 3 shows the summary of the hyperpa-
rameters and model parameters for the initial experiment on hyperparameter tuning.

Table 3. Parameter and hyperparameter used for DL model training. # symbol indicate the number.

Model/Layer Hyperparameter Values

CNN
Filters 8, 16

Filter Size 3, 5, 7
Activation Function ReLu

LSTM No. of LSTM neurons 100
Dropout Dropout rate 0.5

Max Pooling Pooling Size 2

Fully connected Layer
Dense Activation Function ReLu

Output Activation Function Sigmoid
No. of Neurons 200

Model Parameters
Batch Size 32, 64, 128

Learning Rate 0.01
No. of Epochs 100

A series of experiments were conducted to determine the optimal hyperparameters for
the neural network model. Different values for the number of filters, filter size, and batch
size were tested, whereas other hyperparameters were kept constant. Ten experimental runs
were performed to assess the test accuracy and variability for each set of hyperparameters.

J. Manuf. Mater. Process. 2023, 7, 164 15 of 25

Box plots shown in Figure 11 were generated to visualize the results, showing that filter
size 5 exhibited less variability in accuracy compared to other sizes.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 15 of 26

nation needs to be selected for optimal performance. Table 3 shows the summary of the
hyperparameters and model parameters for the initial experiment on hyperparameter
tuning.

Table 3. Parameter and hyperparameter used for DL model training. # symbol indicate the num-
ber.

Model/Layer Hyperparameter Values

CNN
Filters 8, 16

Filter Size 3, 5, 7
Activation Function ReLu

LSTM No. of LSTM neurons 100
Dropout Dropout rate 0.5

Max Pooling Pooling Size 2

Fully connected Layer
Dense Activation Function ReLu

Output Activation Function Sigmoid
No. of Neurons 200

Model Parameters
Batch Size 32, 64, 128

Learning Rate 0.01
No. of Epochs 100

A series of experiments were conducted to determine the optimal hyperparameters
for the neural network model. Different values for the number of filters, filter size, and
batch size were tested, whereas other hyperparameters were kept constant. Ten experi-
mental runs were performed to assess the test accuracy and variability for each set of
hyperparameters. Box plots shown in Figure 11 were generated to visualize the results,
showing that filter size 5 exhibited less variability in accuracy compared to other sizes.

Figure 11. Hyperparameter tuning results. # symbol indicates the number of filters.

The number of filters was selected as 16 due to its higher average accuracy, and a
batch size of 64 was chosen for its higher average and lower variability. These finalized
hyperparameters, along with other constant values, were used in a final test run. A vali-
dation split of 10% was employed, and the graph of accuracy and loss over epochs, as
shown in Figure 12, indicated convergence to an optimal solution. However, since over-
fitting was observed, as evidenced by the fluctuating learning curve, the number of
epochs was set to 10 for the final experiment.

Figure 11. Hyperparameter tuning results. # symbol indicates the number of filters.

The number of filters was selected as 16 due to its higher average accuracy, and a
batch size of 64 was chosen for its higher average and lower variability. These finalized
hyperparameters, along with other constant values, were used in a final test run. A
validation split of 10% was employed, and the graph of accuracy and loss over epochs,
as shown in Figure 12, indicated convergence to an optimal solution. However, since
overfitting was observed, as evidenced by the fluctuating learning curve, the number of
epochs was set to 10 for the final experiment.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 16 of 26

Figure 12. Accuracy and loss vs. Epoch.

4.3. Experiment Results
We followed the approach proposed in [22] and, in the final experiment, 10 runs

were conducted for each deep learning and machine learning algorithm. The primary
objective in this drying hopper case was to accurately detect events for predictive
maintenance purposes. Since the number of non-events was significantly higher, correct-
ly identifying non-events automatically resulted in high accuracy regardless of whether
the model was able to identify the events or not. However, the precision of class 0 (non-
events) and recall of class 1 (events) were crucial in this case, as they indicated the num-
ber of FPs. It is desirable to have the precision of class 0 and recall of class 1 as high as
possible or the number of FPs as low as possible.

The summary of the ten experimental runs using CNN on the dataset using the ensem-
ble learning approach for dealing with imbalancedness is presented in Table 4. Among the
three approaches, Approach 3 achieved the best average accuracy of 99.30%. The FP val-
ues (events identified as non-events) ranged from 1 to 2, while the FN values (non-
events identified as events) varied between 0 and 7 in the ten experimental runs. The
first experimental run in approach 3 performed the best, misclassifying only one exam-
ple as a non-event, which was an event. The table depicts the best results obtained from
these three approaches in the ten experimental runs.

Table 4. Result summary of CNN using different ensemble learning approaches.

Ensemble Metrics Best Experimental Run Average Accuracy of 10 Runs

Approach 1

TP 832

0.9866
TN 49
FP 1
FN 1

Accuracy 0.9977

Approach 2

TP 833

0.9900
TN 48
FP 2
FN 0

Accuracy 0.9977

Approach 3

TP 833

0.9930
TN 49
FP 1
FN 0

Accuracy 0.9989

Figure 12. Accuracy and loss vs. Epoch.

4.3. Experiment Results

We followed the approach proposed in [22] and, in the final experiment, 10 runs were
conducted for each deep learning and machine learning algorithm. The primary objective
in this drying hopper case was to accurately detect events for predictive maintenance
purposes. Since the number of non-events was significantly higher, correctly identifying
non-events automatically resulted in high accuracy regardless of whether the model was
able to identify the events or not. However, the precision of class 0 (non-events) and recall
of class 1 (events) were crucial in this case, as they indicated the number of FPs. It is
desirable to have the precision of class 0 and recall of class 1 as high as possible or the
number of FPs as low as possible.

