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Abstract: Thermomechanical action during high-performance diamond grinding of sintered cutting
Al2O3/TiC and SiAlON ceramics leads to increased defectiveness of the surface layer of the deposited
TiZrN and CrAlSiN/DLC coatings. It predetermines the discontinuous and porous coatings and
reduces its effectiveness under abrasive exposure and fretting wear. The developed technological
approach is based on “dry” etching with beams of accelerated argon atoms with an energy of 5 keV
for high-performance removal of defects. It ensures the removal of the defective layer on ceramics and
reduces the index of defectiveness (the product of defects’ density per unit surface area) by several
orders of magnitude, compared with diamond grinding. There are no pronounced discontinuities
and pores in the microstructure of coatings. Under mechanical loads, the coatings ensure a stable
boundary anti-friction film between the ceramics and counter body that significantly increases the
wear resistance of samples. The treatment reduces the volumetric wear under 20 min of abrasive
action by 2 and 6 times for TiZrN and CrAlSiN/DLC coatings for Al2O3/TiC and by 5 and 23 times
for SiAlON. The volumetric wear under fretting wear at 105 friction cycles is reduced by 2–3 times
for both coatings for Al2O3/TiC and by 3–4 times for SiAlON.

Keywords: abrasive wear; Al2O3/TiC ceramics; defectiveness; fretting wear; plasma-beam treatment;
SiAlON ceramics; surface layer; thin films; wear resistance

1. Introduction

Solving the problems of increasing the wear resistance of machine parts and critical
structural elements is among the most important for the further development of mechanical
engineering. With the search for new materials and improvements in known structural and
tool materials with an improved set of physical, mechanical, and operational properties, the
opportunities for creating innovative mechanical engineering technologies and equipment
are inextricably linked [1–3]. Structural steels and cast irons cannot compete with ceramics
regarding hardness, heat resistance, and chemical inertness. Therefore, ceramics are in-
creasingly used in various fields of mechanical engineering for the manufacture of cutting
inserts and milling cutters for machining parts made of heat-resistant alloys and hardened
steels, dies for the production of wire, bearing elements, nozzles for gas and plasma torches
and spray devices, vacuum bushings devices, heating devices, pumps, etc. [4–8].

However, the share of industrial use of ceramics in the total global market for struc-
tural and tool materials is small despite all their known advantages [9,10]. The broader
distribution of ceramics in the industry is hampered by their inherent disadvantages, such
as primarily fragility and complexity in shaping processes [11,12]. The limitations of ce-
ramics are especially pronounced when there is a combination of increased thermal and
mechanical loads when accelerated microdestruction of the contact surfaces of ceramic

J. Manuf. Mater. Process. 2023, 7, 205. https://doi.org/10.3390/jmmp7060205 https://www.mdpi.com/journal/jmmp

https://doi.org/10.3390/jmmp7060205
https://doi.org/10.3390/jmmp7060205
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com
https://orcid.org/0000-0002-8239-5354
https://orcid.org/0000-0002-2332-5065
https://orcid.org/0000-0003-1829-322X
https://orcid.org/0000-0002-3897-8587
https://doi.org/10.3390/jmmp7060205
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com/article/10.3390/jmmp7060205?type=check_update&version=1


J. Manuf. Mater. Process. 2023, 7, 205 2 of 26

products is often observed. In the case of cyclic loads that occur during the operation of
products, the probability of sudden microfracture is even higher [13–16]. The listed features
are due to some factors—the structural heterogeneity of ceramics inherent in their nature,
defects of a technological nature present in the volumetric structure and surface layer,
which are inevitably formed during the sintering of powder compositions and subsequent
diamond grinding of ceramic workpieces [17–20].

A separate scientific direction has been formed related to improving abrasive pro-
cessing strategies, the characteristics of diamond tools, and optimizing diamond grinding
modes to reduce roughness and increase crack resistance to solve the problem of minimiz-
ing defects in the surface layer of ceramic products [21–24]. One of the common approaches
proposed by various researchers to reduce the defectiveness level in the surface layer
formed on the surface of ceramics during diamond grinding is polishing as a finishing
operation in the technological cycle of manufacturing ceramic products [25–27]. For exam-
ple, the authors of this study demonstrated in a previous work that the use of additional
finishing and polishing greatly reduces the index of defectiveness of the surface layer of
samples made of Al2O3/TiC and SiAlON ceramics [28].

Another common technological approach among researchers to minimize surface
layer defects and increase the wear resistance of ceramic products is the deposition of
functional coatings such as TiAlN, TiZrN, CrAlSiN, etc. [29–35]. However, data obtained
by various researchers show that increased defectiveness of the surface layer contributes
to the formation of defective coatings with an increased content of pores and disconti-
nuities, characterized by a reduced strength of the adhesive bond with the ceramic base,
which significantly limits their effectiveness during operation [36–40]. A more detailed
overview of the problem and the kind of defects is presented shortly in the previous work
of the authors [28], where Section 2.1 is devoted to the detailed overview of the problem.
The abovementioned issues indicate the need for pre-treatment ceramic products before
coating deposition.

When the object of manufacture is ceramic products for the needs of aerospace and
aviation, the performance characteristics of which are subject to the most stringent require-
ments, the most advanced and expensive technologies are used for their production [41–43].
Diamond grinding at high-performance modes is used in producing high-wear ceramic
products in mass production with a relatively short service life (for example, cutting inserts
and nozzles) to ensure high production profitability of expensive multi-axis sharpening
equipment. In the production of these products, the design of which requires the process-
ing of supporting surfaces, all kinds of chamfers and edges, polishing is impractical as a
finishing operation from a technical and economic point of view. It is necessary to develop
alternative approaches to solve such technological problems.