The summary of the ten experimental runs using CNN on the dataset using the ensemble
learning approach for dealing with imbalancedness is presented in Table 4. Among the three ap-
proaches, Approach 3 achieved the best average accuracy of 99.30%. The FP values (events
identified as non-events) ranged from 1 to 2, while the FN values (non-events identified as
events) varied between 0 and 7 in the ten experimental runs. The first experimental run in
approach 3 performed the best, misclassifying only one example as a non-event, which was
an event. The table depicts the best results obtained from these three approaches in the ten
experimental runs.

J. Manuf. Mater. Process. 2023, 7, 164 16 of 25

Table 4. Result summary of CNN using different ensemble learning approaches.

Ensemble Metrics Best Experimental Run Average Accuracy of 10 Runs

Approach 1

TP 832

0.9866
TN 49
FP 1
FN 1

Accuracy 0.9977

Approach 2

TP 833

0.9900
TN 48
FP 2
FN 0

Accuracy 0.9977

Approach 3

TP 833

0.9930
TN 49
FP 1
FN 0

Accuracy 0.9989

In the experimental setup, ensemble learning was applied by combining undersam-
pling approaches and using majority voting to predict the class of test examples. Among the
three approaches, Segment 2 of Approach 3, which combined 914 training examples of class
0 and 791 training examples of class 1, achieved the best results in four experimental runs.
This indicates that these 914 training examples of class 0 contained significant information
for training a CNN model. By using CNN and ensemble learning, the number of FPs can be
reduced to 1 and FNs to 0. The best accuracy achieved using CNN and ensemble learning
was 99.30% (Approach 3), with only one example being misclassified in the maximum
number of runs. The results are presented in Table 5.

Table 5. Best undersamples in 10 experimental runs using CNN network.

Metrics Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run8 Run 9 Run 10

TP 833 833 833 831 833 833 833 831 833 833
TN 49 49 47 49 48 49 49 49 49 48
FP 1 1 3 1 2 1 1 1 1 2
FN 0 0 0 2 0 0 0 2 0 0

Accuracy 0.9989 0.9989 0.9966 0.9966 0.9977 0.9989 0.9966 0.9966 0.9989 0.9977
Approach and

Segment
App 3,
Seg 2

App 3,
Seg 2

App 1,
Seg 4

App 2,
Seg 3

App 2,
Seg 2

App 3,
Seg 2

App 3,
Seg 2

App 2,
Seg 2

App 1,
Seg 2

App 1,
Seg 2

The hyperparameter setup for LSTM was the same as that of CNN, including the fully
connected layer. The experiment began with 200 LSTM units in the LSTM layer following
the input layer, and significant results were obtained. The summary of the ten experimental
runs using the LSTM network on the dataset using the ensemble learning approach for dealing
with imbalancedness is presented in Table 6. In the case of LSTM, Approach 3 demonstrated
the best result. The results were quite similar to CNN, with the three approaches producing
almost identical outcomes with slight variations. Approach 3 once again delivered the
best average accuracy. The subsequent table displays the best results achieved in the ten
experimental runs for LSTM.

J. Manuf. Mater. Process. 2023, 7, 164 17 of 25

Table 6. Result summary of LSTM network using different ensemble learning approaches.

Ensemble Metrics Best Experimental Run Average Accuracy of 10 Runs

Approach 1

TP 833

0.9874
TN 48
FP 2
FN 0

Accuracy 0.9977

Approach 2

TP 832

0.9855
TN 48
FP 2
FN 1

Accuracy 0.9966

Approach 3

TP 831

0.9905
TN 48
FP 2
FN 2

Accuracy 0.9955

Table 7 displays the best undersamples of the ensemble learning in each run for LSTM.
In four experimental runs, the best result was obtained from Segment 2 of Approach 1,
where 1160 training examples of class 0 (1583 to 2742) and 791 training examples of class 1
were combined. This indicates that these 1160 training examples of class 0 are valuable for
training an LSTM model. Thus, by using LSTM and ensemble learning, the number of FPs
can be reduced to 2 and FNs to 0. The highest accuracy obtained using LSTM and ensemble
learning was 99.05% (approach 3), where two examples were misclassified in most runs.

Table 7. Best undersamples in 10 experimental runs using LSTM network.

Metrics Run 1 Run 2 Run 3 Run 4 Run 5 Run6 Run 7 Run 8 Run 9 Run 10

TP 833 831 832 832 833 827 833 833 828 831
TN 47 49 47 48 47 48 48 48 49 49
FP 3 1 3 2 3 2 2 2 1 1
FN 0 2 1 1 0 6 0 0 5 2

Accuracy 0.9966 0.9966 0.9955 0.9966 0.9966 0.9909 0.9977 0.9977 0.9932 0.9966
Approach and

Segment
App 2,
Seg 3

App 2,
Seg 3

App 1,
Seg 3

App 3,
Seg 2

App 2,
Seg 2

App 1,
Seg 3

App 1,
Seg 2

App 1,
Seg 2&3

App 2,
Seg 3

App 2,
Seg 3

The same hyperparameters setup used in CNN and LSTM was used for the CNN-
LSTM model. The summary of the ten experimental runs using the CNN-LSTM network on
the dataset using the ensemble learning approach for dealing with imbalancedness is presented in
Table 8. Although Approach 3 worked best for the CNN and LSTM models, for CNN-LSTM,
Approach 1 worked well with 98.75% average accuracy across ten runs.

Table 8. Result summary of CNN-LSTM network using different ensemble learning approaches.

Ensemble Metrics Best Experimental Run Average Accuracy of 10 Runs

Approach 1

TP 833

0.9875
TN 48
FP 2
FN 0

Accuracy 0.9977

J. Manuf. Mater. Process. 2023, 7, 164 18 of 25

Table 8. Cont.

Ensemble Metrics Best Experimental Run Average Accuracy of 10 Runs

Approach 2

TP 833

0.9826
TN 48
FP 2
FN 0

Accuracy 0.9977

Approach 3

TP 833

0.9807
TN 47
FP 3
FN 0

Accuracy 0.9966

The best undersamples of the ensemble learning in each run are shown in Table 9. By
using a combination of CNN and LSTM, we can reduce the number of FPs to as low as 1
and FNs to 0. Although Approach 1 worked best in terms of average accuracy, it had some
outliers across ten runs, which was not the case for Approaches 2 and 3.

Table 9. Best undersamples in 10 experimental runs using CNN-LSTM network.

Metrics Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

TP 833 832 832 833 833 832 832 832 833 831
TN 49 48 48 48 48 47 48 46 46 49
FP 1 2 2 2 2 3 2 4 4 1
FN 0 1 1 0 0 1 1 1 0 2

Accuracy 0.9989 0.9966 0.9966 0.9977 0.9977 0.9955 0.9966 0.9943 0.9955 0.9966
Approach and

Segment
App 2,
Seg 2

App 1,
Seg 4

App 1,
Seg 3

App 1,
Seg 2

App 3,
Seg 2

App 2,
Seg 3

App 3,
Seg 2

App 2,
Seg 2

App 2,
Seg 3

App 1,
Seg 5

Table 10 shows the summary of the ten experimental runs using SMOTE to deal with
imbalancedness. In the training set, 2742 examples belonged to class 0, and 791 examples
belonged to class 0. Using SMOTE, 1951 more samples were generated from the minority
class, so class 1 also had 2742 examples. These 5484 examples were combined and shuffled
properly for training the dataset using CNN, LSTM, and CNN-LSTM.

Table 10. Result summary of using SMOTE as the oversampling technique using different networks.

Network Metrics Best Experimental Run Average Accuracy of 10 Runs

CNN

TP 833

0.9942
TN 49
FP 1
FN 0

Accuracy 0.9989

LSTM

TP 832

0.9830
TN 49
FP 1
FN 1

Accuracy 0.9977

CNN-LSTM

TP 832

0.9900
TN 49
FP 1
FN 1

Accuracy 0.9977

J. Manuf. Mater. Process. 2023, 7, 164 19 of 25

Overall, CNN performed very well when SMOTE was used for data augmentation,
achieving an average accuracy of 99.42% across ten runs with no outliers in FP values. By
utilizing SMOTE, CNN demonstrated outstanding performance, reducing the number of
FP to 1 and FN to 0. Additionally, CNN exhibited less variability in terms of FP and FN
values, with only one outlier in FNs.

To compare the performance of deep learning with other existing approaches, some
machine learning algorithms were used like K-nearest neighbor (KNN), Support Vector
Machine (SVM), Naïve Bayes (NB), Decision Tree (DT), Random Forest (RF), and Gradient
Boosting (GB). Table 11 summarizes the results obtained from the machine learning model
using the original, non-augmented dataset, and the SMOTE dataset.

Table 11. Result summary of applying machine learning algorithms on the original dataset and
augmented dataset using SMOTE.

Network Metrics KNN SVM NB DT RF GB Best Algorithm

Original
Dataset

TP 833 822 817 813 820 822

SVM & GB

TN 38 49 48 50 49 49
FP 12 1 2 0 1 1
FN 0 11 16 20 13 11

Accuracy 0.9864 0.9864 0.9796 0.9773 0.9841 0.9864
Run Number 3 1 4 9 2 3

Average
Accuracy 0.9742 0.9789 0.9692 0.9621 0.9735 0.9684 SVM

Augmented
Dataset

with
SMOTE

TP 833 818 817 815 815 820

GB

TN 44 50 48 49 49 49
FP 6 0 2 1 1 1
FN 0 15 16 18 18 13

Accuracy 0.9932 0.9830 0.9796 0.9785 0.9785 0.9841
Run Number 6 2 5 1 8 6

Accuracy 0.9813 0.9766 0.9703 0.9643 0.9601 0.9732 KNN

5. Discussion

The results across all evaluated algorithms using different approaches shown in the
previous section are summarized below. It shows the average result obtained (accuracy)
for an algorithm in ten experimental runs. Tables 12 and 13 summarize the results. From
this summary, it is evident that the CNN method works best in terms of average results in
ten experimental runs for this problem. For ensemble learning, Approach 3 shows the best
accuracy using CNN, and for SMOTE, CNN works best among all algorithms.

Table 12. Result summary (average result in ten runs).