Thus, this work is the first to propose additional processing of industrially produced
ceramic inserts using a non-contact plasma method without the expensive mechanical
lapping and polishing, which includes multiple stages with reducing the wheel grain and
individual approaches, which excludes the possibility of serial use of these operations to
improve the quality of the surface of the inserts. The approach proposed by the authors is
rational from the point of view of small-scale production, allowing us to process a series
of ceramic cutting inserts in one operation using a plasma treatment unit and additional
assets for their placement in the unit chamber, providing their simultaneous rotation.

This work aimed to develop and test the technological principles of complex plasma-
beam surface treatment involving the removal of the defective ground layer and the
deposition of functional coatings by the case of study of Al2O3/TiC and SiAlON ceramics
that are common in the industry. When developing a new approach, we proceeded from a
set of requirements related to ensuring high process productivity when processing ceramics
of various chemical compositions, uniform processing of products with different design
and geometric parameters, the absence of additional damaging effects on the surface
layer, deterioration of the roughness of the product, and the possibility of combining the
removal process of the defective layer in one technological operation with the deposition
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of functional coatings such as TiZrN and CrAlSiN/DLC. For ceramic inserts made of
Al2O3/TiC and SiAlON that are processed following the proposed principles, the index
of defectiveness of the surface layer and wear resistance under abrasive and fretting wear
were assessed.

2. Materials and Methods
2.1. Theoretical and Experimental Background

Multi-axis precision CNC grinding machines are used for diamond grinding (sharpen-
ing) of sintered ceramic workpieces as the finishing operation of a multi-stage technological
process for manufacturing ceramic products in real production conditions. For example,
in manufacturing ceramic cutting inserts, grinding of two opposite supporting surfaces
is performed, followed by grinding the side surfaces, rounding the edges, and, if neces-
sary, forming reinforcing chamfers [44]. Figure 1a illustrates an example of double-sided
processing of round ceramic inserts with the end part of diamond grinding wheels on a
dual-spindle surface grinding machine model WBM221 (Wendt GmbH, Auetal, Germany).
In this case, the insert blanks are located in the recesses of a particular device (pallet) and
fed into the processing zone. The lower and upper grinding wheels rotate with high cutting
speeds (25–40 m/s), and the upper diamond wheel is simultaneously fed, providing an
insertion force of the order of 10–15 N. The working part of the grinding wheels is equipped
with a diamond-bearing cutting layer, which has a grain size of D64–D76 according to
the FEPA standard. It should be noted that in processing the industrial cutting inserts by
diamond grinding on the known type of production equipment and diamond wheels, a
certain coolant was used in the production because the speeds and temperatures in the
contact area are very high.
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Figure 1. The process of double-sided diamond grinding of the supporting surfaces of round ceramic
inserts (a), where F is the feed rate, V1 and V2 are the rotation velocities, and SEM images of the
microstructure of the surface layer of inserts made of Al2O3/TiC (b) and SiAlON ceramics (c) after
sintering (upper images) and diamond grinding (lower images).

During the diamond grinding under the described conditions, sintered ceramic work-
pieces are subjected to intense thermomechanical action. Consequently, the surface layer
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is destroyed, and the required allowance (0.02–0.04 mm) is removed. In this case, the
thermal and mechanical impact area is not limited by the size of the cut allowance but
exceeds it [28,45,46]. Figure 1b,c illustrate the microstructure transformation of the surface
layer of sintered ceramic workpieces made of Al2O3/TiC and SiAlON during diamond
grinding. This transformation is a result of the impact of diamond grains and friction
of the grinding wheel bond on the surface of the ceramic and plastic deformation under
conditions of high-speed heating of local volumes of the ceramic material and subsequent
cooling. Due to the increased thermomechanical loads acting on the ceramic workpiece
during diamond grinding, the formed surface layer is characterized by increased defec-
tiveness [28,47,48]. After diamond grinding, the surface layer has a typical microrelief,
including sagging, grooves, microcracks, and craters from torn grains, as seen from the
SEM images in Figure 1b,c.

Quantitative assessment of the microroughness of ceramic samples is carried out
according to the ISO 21920-2:2021 standard, like for any other materials. The international
standard includes various regulated parameters. As was shown in [28], the most informa-
tive parameter for assessing the condition of the surface layer of ceramics after diamond
grinding is the total height of the profile (parameter Rt). It is calculated as the sum of the
greatest height of the protrusions of the profile and the greatest depth of the depressions of
the profile within the length of the assessment along the OX axis. Thus, the value of the
parameter Rt makes it possible to consider the surface layer defects mentioned above in
calculations and is essentially the thickness of the defective layer. Figure 2 shows experi-
mentally obtained profilograms of the surface layer of Al2O3/TiC- and SiAlON-ceramic
inserts after diamond grinding. It can be seen that the microroughness profile of the two
ceramic materials under study after grinding is represented by numerous protrusions and
depressions, reflecting the defects, and the total depth of the defective layer within the
assessment length reaches about 3.2 µm for Al2O3/TiC and 2.1 µm for SiAlON.
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It should be noted that among different roughness parameters, the Sa roughness
parameter is an obvious one at first glance concerning the proposed approach, with a few
exceptions. The surface of the ceramic cutting insert after diamond grinding is characterized
only by obvious protrusions, as well as by the profile of torn grains from their adhesion to
the diamond wheel. The Ra parameter takes into account this feature of surface morphology.
However, Ra is still the average distance between the protrusions and recesses. It is
important for the overall surface quality assessment after diamond grinding, and we
measure it. However, it does not provide objective data on the thickness of the defective
layer. Therefore, the focus of this study is on assessing the parameter Rt, the distance
between the maximum protrusion and depression, providing objective and complete data
on the thickness of the defective layer.