Method Ensemble Learning

Approach 1 Approach 2 Approach 3

Algorithm CNN LSTM CNN-LSTM CNN LSTM CNN-LSTM CNN LSTM CNN-LSTM
Accuracy 0.9866 0.9874 0.9875 0.9900 0.9855 0.9826 0.9930 0.9905 0.9807

Method SMOTE

Approach 1 Approach 2 Approach 3

Algorithm CNN LSTM CNN-LSTM KNN SVM NB DT RF GB
Accuracy 0.9942 0.9830 0.9900 0.9813 0.9766 0.9703 0.9643 0.9601 0.9732

J. Manuf. Mater. Process. 2023, 7, 164 20 of 25

Table 13. Result summary (average result in ten runs).

Method Original Dataset

Algorithm KNN SVM NB DT RF GB

Accuracy 0.9742 0.9789 0.9692 0.9621 0.9735 0.9684

In the following subsections, we discuss some of the challenges we faced in this study,
the applied solutions, and the lessons learned.

5.1. Event Definition and Subsequence Extraction

The purpose of this study was to automatically detect unusual events in an industrial
drying hopper in the polymer manufacturing industry. The raw dataset obtained from
the machine interface required preprocessing from an expert to be suitable for ML or
DL algorithms. Despite primary preprocessing, the dataset still had missing values and
lacked labeling. The challenge was to define accurate unusual events based on temperature
profiles, as there was no clear classification of different classes. To address this, events
were defined at the beginning of the experiment, considering all variations in unusual
events. Some assumptions were made to maintain consistency in defining events, such as
disregarding certain small peaks in temperature values lasting only a few minutes. Two
major limitations were the lack of a physics-based model for the drying hopper and the
wide variety of potential event variations.

The study aimed to identify any unusual event rather than specifying the type of
event. An hourly basis was used to simplify labeling, where each hour with unusual
temperature profiles was labeled as an event. A sliding window approach was employed
in the data preprocessing step, with a window length and sliding step of 60 min, resulting
in 4416 examples. Alternative sliding step values could have been used, but this would
complicate the labeling process, as not all rows would have the same labels. Defining events
based on a percentage of rows labeled as 1 in an hour might lead to misinterpretations.

5.2. Data Imbalance Issue

During the training phase, the dataset showed class imbalance, with 77.61% examples
from class 0 and 22.39% from class 1. The initial trial using a simple neural network mis-
classified all test examples as class 0. This issue was classified as an imbalance classification
problem. Subsequent attempts using CNN, LSTM, and CNN-LSTM on the imbalanced
dataset resulted in the same misclassification as the simple neural network. However, SVM,
KNN, and other machine learning algorithms performed well with the imbalanced dataset.

To address the imbalance issue for deep learning algorithms, ensemble learning with
undersampling, and SMOTE as an oversampling technique were employed, leading to
reasonable results. For machine learning algorithms, SMOTE was also used as a data
augmentation technique to assess their performance. Undersampling models were com-
bined as an ensemble learner, as using a single undersampling approach alone might not
guarantee optimal performance. Ensemble learning with majority voting resolved issues
where some undersamples performed poorly due to the stochastic nature of the deep
learning algorithms. Random oversampling was not utilized due to its lack of value and
potential overfitting. However, SMOTE being a more structured oversampling approach,
was preferred to control overfitting effectively using techniques like L2 regularization
and dropout.

Additionally, class weighting was tested by assigning higher weights to the minority
class during training. However, this approach did not yield satisfactory results, as all test
examples were still classified as the majority class. As a result, the thesis focused solely
on ensemble learning with undersampling and SMOTE as oversampling techniques to
address the data imbalance problem.

J. Manuf. Mater. Process. 2023, 7, 164 21 of 25

5.3. Result Interpretation

In this study, the performance measures used are precision, recall, F1 score, and
accuracy. Precision, recall, and accuracy depend on TP, TN, FP, and FN values, whereas
the F1 score is derived from precision and recall. In the context of manufacturing, fault
detection is crucial for predictive or preventive maintenance. The main goal is to accurately
identify events to avoid machine failure or related issues. Minimizing FP values (events
wrongly identified as non-events) and maximizing TN values (events accurately identified
as events) are the primary objectives. Reducing FN values (non-events wrongly identified
as events) and increasing TP values (non-events accurately identified as non-events) are
the secondary objectives. For instance, if the algorithm identifies a non-event as an event,
the operator needs to manually verify it, which could be time-consuming if such instances
are frequent. On the other hand, if the algorithm identifies an event as a non-event, it
can lead to serious issues as the operator remains unaware of the actual problem. In this
case, the operator has two and a half hours to fix the identified event, given that each
example’s length is one hour. Therefore, after training the dataset and performing primary
preprocessing, the algorithm can predict the class of any future one-hour example extracted
from sensors and take appropriate actions accordingly. With Industry 4.0 and the AI
revolution, this type of automation is highly important in any manufacturing plant.

The primary goal in manufacturing is to reduce FP values. In the experimental setup,
consistency in the number of FP values across ten runs is desirable for algorithms using
ensemble learning or SMOTE. The objective of each run is to find the best model with high
accuracy and fewer FP values. The selection process involves picking the model with the
highest accuracy first, and if it also has fewer FP values, it is considered the best model.
In most cases, the model with the best accuracy also has the least number of FP values,
though there are some exceptions where the accuracy is high due to correctly identifying
many non-events.

Overall, CNN performs exceptionally well in terms of accuracy and consistency in
FP and FN values, making it the preferred algorithm for classifying this dataset into
two categories.

6. Conclusions and Future Works

The recent evolution in Industry 4.0, artificial intelligence, and the Internet of Things
(IoT) has increased data availability in various domains. This is why data analytics has
become highly popular over the years with newer algorithms and techniques being devel-
oped regularly for continuous improvement. Among different types of data, time-series
data have become highly available in various domains and various analyses on time se-
ries are frequently being performed by researchers. This study explores the classification
of time-series data obtained from the temperature sensors in a polymer manufacturing
industry’s drying hopper using deep learning algorithms. The dataset required preprocess-
ing to be suitable for deep learning and machine learning algorithms. The classification
task involved defining two categories and addressing the imbalance in the data using
ensemble learning with undersampling and SMOTE as an oversampling technique. The
results indicated that CNN performed the best in classifying this dataset. Previous research
on the same dataset focused on understanding the drying hopper process and pattern
recognition [37,39]. Future work includes defining events more precisely, categorizing
events into different types, exploring variable windowing techniques, and considering
more advanced deep learning approaches, such as residual networks, multi-channel CNNs,
and GRU variants for improved classification, especially for multiclass scenarios.

There are several limitations that must be considered when interpreting the results
of this paper. This paper was written under certain assumptions, timelines, and resource
limitations, with a primary focus on providing a general model that emphasizes prepro-
cessing and addressing imbalance issues. Given the lack of clear physics-based definitions
for events and non-events, the paper adopted a data-driven modeling approach, using the
simplest method for event classification. While the complete removal of subjectivity and

J. Manuf. Mater. Process. 2023, 7, 164 22 of 25

biases is impossible and arguably not desirable, our intention is to maintain transparency
by articulating the process and methodology used, enabling our audience to understand
our biases, intent, understanding, and their influence on the content of this paper.

Author Contributions: Conceptualization, M.M.R. and T.W.; Methodology, M.M.R. and T.W.; Val-
idation, M.M.R. and T.W.; Formal Analysis, M.M.R., M.A.F. and T.W.; Data Curation, M.M.R.;
Writing—Original Draft Preparation, M.M.R. and M.A.F.; Writing—Review and Editing, M.A.F. and
T.W.; Visualization, M.M.R., M.A.F. and T.W.; Supervision, T.W.; Project Administration, T.W.; Fund-
ing Acquisition, T.W. All authors have read and agreed to the published version of the manuscript.

Funding: This material is based upon the study supported by (i) the U.S. Department of Energy’s
Office of Energy Efficiency and Renewable Energy (EERE) under the Advanced Manufacturing Office
Award Number DE-EE0007613 (Disclaimer: This report was prepared as an account of the work
sponsored by an agency of the United States Government. Neither the United States government nor
any agency thereof, nor any of its employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness); (ii) the National Science
Foundation under Grant No. 2119654. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

Data Availability Statement: Data was collected in an industrial environment during regular pro-
duction and no publically available and subject to restrictions given its competitive nature.

Acknowledgments: The authors thank Maven Machines, esp. Samuel Swerdlow and Avishai Geller,
and Conair, esp. Alan Landers and Richard Shaffer, for the fruitful collaboration and their valu-
able support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mccormick, M.R.; Wuest, T. Challenges for Smart Manufacturing and Industry 4.0 Research in Academia: A Case Study; ResearchGate:

Berlin, Germany, 2023. [CrossRef]
2. Oztemel, E.; Gursev, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020, 31, 127–182. [CrossRef]
3. Hsu, C.-Y.; Liu, W.-C. Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in

semiconductor manufacturing. J. Intell. Manuf. 2021, 32, 823–836. [CrossRef]
4. Jones, S.S.; Evans, R.S.; Allen, T.L.; Thomas, A.; Haug, P.J.; Welch, S.J.; Snow, G.L. A multivariate time series approach to modeling

and forecasting demand in the emergency department. J. Biomed. Inform. 2009, 42, 123–139. [CrossRef]
5. Du, Z.; Lawrence, W.R.; Zhang, W.; Zhang, D.; Yu, S.; Hao, Y. Interactions between climate factors and air pollution on daily

HFMD cases: A time series study in Guangdong, China. Sci. Total Environ. 2019, 656, 1358–1364. [CrossRef]
6. Perez-D’Arpino, C.; Shah, J.A. Fast target prediction of human reaching motion for cooperative human-robot manipulation tasks

using time series classification. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA),
Seattle, WA, USA, 26–30 May 2015; pp. 6175–6182. [CrossRef]

7. Farahani, M.A.; Vahid, A.; Goodwell, A.E. Evaluating Ecohydrological Model Sensitivity to Input Variability with an Information-
Theory-Based Approach. Entropy 2022, 24, 994. [CrossRef]

8. Maknickienė, N.; Rutkauskas, A.V.; Maknickas, A. Investigation of financial market prediction by recurrent neural network.
Innov. Technol. Sci. Bus. Educ. 2011, 2, 3–8.