The defective surface layer of a ceramic product, which is in contact with the counter
body and perceives the entire complex of operational loads, has a predominant effect on
friction and wear processes. It is known that microstructural defects are always stress
concentrators [49,50]. When intense thermomechanical loads are applied, the defects
present on the surface are likely the places where accelerated microdestruction of the contact
surfaces of ceramic products begins. Therefore, there is reason to assume that various
technological approaches aimed at minimizing or completely removing the defective layer
formed during diamond grinding (as an alternative to expensive finishing and polishing)
can potentially increase the wear resistance of products made from various ceramics. In
addition, it can be expected that minimizing the level of defects in the surface layer will
create favorable conditions for the functioning of subsequently deposited coatings on the
contact areas of ceramic products [51–53].

When developing a technological approach for the effective removal of a defective
layer, the authors of this work proceeded from a set of requirements related to the following:

• Ensuring high productivity in the processing of ceramics of various chemical compositions.
• Uniform processing of products with different design and geometric parameters.
• The absence of additional damaging effects on the surface layer and deterioration of

the product roughness.
• The possibility of combining the process of removing a defective layer with the depo-

sition of functional coatings into one technological operation.

The possibilities of using jet mechanical processing in air and water environments
using microparticles of electro-corundum, electron beam exposure, and etching in vacuum-
arc discharge plasma were studied [54–57]. It was experimentally established that those
types of influence have an additional shock or thermal effect on the underlying sublayers
and introduce their own defects simultaneously with removing the defective layer formed
during diamond grinding. In addition, an increase in the surface roughness of ceramic
products was found compared to the Ra parameter achieved by traditional diamond
grinding (especially typical for jet machining).

The authors suggested that for the controlled removal of a thin defective layer from the
surface of ceramic products, physical processes (without intense temperature heating and
mechanical action) can be used, which are based on the energy impact of directed flows of
electrons, ions or neutral particles generated by various energy sources. A source of beams
of accelerated ions and fast atoms of inert gases (argon) generated by low-temperature
plasma of a glow discharge was chosen as a source of energy impact [58–61].

The proposed technological approach for removing a defective layer of the surface of
ceramic products after grinding by exposure to a beam of argon atoms is based on physical
sputtering—the process of destruction of the surface layer of solids caused by particle
bombardment. High-energy argon atoms bombarding the surface layer of ceramic samples
lead to the displacement of atoms of the material under processing from the nodes of the
crystal lattice and transfer a part of their energy to them. The primary displaced atoms
either leave the surface of the ceramic sample or penetrate deep into the material and
produce secondary knocked-out atoms, forming a cascade of displacements (collisions). As
a result of the chaotic nature of the collision processes in the cascade, some atoms receive
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momentum in the opposite direction, i.e., to the surface of the ceramic sample, and break
away from it when their energy is higher than the energy of the near-surface bond. Thus,
particles knocked out by argon atoms in a cascade of collisions of ceramic material atoms
form a stream of sputtered particles. It should be emphasized that there is no chemical
mechanism during the interaction of argon atoms with the surface of ceramic samples
because bombardment is carried out with particles of inert gas that do not interact with the
ceramic substrate material. Due to the possibility of varying processing parameters over a
wide range (primarily the energy of particles bombarding the surface layer), it is possible
to use this approach to solve a wide range of technological problems.

The mechanism for removing the surface layer by repeated exposure to bombarding
argon atoms having a diameter of about 0.4 nm, knocking out particles from the surface of
ceramic samples, is radically different from the impact of diamond grains on a grinding
wheel, which occurs when removing allowance from ceramic workpieces and leading to the
formation of a surface layer with a high level of defectiveness. Argon atoms, bombarding
the ceramic material and gradually sputtering its surface layer, ensure the removal of the
defective layer and its polishing. It should be noted that the proposed plasma treatment
does not require technological allowance and allows the removal of the material in the
tolerance range of diamond grinding. It removes about 5–6 µm during the process, which
is included in the tolerance for the final dimensions of the cutting insert taken into account
when diamond grinding the inserts in real production.

A complex effect is provided on their surface layer, including bombardment (etching)
of the defective layer with fast argon atoms and subsequent deposition of functional
coatings on the “defect-free” surface layer following the proposed technological approach
of plasma-beam surface treatment of products made of various ceramics. Figure 3 provides
a schematic representation of the main stages of the proposed technological approach. At
Stage 1, the defective layer is bombarded with fast argon atoms. At Stage 2, microparticles
are sputtered (essentially knocked out) from the ceramic surface layer to the required depth.
At Stage 3, the surface of the “defect-free” layer of ceramic products is activated by low-
energy argon atoms to ensure better adhesion bond strength of the subsequently formed
coating (for example, CrAlSiN), and Cr, Al, and Si particles evaporated from the surface
of the cathode material (or sputtered from the target) interact with reaction gas (nitrogen)
present in the atmosphere of the vacuum chamber, as a result of which the condensation
process begins and the growth of the coating of the required thickness (Stage 4).
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It should be noted that scaling the proposed approach at the industrial level is possible
and includes issues mainly of design and technological character. For example, specialized
equipment is required for serial application that would ensure the placement of multiple
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cutting inserts in the setup chamber and their rotation during treatment, which would
allow obtaining specific advantages in comparison with the same polishing that requires
an individual approach, increasing costs many times.

2.2. Samples Made of Al2O3/TiC and SiAlON Ceramics

Two types of ceramic inserts were used in the experimental studies (Figure 4a,b):

• Square inserts made of Al2O3/TiC ceramics with a width of 19.05 mm and a thick-
ness of 7.94 mm; the phase composition of the material, obtained by analysis on
an EMPYREAN X-ray diffractometer (PANalytical B.V., Almelo, the Netherlands),
contains 71 vol.% Al2O3, 26 vol.% TiC, and 3 vol.% ZrO2.