9. Martín, L.; Zarzalejo, L.F.; Polo, J.; Navarro, A.; Marchante, R.; Cony, M. Prediction of global solar irradiance based on time series
analysis: Application to solar thermal power plants energy production planning. Sol. Energy 2010, 84, 1772–1781. [CrossRef]

10. Farahani, M.A.; McCormick, M.R.; Gianinny, R.; Hudacheck, F.; Harik, R.; Liu, Z.; Wuest, T. Time-series pattern recognition in
Smart Manufacturing Systems: A literature review and ontology. J. Manuf. Syst. 2023, 69, 208–241. [CrossRef]

11. Muth, J.F. Optimal Properties of Exponentially Weighted Forecasts. J. Am. Stat. Assoc. 1960, 55, 299–306. [CrossRef]
12. Bagnall, A.; Lines, J.; Bostrom, A.; Large, J.; Keogh, E. The great time series classification bake off: A review and experimental

evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 2017, 31, 606–660. [CrossRef]
13. Berndt, D.J.; Clifford, J. Using Dynamic Time Warping to Find Patterns in Time Series. In Proceedings of the 3rd International

Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, 31 July–1 August 1994; pp. 359–370.
14. Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ,

USA, 2015.
15. He, G.; Li, Y.; Zhao, W. An uncertainty and density based active semi-supervised learning scheme for positive unlabeled

multivariate time series classification. Knowl.-Based Syst. 2017, 124, 80–92. [CrossRef]

https://doi.org/10.13140/RG.2.2.24477.90085
https://doi.org/10.1007/s10845-018-1433-8
https://doi.org/10.1007/s10845-020-01591-0
https://doi.org/10.1016/j.jbi.2008.05.003
https://doi.org/10.1016/j.scitotenv.2018.11.391
https://doi.org/10.1109/ICRA.2015.7140066
https://doi.org/10.3390/e24070994
https://doi.org/10.1016/j.solener.2010.07.002
https://doi.org/10.1016/j.jmsy.2023.05.025
https://doi.org/10.1080/01621459.1960.10482064
https://doi.org/10.1007/s10618-016-0483-9
https://doi.org/10.1016/j.knosys.2017.03.004

J. Manuf. Mater. Process. 2023, 7, 164 23 of 25

16. Tuballa, M.L.; Abundo, M.L. A review of the development of Smart Grid technologies. Renew. Sustain. Energy Rev. 2016, 59,
710–725. [CrossRef]

17. Batal, I.; Sacchi, L.; Bellazzi, R.; Hauskrecht, M. Multivariate Time Series Classification with Temporal Abstractions. In Proceedings
of the Twenty-Second International FLAIRS Conference, Sanibel Island, FL, USA, 19–21 May 2009.

18. Yang, K.; Shahabi, C. An efficient k nearest neighbor search for multivariate time series. Inf. Comput. 2007, 205, 65–98. [CrossRef]
19. Hills, J.; Lines, J.; Baranauskas, E.; Mapp, J.; Bagnall, A. Classification of time series by shapelet transformation. Data Min. Knowl.

Discov. 2014, 28, 851–881. [CrossRef]
20. Chang, Y.; Rubin, J.; Boverman, G.; Vij, S.; Rahman, A.; Natarajan, A.; Parvaneh, S. A Multi-Task Imputation and Classification

Neural Architecture for Early Prediction of Sepsis from Multivariate Clinical Time Series. In Proceedings of the 2019 Computing
in Cardiology Conference, Singapore, 8–11 September 2019. [CrossRef]

21. Lines, J.; Bagnall, A. Time series classification with ensembles of elastic distance measures. Data Min. Knowl. Discov. 2015, 29,
565–592. [CrossRef]

22. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.-A. Deep learning for time series classification: A review. Data Min.
Knowl. Discov. 2019, 33, 917–963. [CrossRef]

23. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

24. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, E.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9. [CrossRef]

25. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2016,
arXiv:1409.0473.

26. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. arXiv 2014, arXiv:1409.3215.
27. Alayba, A.M.; Palade, V.; England, M.; Iqbal, R. A Combined CNN and LSTM Model for Arabic Sentiment Analysis. In Machine

Learning and Knowledge Extraction; Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E., Eds.; Lecture Notes in Computer Science;
Springer International Publishing: Cham, Switzerland, 2018; Volume 11015, pp. 179–191. ISBN 978-3-319-99739-1.

28. Sainath, T.N.; Kingsbury, B.; Mohamed, A.; Dahl, G.E.; Saon, G.; Soltau, H.; Beran, T.; Aravkin, A.Y.; Ramabhadran, B.
Improvements to Deep Convolutional Neural Networks for LVCSR. In Proceedings of the 2013 IEEE Workshop on Automatic
Speech Recognition and Understanding, Olomouc, Czech Republic, 8–12 December 2013; pp. 315–320. [CrossRef]

29. Liu, C.-L.; Hsaio, W.-H.; Tu, Y.-C. Time Series Classification With Multivariate Convolutional Neural Network. IEEE Trans. Ind.
Electron. 2019, 66, 4788–4797. [CrossRef]

30. Huang, H.-S.; Liu, C.-L.; Tseng, V.S. Multivariate Time Series Early Classification Using Multi-Domain Deep Neural Network. In
Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 1–3
October 2018; pp. 90–98. [CrossRef]

31. Yazdanbakhsh, O.; Dick, S. Multivariate Time Series Classification using Dilated Convolutional Neural Network. arXiv 2019,
arXiv:1905.01697.