• Round-shaped inserts made of SiAlON ceramics with a diameter of 19.05 mm and
a thickness of 7.94 mm; the phase composition of the material contains 79 vol.%
Si5AlON7, 17 vol.% Si3N4, and 4 vol.% Yb2O3.
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Figure 4 shows 3D profilograms of the surface layer of Al2O3/TiC and SiAlON ce-
ramics obtained on a Phenom G2 Pro scanning electron microscope (Phenom-World BV,
Eindhoven, The Netherlands). It is seen that the surface layer of the original ceramic inserts
after diamond grinding has the typical defects discussed in the previous section. Table 1
provides data on the main volumetric and surface characteristics of the ceramic samples
used in the studies.

Table 1. Characteristics of the ceramic samples.

Type of Ceramics Microhardness,
GPa Density, g/cm3

Fracture
Toughness KIc,

MPa·m1/2

Roughness
Parameter Ra, µm

Total Height of
Profile Rt, µm

Al2O3/TiC 19.0 4.15 4.2 0.31 3.7
SiAlON 17.0 4.65 6.5 0.29 3.1
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2.3. Processing Unit for Complex Plasma-Beam Surface Treatment of Al2O3/TiC and
SiAlON Ceramics

An experimental unit was created to implement the technological approach shown in
Figure 3 and perform complex plasma-beam surface treatment of Al2O3/TiC and SiAlON
ceramics. The general view of this unit is shown in Figure 5a. The processing of ceramic
samples is carried out in a vacuum chamber made of stainless steel, shaped like a hexagonal
prism (height is 85 cm, inscribed circle diameter is 60 cm). The unit has technological
windows for mounting flanges with various equipment depending on the technological
tasks to be solved. During the research, two magnetron systems with targets of different
compositions were used: AlSi, Cr, and TiZr (Figure 5a,b). In addition, a source of beams of
fast argon atoms was mounted on the left side flange of the vacuum chamber (Figure 5b).
A rotary table with a planetary rotation system for processing ceramic samples is located
on the lower base inside the vacuum chamber. The unit is equipped with a control stand to
control and regulate the processing parameters.

Fast argon atoms passing through the grid of the beam source enter the unit chamber,
the pressure of which is 0.2 Pa, and bombard the surface layer of the ceramic samples,
sputtering it. Figure 5b shows a diagram illustrating its operating principle and a side view
of the beam source. When the discharge voltage source is turned on, a glow discharge is
ignited between the anode and the hull of the source located in the hollow cathode, which
is the unit hull. An applied to the anode discharge voltage of 400 V and the discharge
current of 2 A are used to maintain the discharge. During the experiments, a high negative
voltage (−5 kV) was applied to the grid from a set of plates, as a result of which a grid
layer was formed between the plasma and the grid, through which positive argon ions
are drawn from the plasma towards the grid, which is under a negative potential. Ions
passing through the blinds are neutralized by attaching electrons from the grid plates. The
angle of contact with the plates is extremely small, so energy losses are minimal. After
passing through the grid, neutral argon atoms entering the chamber of the technological
unit, where the ceramic samples are placed, have energy of ~5 keV (the energy value was
monitored by a spectrograph).

After removing the defective layer from the surface of ceramic samples, the unit per-
forms activation of the surface of the samples with low-energy argon atoms (0.1–0.3 keV)
and deposition of coatings of various compositions following the traditional principles of
magnetron sputtering (or vacuum-arc evaporation with equipping the unit with evapora-
tors), as well as gas-phase deposition of diamond-like carbon (DLC) coatings in a mixture
of acetylene, tetramethylsilane, and argon.

2.4. Coating Deposition on Samples Made of Al2O3/TiC and SiAlON Ceramics

When choosing coating options deposited on ceramic samples, we proceeded from
the results of previously performed experimental studies on the characteristics of various
nitride and DLC coatings performed by the authors of this work [62–64]. Two coating
options were selected, such as TiZrN and CrAlSiN/DLC compositions, which demonstrated
good tribological properties in contact with materials of various counter bodies. The
deposition of a CrAlSiN coating before a DLC coating was caused by the need to reduce
internal stresses and improve its adhesion to the ceramic substrate [65–67].

These coating options were formed on Al2O3/TiC and SiAlON ceramics inserts after
diamond grinding (initial samples) and after removing the defective layer with beams of
fast argon atoms following the technological principles shown in Figure 3.

Table 2 provides information on the technological conditions for the TiZrN and
CrAlSiN coatings’ deposition on the ceramic samples using magnetron sputtering on
the unit shown in Figure 5.
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Table 2. Technological conditions for nitride coating deposition on ceramic samples.

Coating
Option

Discharge
Current, A Pressure, Pa Discharge

Voltage, V

Composition
of the Gas

Mixture, vol.%

Target
Composition,

wt. %

Deposition
Time, min

TiZrN 4.5 0.6 500 40% N2;
60% Ar TiZr (60% of Ti) 90

CrAlSiN 4.0 0.6 500 40% N2;
60% Ar

AlSi (88% of
Al); Cr 65

Deposition of an external DLC coating on the ceramic samples with CrAlSiN coatings
was carried out by the gas-phase method in a mixture of acetylene (C2H2), tetramethylsilane
Si(CH3)4, and argon (Ar). A gas mixture containing 16 vol.% of Si(CH3)4, 6 vol.% of Ar,
and 78 vol.% of N2 is injected into the vacuum chamber of the unit at 60 min of CrAlSiN
coating deposition to form a transition layer between the nitride and DLC coatings. The
DLC coating was directly condensed in a vacuum chamber at a temperature of 180 ◦C in a
gas mixture of 3 vol.% of Si(CH3)4, 52 vol.% of Ar, and 45 vol.% of C2H2 at a pressure of
1.5 Pa and a bias voltage of 500 V. The total deposition time of the DLC coating was 120 min.
Figures 6 and 7 show SEM images of fractures of Al2O3/TiC and SiAlON ceramics samples
coated with TiZrN and CrAlSiN/DLC coatings. Table 3 provides information on the main
characteristics of coated samples.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 10 of 27 
 

 

The deposition of a CrAlSiN coating before a DLC coating was caused by the need to 
reduce internal stresses and improve its adhesion to the ceramic substrate [65–67]. 

These coating options were formed on Al2O3/TiC and SiAlON ceramics inserts after 
diamond grinding (initial samples) and after removing the defective layer with beams of 
fast argon atoms following the technological principles shown in Figure 3. 

Table 2 provides information on the technological conditions for the TiZrN and 
CrAlSiN coatings’ deposition on the ceramic samples using magnetron sputtering on the 
unit shown in Figure 5. 

Table 2. Technological conditions for nitride coating deposition on ceramic samples. 

Coating Option 
Discharge 
Current, A Pressure, Pa 

Discharge 
Voltage, V 

Composition of 
the Gas Mix-
ture, vol.% 

Target Compo-
sition, wt. % 

Deposition 
Time, min 

TiZrN 4.5 0.6 500 40% N2; 
60% Ar 

TiZr (60% of Ti) 90 

CrAlSiN 4.0 0.6 500 40% N2; 
60% Ar 

AlSi (88% of Al); 
Cr 

65 

Deposition of an external DLC coating on the ceramic samples with CrAlSiN coat-
ings was carried out by the gas-phase method in a mixture of acetylene (C2H2), tetrame-
thylsilane Si(CH3)4, and argon (Ar). A gas mixture containing 16 vol.% of Si(CH3)4, 6 
vol.% of Ar, and 78 vol.% of N2 is injected into the vacuum chamber of the unit at 60 min 
of CrAlSiN coating deposition to form a transition layer between the nitride and DLC 
coatings. The DLC coating was directly condensed in a vacuum chamber at a temperature 
of 180 °C in a gas mixture of 3 vol.% of Si(CH3)4, 52 vol.% of Ar, and 45 vol.% of C2H2 at a 
pressure of 1.5 Pa and a bias voltage of 500 V. The total deposition time of the DLC coat-
ing was 120 min. Figures 6 and 7 show SEM images of fractures of Al2O3/TiC and SiAlON 
ceramics samples coated with TiZrN and CrAlSiN/DLC coatings. Table 3 provides in-
formation on the main characteristics of coated samples. 

  
(a) (b) 

Figure 6. SEM images of fractures of Al2O3/TiC-ceramic samples with two coating options: TiZrN 
(a) and CrAlSiN/DLC (b). 
Figure 6. SEM images of fractures of Al2O3/TiC-ceramic samples with two coating options: TiZrN (a)
and CrAlSiN/DLC (b).

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 11 of 27 
 

 

 
 

(a) (b) 

Figure 7. SEM images of fractures of SiAlON-ceramic samples with two coating options: TiZrN (a) 
and CrAlSiN/DLC (b). 

Table 3. Characteristics of ceramic samples with coatings. 

Type of Coatings Type of Ceramics 
Characteristics of Coatings 

Thickness, µm Martens Hardness, 
GPa 

Average Friction  
Coefficient at 20 °C 

TiZrN Al2O3/TiC 3.2 28 ± 1 0.4 
SiAlON 3.2 28 ± 1 0.45 

CrAlSiN/DLC Al2O3/TiC 3.4 25 ± 2 0.09 
SiAlON 3.5 25 ± 1.5 0.1 

Studies of the strength of the adhesive bond of coatings with ceramic samples were 
carried out on a Nanovea Mechanical Testing M1 device (Nanovea, Irvine, CA, USA) 
using a scratch testing method with a Rockwell indenter of an increasing load from 1 to 
40 N, recording the spectrum of the acoustic emission signal according to the ASTM 
C1624-05-2015 standard. When conducting tests based on the level of acoustic emission 
signal, the critical loads of coating destruction and their average values were assessed 
based on the results of four tests: loads LC1 and LC2, which determine the processes of 
crack formation and adhesive destruction of the coating, respectively; and load LC3, 
which determines the complete peeling of coatings. 

2.5. Study of the Index of Defectiveness and Wear Resistance of Samples made of Al2O3/TiC and 
SiAlON Ceramics 

The index of defectiveness criterion and an original method for its calculation, de-
veloped by the authors and described in detail in [28], were used to quantify and com-
pare the level of defects in the surface layer of ceramic samples after diamond grinding 
and after removing the defective layer with beams of fast argon atoms. According to this 
technique, the index of defectiveness is estimated as the product of the density of defects 
(total area detected in contrast images) per unit surface area of a ceramic sample and the 
thickness of the defective layer in the area of the ceramic sample under consideration (Rt 
parameter). This technique has already been tested when comparing the states of the 
surface layer of ceramic inserts after various types of abrasive processing (grinding, fin-
ishing, and polishing). It was found that the index of defectiveness is characterized by 
high sensitivity to minimal changes in the state of the surface layer. Therefore, this crite-
rion was used when conducting research within this work. 

Wear-resistance tests on Al2O3/TiC- and SiAlON-ceramic samples were carried out 
using two methods simulating abrasive and fretting wear conditions. Figure 8a,b show 
the schemes and devices for testing the wear resistance of ceramic samples under abra-

Figure 7. SEM images of fractures of SiAlON-ceramic samples with two coating options: TiZrN (a)
and CrAlSiN/DLC (b).