32. Karim, F.; Majumdar, S.; Darabi, H.; Harford, S. Multivariate LSTM-FCNs for Time Series Classification. Neural Netw. 2019, 116,
237–245. [CrossRef] [PubMed]

33. Guo, Z.; Liu, P.; Yang, J.; Hu, Y. Multivariate Time Series Classification Based on MCNN-LSTMs Network. In Proceedings of the
2020 12th International Conference on Machine Learning and Computing, Shenzhen, China, 15–17 February 2020; pp. 510–517.
[CrossRef]

34. Zheng, Y.; Liu, Q.; Chen, E.; Ge, Y.; Zhao, J.L. Exploiting multi-channels deep convolutional neural networks for multivariate time
series classification. Front. Comput. Sci. 2016, 10, 96–112. [CrossRef]

35. Lei, K.-C.; Zhang, X.D. An approach on discretizing time series using recurrent neural network. In Proceedings of the 2018
IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 2522–2526.
[CrossRef]

36. Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent Neural Networks for Multivariate Time Series with Missing
Values. Sci. Rep. 2018, 8, 6085. [CrossRef]

37. Lenz, J.; Swerdlow, S.; Landers, A.; Shaffer, R.; Geller, A.; Wuest, T. Smart Services for Polymer Processing Auxiliary Equipment:
An Industrial Case Study. Smart Sustain. Manuf. Syst. 2020, 4, 20200032. [CrossRef]

38. Shokoohi-Yekta, M.; Wang, J.; Keogh, E. On the Non-Trivial Generalization of Dynamic Time Warping to the Multi-Dimensional
Case. In Proceedings of the 2015 SIAM International Conference on Data Mining; Society for Industrial and Applied Mathematics,
Vancouver, BC, Canada, 30 April–2 May 2015; pp. 289–297. [CrossRef]

39. Kapp, V.; May, M.C.; Lanza, G.; Wuest, T. Pattern Recognition in Multivariate Time Series: Towards an Automated Event Detection
Method for Smart Manufacturing Systems. J. Manuf. Mater. Process. 2020, 4, 88. [CrossRef]

40. Shen, J.; Huang, W.; Zhu, D.; Liang, J. A Novel Similarity Measure Model for Multivariate Time Series Based on LMNN and DTW.
Neural Process. Lett. 2017, 45, 925–937. [CrossRef]

41. Mei, J.; Liu, M.; Wang, Y.-F.; Gao, H. Learning a Mahalanobis Distance-Based Dynamic Time Warping Measure for Multivariate
Time Series Classification. IEEE Trans. Cybern. 2016, 46, 1363–1374. [CrossRef]

https://doi.org/10.1016/j.rser.2016.01.011
https://doi.org/10.1016/j.ic.2006.08.004
https://doi.org/10.1007/s10618-013-0322-1
https://doi.org/10.22489/CinC.2019.110
https://doi.org/10.1007/s10618-014-0361-2
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/ASRU.2013.6707749
https://doi.org/10.1109/TIE.2018.2864702
https://doi.org/10.1109/DSAA.2018.00019
https://doi.org/10.1016/j.neunet.2019.04.014
https://www.ncbi.nlm.nih.gov/pubmed/31121421
https://doi.org/10.1145/3383972.3384013
https://doi.org/10.1007/s11704-015-4478-2
https://doi.org/10.1109/BIBM.2018.8621092
https://doi.org/10.1038/s41598-018-24271-9
https://doi.org/10.1520/SSMS20200032
https://doi.org/10.1137/1.9781611974010.33
https://doi.org/10.3390/jmmp4030088
https://doi.org/10.1007/s11063-016-9555-5
https://doi.org/10.1109/TCYB.2015.2426723

J. Manuf. Mater. Process. 2023, 7, 164 24 of 25

42. Vaughan, N.; Gabrys, B. Scoring and assessment in medical VR training simulators with dynamic time series classification. Eng.
Appl. Artif. Intell. 2020, 94, 103760. [CrossRef]

43. Ircio, J.; Lojo, A.; Mori, U.; Lozano, J.A. Mutual information based feature subset selection in multivariate time series classification.
Pattern Recognit. 2020, 108, 107525. [CrossRef]

44. Górecki, T.; Łuczak, M. Multivariate time series classification with parametric derivative dynamic time warping. Expert Syst.
Appl. 2015, 42, 2305–2312. [CrossRef]

45. Seto, S.; Zhang, W.; Zhou, Y. Multivariate Time Series Classification Using Dynamic Time Warping Template Selection for Human
Activity Recognition. In Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South
Africa, 1–7 December 2015; pp. 1399–1406. [CrossRef]

46. Łuczak, M. Univariate and multivariate time series classification with parametric integral dynamic time warping. J. Intell. Fuzzy
Syst. 2017, 33, 2403–2413. [CrossRef]

47. Baydogan, M.G.; Runger, G. Learning a symbolic representation for multivariate time series classification. Data Min. Knowl.
Discov. 2015, 29, 400–422. [CrossRef]

48. Lin, J.; Keogh, E.; Wei, L.; Lonardi, S. Experiencing SAX: A novel symbolic representation of time series. Data Min. Knowl. Discov.
2007, 15, 107–144. [CrossRef]

49. Schäfer, P.; Högqvist, M. SFA: A symbolic fourier approximation and index for similarity search in high dimensional datasets.
In Proceedings of the 15th International Conference on Extending Database Technology, Berlin, Germany, 27–30 March 2012;
pp. 516–527. [CrossRef]

50. Le Nguyen, T.; Gsponer, S.; Ilie, I.; O’Reilly, M.; Ifrim, G. Interpretable time series classification using linear models and
multi-resolution multi-domain symbolic representations. Data Min. Knowl. Discov. 2019, 33, 1183–1222. [CrossRef]

51. Dhariyal, B.; Le Nguyen, T.; Gsponer, S.; Ifrim, G. An Examination of the State-of-the-Art for Multivariate Time Series Classification.
In Proceedings of the 2020 International Conference on Data Mining Workshops (ICDMW), Sorrento, Italy, 17–20 November 2020;
pp. 243–250. [CrossRef]

52. Schäfer, P.; Leser, U. Multivariate Time Series Classification with WEASEL+MUSE 2018. arXiv 2018, arXiv:1711.11343.
53. 53. Zhao, B.; Lu, H.; Chen, S.; Liu, J.; Wu, D. Convolutional neural networks for time series classification. J. Syst. Eng. Electron.