J. Manuf. Mater. Process. 2023, 7, 205 11 of 26

Table 3. Characteristics of ceramic samples with coatings.

Type of Coatings Type of Ceramics
Characteristics of Coatings

Thickness, µm Martens Hardness,
GPa

Average Friction
Coefficient at 20 ◦C

TiZrN
Al2O3/TiC 3.2 28 ± 1 0.4

SiAlON 3.2 28 ± 1 0.45

CrAlSiN/DLC
Al2O3/TiC 3.4 25 ± 2 0.09

SiAlON 3.5 25 ± 1.5 0.1

Studies of the strength of the adhesive bond of coatings with ceramic samples were
carried out on a Nanovea Mechanical Testing M1 device (Nanovea, Irvine, CA, USA) using
a scratch testing method with a Rockwell indenter of an increasing load from 1 to 40 N,
recording the spectrum of the acoustic emission signal according to the ASTM C1624-05-
2015 standard. When conducting tests based on the level of acoustic emission signal, the
critical loads of coating destruction and their average values were assessed based on the
results of four tests: loads LC1 and LC2, which determine the processes of crack formation
and adhesive destruction of the coating, respectively; and load LC3, which determines the
complete peeling of coatings.

2.5. Study of the Index of Defectiveness and Wear Resistance of Samples Made of Al2O3/TiC and
SiAlON Ceramics

The index of defectiveness criterion and an original method for its calculation, devel-
oped by the authors and described in detail in [28], were used to quantify and compare the
level of defects in the surface layer of ceramic samples after diamond grinding and after
removing the defective layer with beams of fast argon atoms. According to this technique,
the index of defectiveness is estimated as the product of the density of defects (total area
detected in contrast images) per unit surface area of a ceramic sample and the thickness of
the defective layer in the area of the ceramic sample under consideration (Rt parameter).
This technique has already been tested when comparing the states of the surface layer of
ceramic inserts after various types of abrasive processing (grinding, finishing, and polish-
ing). It was found that the index of defectiveness is characterized by high sensitivity to
minimal changes in the state of the surface layer. Therefore, this criterion was used when
conducting research within this work.

Wear-resistance tests on Al2O3/TiC- and SiAlON-ceramic samples were carried out
using two methods simulating abrasive and fretting wear conditions. Figure 8a,b show
the schemes and devices for testing the wear resistance of ceramic samples under abrasive
and fretting wear. Table 4 shows the conditions for wear-resistance testing Al2O3/TiC- and
SiAlON-ceramic samples.

A Calowear abrasion tester device (CSM Instruments SA, Peseux, Switzerland) was
used to assess the wear resistance of the surface layer of ceramic samples to abrasion.
During the testing (Figure 8a), an abrasive suspension enters the contact zone between the
test sample and the rotating counter body. As a result of contact, a wear spot in the form of
a well is formed on the surface of the ceramic sample. Data on the parameters of the well
formed on the surface layer of a ceramic sample during abrasive exposure was obtained by
contact scanning with a stylus on a Dektak XT profilometer (Bruker AXS, Billerica, MA,
USA) [68,69].

A friction machine model 1401 (Moscow Aviation Institute, Moscow, Russia) was used
to evaluate the wear resistance of the surface layer of ceramic samples under conditions of
small oscillatory and relative displacements (fretting wear) [70,71]. Fretting wear is a typical
process of local destruction of a ceramic material that occurs in contact with a counter body
under load (Figure 8b). In this case, the contact zone is subject to slight relative movement
under the influence of vibration. The ceramic sample performed a reciprocating motion
while the counter body remained motionless. As a result of contact, a wear spot in the form
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of a well is formed on the surface of the ceramic sample. Investigation of wear spots and
measurement of their profiles of the surface layer of the samples was carried out using an
Olympus LEXT OLS 5000 confocal microscope (Olympus Corporation, Tokyo, Japan).
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Figure 8. Schemes (upper images) and devices (lower images) for testing the wear resistance of
samples made of Al2O3/TiC and SiAlON ceramics with coatings under conditions of abrasive (a)
and fretting (b) wear, where 1 is a ceramic insert, 2 is a counterbody, and 3 is abrasive suspension.

Table 4. Conditions for wear-resistance testing of Al2O3/TiC- and SiAlON-ceramic samples.

Testing Type,
Counterbody

Counter Body
Rotation

Speed, rpm

Contact Force,
N

Number of
Friction Cycles,

Units

Exposure Time,
min

Frequency of
Movements,

Hz

Relative
Movement, µm

Abrasion wear,
hardened ball

of ø20 mm
950 0.2 - 20 - -

Fretting wear,
hardened ball

of ø10 mm
stationary 10 105 - 100 15

3. Results and Discussion
3.1. Influence of Treatment by Beams of Fast Argon Atoms on Surface Layer State of the Samples
Made of Al2O3/TiC and SiAlON Ceramics

The results of studies on the bombardment of the surface layer of samples made of
two ceramics under study with argon atoms with energies in the range of 0.5–7.0 keV show
that the energy parameter is the key one. Its change significantly affects the sputtering
coefficient, which is determined by the ratio of the number of emitted atoms to the number
of atoms bombarding the surface layer (Figure 9a).
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face layer (a) and the depth of the removed layer (b) on the treatment time for Al2O3/TiC and
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It has been established that the sputtering coefficient of Al2O3/TiC and SiAlON
ceramics tends to increase as the particle energy increases to a value of ~5 keV. With a
further increase in energy, the growth of the sputtering coefficient slows down. The latter
circumstance is associated with increased energy losses for heating the ceramic samples
under processing [72]. Therefore, the energy of argon atoms bombarding the surface layer
of ceramic samples for implementing the technological principles of surface treatment
proposed in the research was 5 keV.

It has been experimentally established (Figure 9b) that the dependence of the etching
depth by argon particles with energies of 5 keV on the treatment time for the two ceramics
under study is generally linear. However, the etching rate (removal of the defective layer)
differs significantly and amounts to 5.9–6.0 µm/h for Al2O3/TiC and 8.8–8.9 µm/h for
SiAlON. The roughness of the surface of the samples after treatment in terms of the Ra
parameter, also assessed during the experiments, changed slightly with increasing treatment
time and varied at 0.14–0.16 µm for Al2O3/TiC and 0.12–0.14 µm for SiAlON over 70 min
of exposure. The rational time of exposure of argon particles is 70 min for Al2O3/TiC and
48 min for SiAlON to ensure guaranteed removal of the surface defective layer formed
during diamond grinding and to achieve an etching depth of about 7.0 µm.

Figures 10 and 11 show comparative results of studies of microstructures and profilo-
grams of the surface layer of the same samples of inserts made of Al2O3/TiC and SiAlON
ceramics after diamond grinding and after treatment with argon atoms with energies of
5 keV during 70 and 48 min, respectively.

The microstructures and profilograms of ceramic samples after bombardment with
beams of argon atoms clearly show a transformation of the surface layer, accompanied
by the removal of numerous defects present in large numbers on the original samples
subjected to diamond grinding (Figures 10 and 11).

In addition to the pronounced visual differences, the results of a quantitative assess-
ment of various indicators of the state of the surface layer (Table 5) testify even more
convincingly about the changes that occurred after treatment with beams of accelerated
argon atoms. The given average values of the index of defectiveness of ceramic samples are
calculated based on the results measurements of 10 inserts of each type of ceramic under
study. Table 5 also provides data on the parameters of the surface layer of the samples
achieved through diamond grinding and polishing to compare them.
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Table 5. Indicators of the state of the surface layer of samples made of Al2O3/TiC and SiAlON
ceramics after various types of processing.

Types of
Ceramics

Types of Processing

Indicators of the Surface Layer Condition

Density of
Defects ρ

Max Depth of
Defective Layer

Rt, µm

Index of
Defectiveness

ρ·Rt, µm

Roughness
Parameter Ra, µm

Al2O3/TiC

Diamond grinding 0.4 4.17 1.67 0.31
Treatment with argon

atoms with an energy of
5 keV for 70 min

0.012 0.46 0.0055 0.16

Diamond grinding,
finishing, and polishing 0.005 0.4 0.002 0.002

SiAlON

Diamond grinding 0.33 3.27 1.08 0.29
Treatment with argon

atoms with an energy of
5 keV for 48 min

0.01 0.46 0.0046 0.14

Diamond grinding,
finishing, and polishing 0.004 0.38 0.0015 0.0014
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Figure 11. Profilograms of the surface layer of samples made of Al2O3/TiC (a) and SiAlON ceramics
(b) after diamond grinding (left) and bombardment with argon atoms (right).

The experimental data presented show that the proposed technological approach,
which involves etching with argon atoms, ensures almost complete removal of the defective
layer (from 4.17 to 0.46 µm for Al2O3/TiC and from 3.27 to 0.46 µm for SiAlON) and greatly
reduces the index of defectiveness comparing to the value achieved by traditional diamond
grinding. Those results for samples made of Al2O3/TiC and SiAlON ceramics should be
considered extremely significant, considering the high productivity and manufacturability
of the proposed approach and the absence of the need to use expensive equipment even
compared with the index of defectiveness for the surface layer achieved by diamond
polishing the etching with argon atoms provides slightly higher values of this indicator.

In addition, the experiments confirmed the significant influence of the state of the
surface layer of ceramic samples on the quality of subsequently deposited coatings (in the
case of the two compositions under study, namely TiZrN and CrAlSiN/DLC). As is seen in
the SEM images (Figure 12), the increased density of defects in the surface layer of ceramic
samples formed during diamond grinding indicates that its microstructure is characterized
by a high degree of heterogeneity and porosity. It can be assumed that this is a consequence
of the misorientation of the grains of the deposited film and the deterioration of growth
conditions of the coating, which was observed by the authors of [73–75] that deposited
various coatings on substrates with an increased level of microroughness.
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Figure 12. SEM images of the microstructure of the surface layer of TiZrN (a) and CrAlSiN/DLC (b)
coatings deposited on samples made of Al2O3/TiC ceramics after diamond grinding (left) and after
removing the defective layer by bombardment with argon atoms (right).

At the same time, the defects associated with the state of the ceramic substrate are
not observed in the microstructure of the coating formed on a ceramic sample with the
previously removed by bombardment with argon atoms defective layer. The effect was
observed for both TiZrN and CrAlSiN/DLC coatings. The observation correlates with the
results of other works [76,77]. It allows us to conclude that the highly defective surface
layer of ceramic samples predetermines the formation of defective coatings, which will not
be able to fully perform their functions aimed at increasing the wear resistance of contact
surfaces of a ceramic product under increased mechanical loads.

3.2. Wear Resistance of Samples Made of Al2O3/TiC and SiAlON Ceramics after Complex
Plasma-Beam Surface Treatment under Conditions of Abrasive Wear

The testing carried out under conditions of abrasive exposure on the surface layer
of ceramic inserts showed that a wear spot in the form of a spherical well is formed on
the surface of the samples due to contact with the counter body and abrasive particles.
Qualitative and quantitative assessments of volumetric wear provide clues to the following:

• The resistance to abrasive wear of ceramic samples;
• The effectiveness of various coatings;
• The contribution to the wear resistance of the state of the surface layer on which the

coatings are deposited.