2017, 28, 162–169. [CrossRef]
54. Ruiz, A.P.; Flynn, M.; Large, J.; Middlehurst, M.; Bagnall, A. The great multivariate time series classification bake off: A review

and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Discov. 2021, 35, 401–449. [CrossRef]
55. Song, W.; Liu, L.; Liu, M.; Wang, W.; Wang, X.; Song, Y. Representation Learning with Deconvolution for Multivariate Time Series

Classification and Visualization. In Data Science; Zeng, J., Jing, W., Song, X., Lu, Z., Eds.; Springer: Singapore, 2020; Volume 1257,
pp. 310–326. ISBN 9789811579806.

56. Kiangala, K.S.; Wang, Z. An Effective Predictive Maintenance Framework for Conveyor Motors Using Dual Time-Series Imaging
and Convolutional Neural Network in an Industry 4.0 Environment. IEEE Access 2020, 8, 121033–121049. [CrossRef]

57. Martínez-Arellano, G.; Terrazas, G.; Ratchev, S. Tool wear classification using time series imaging and deep learning. Int. J. Adv.
Manuf. Technol. 2019, 104, 3647–3662. [CrossRef]

58. Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks.
In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
QLD, Australia, 19–24 April 2015; pp. 4580–4584. [CrossRef]

59. Hsu, E.-Y.; Liu, C.-L.; Tseng, V.S. Multivariate Time Series Early Classification with Interpretability Using Deep Learning and
Attention Mechanism. In Advances in Knowledge Discovery and Data Mining; Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L.,
Huang, S.-J., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; Volume
11441, pp. 541–553, ISBN 978-3-030-16141-5.

60. Khan, M.; Wang, H.; Ngueilbaye, A.; Elfatyany, A. End-to-end multivariate time series classification via hybrid deep learning
architectures. Pers. Ubiquitous Comput. 2023, 27, 177–191. [CrossRef]

61. Tripathi, A.M. Enhancing Multivariate Time Series Classification Using LSTM and Evidence Feed Forward HMM. In Proceedings
of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–7. [CrossRef]

62. Gruenwald, L.; Chok, H.; Aboukhamis, M. Using Data Mining to Estimate Missing Sensor Data. In Proceedings of the Seventh
IEEE International Conference on Data Mining Workshops (ICDMW 2007), Omaha, NE, USA, 28–31 October 2007; pp. 207–212.
[CrossRef]

63. Bishop, C.M. Neural Networks for Pattern Recognition; Clarendon Press: Oxford, UK; Oxford University Press: Oxford, NY, USA,
1995; ISBN 978-0-19-853849-3.

64. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

65. Ganganwar, V. An overview of classification algorithms for imbalanced datasets. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 42–47.
66. Zheng, Z. Oversampling Method for Imbalanced Classification. Comput. Inform. 2015, 34, 1017–1037.
67. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]

https://doi.org/10.1016/j.engappai.2020.103760
https://doi.org/10.1016/j.patcog.2020.107525
https://doi.org/10.1016/j.eswa.2014.11.007
https://doi.org/10.1109/SSCI.2015.199
https://doi.org/10.3233/JIFS-17523
https://doi.org/10.1007/s10618-014-0349-y
https://doi.org/10.1007/s10618-007-0064-z
https://doi.org/10.1145/2247596.2247656
https://doi.org/10.1007/s10618-019-00633-3
https://doi.org/10.1109/ICDMW51313.2020.00042
https://doi.org/10.21629/JSEE.2017.01.18
https://doi.org/10.1007/s10618-020-00727-3
https://doi.org/10.1109/ACCESS.2020.3006788
https://doi.org/10.1007/s00170-019-04090-6
https://doi.org/10.1109/ICASSP.2015.7178838
https://doi.org/10.1007/s00779-020-01447-7
https://doi.org/10.1109/IJCNN48605.2020.9207636
https://doi.org/10.1109/ICDMW.2007.103
https://doi.org/10.1613/jair.953

J. Manuf. Mater. Process. 2023, 7, 164 25 of 25

68. He, H.; Ma, Y. Imbalanced Learning: Foundations, Algorithms, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013.
69. Sun, Z.; Song, Q.; Zhu, X.; Sun, H.; Xu, B.; Zhou, Y. A novel ensemble method for classifying imbalanced data. Pattern Recognit.

2015, 48, 1623–1637. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.patcog.2014.11.014

	Introduction
	Background and State of the Art
	Manufacturing Process
	Time-Series Classification in Manufacturing—Algorithms
	Traditional Algorithms
	Deep Learning Algorithms

	Methodology
	Data Preprocessing
	Dataset Exploration and Missing Values
	Dataset Labeling
	Addressing the Imbalance Dataset Issue

	Selection and Application of DL Networks
	Performance Metrics

	Results
	Experimental Setup
	Hyperparameter Tuning
	Experiment Results

	Discussion
	Event Definition and Subsequence Extraction
	Data Imbalance Issue
	Result Interpretation

	Conclusions and Future Works
	References