Figures 13 and 14 show typical wear wells after testing samples of Al2O3/TiC and
SiAlON ceramics with TiZrN and CrAlSiN/DLC coatings deposited on a defective surface
layer (after diamond grinding) and after removing the layer by bombardment with argon
atoms. The kinetics of the development of wear spots over time of abrasive exposure
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on ceramic samples with coatings is presented in Figure 15. The experimental results
demonstrate that the deposition of coatings of two selected compositions significantly
reduces the wear rate of Al2O3/TiC- and SiAlON-ceramic samples under conditions of
abrasive exposure. As seen from the experimental data (Figures 14 and 15), the state
of the ceramic base, characterized by the index of defectiveness (Table 5), significantly
affects the wear resistance of subsequently deposited coatings for Al2O3/TiC and SiAlON
ceramics. For example, during the testing of some samples with coatings deposited on
defective ceramic inserts, their peeling was observed when an external load was applied
(this was observed in samples with TiZrN coatings; Figure 13). The insufficient efficiency
of the coatings is well explained by SEM images of their surface, which contain numerous
microstructural defects (Figure 12). Discontinuous and porous coatings formed on a
ceramic base are characterized by low adhesive bond strength [78], which inevitably leads
to their local delamination under mechanical loads. This is confirmed by the experimentally
obtained results of assessing the strength of the adhesive bond of TiZrN and CrAlSiN/DLC
coatings with Al2O3/TiC- and SiAlON-ceramic samples (Table 6). It can be seen that
cracking in coatings containing numerous pores and discontinuities occurs at relatively
small loads LC1, which are approximately 40–50% less than the corresponding loads
recorded for defect-free samples. Adhesive failure (LC2) and complete peeling (LC3) of
porous coatings are observed at loads approximately 20–30% lower. Such coatings are
incapable of ensuring a stable, anti-friction, wear-resistant film at the “counter body–
coating” interface. It should be emphasized that a certain decrease in the wear rate of the
original ceramic samples is observed even in the presence of TiZrN and CrAlSiN/DLC
coatings on ceramic inserts, which have microstructural defects. It is associated with
ongoing changes in the conditions of frictional interaction with the counter body. However,
such coatings are noticeably inferior in efficiency throughout the entire testing to the same
coatings deposited on samples with a previously removed defective layer and have a many
times lower index of defectiveness (Figure 15).
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Figure 13. Profilograms of wear spots after 20 min of abrasive exposure on samples made of
Al2O3/TiC ceramics with coatings deposited on the surface layer after diamond grinding (left) and
bombardment with argon atoms (right): (a) TiZrN coating and (b) CrAlSiN/DLC coating.
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AlON ceramics with coatings deposited on the surface layer after diamond grinding (left) and 
bombardment with argon atoms (right): (a) TiZrN coating and (b) CrAlSiN/DLC coating. 
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Figure 14. Profilograms of wear spots after 20 min of abrasive exposure on samples made of SiAlON
ceramics with coatings deposited on the surface layer after diamond grinding (left) and bombardment
with argon atoms (right): (a) TiZrN coating and (b) CrAlSiN/DLC coating.
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and bombardment with argon atoms (2).
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Table 6. Strength of the adhesion bond of TiZrN and CrAlSiN/DLC coatings deposited on samples
of Al2O3/TiC- and SiAlON-ceramics with different states of the surface layer.

Types of Ceramics Types of Processing Coating
Composition

Average Critical Load Value, N

LC1 LC2 LC3

Al2O3/TiC
Diamond grinding TiZrN 16 ± 2 23 ± 4 29 ± 3

CrAlSiN/DLC 18 ± 3 23 ± 2 30 ± 2
Treatment with argon atoms with

an energy of 5 keV for 70 min
TiZrN 24 ± 3 28 ± 2 36 ± 3

CrAlSiN/DLC 25 ± 1 31 ± 1 37 ± 2

SiAlON
Diamond grinding TiZrN 15 ± 3 21 ± 2 28 ± 3

CrAlSiN/DLC 17 ± 2 22 ± 3 29 ± 2
Treatment with argon atoms with

an energy of 5 keV for 48 min
TiZrN 23 ± 2 27 ± 2 34 ± 2

CrAlSiN/DLC 24 ± 3 29 ± 3 37 ± 1

Additional confirmation of the conclusion made about the change in the conditions
of frictional interaction with the counter body for the same coatings, but deposited on
ceramic samples made of Al2O3/TiC with different states of the surface layer, are the
experimental results of estimating the friction coefficient shown in Figure 16 (data obtained
under friction conditions—sliding under a load of 10 N with a speed of 0.1 m/s when using
counter bodies in the shape of a hardened steel ball with a diameter of 6 mm). For coatings
deposited on ceramic samples after removing the defective layer (right images in Figure 16),
the coating and counter body are worn in at the initial moment of testing, after which the
friction coefficient stabilizes and has a monotonic character throughout the entire testing
time with a value of 0.4–0.45 for the TiZrN coating and 0.09 for the CrAlSiN/DLC coating.
The friction coefficient change curves for the same coatings deposited on ceramic samples
after diamond grinding (left images in Figure 16) have a fundamentally different character.
It can be seen that the friction coefficient changes abruptly, and the friction conditions are
unstable. This nature of the friction coefficient curves, apparently, results from alternating
processes of adhesion of contacting surfaces and destruction of “bridges” of adhesive
bonds. The above indirectly indicates the absence of a strong boundary film and more
intense adhesion in the tribocontact zone when contacting partial and porous TiZrN and
CrAlSiN/DLC coatings, which are deposited on ceramic substrates after diamond grinding.

In quantitative terms, the differences in the wear resistance of coatings deposited on
ceramics with different surface layer states are as follows. The volumetric wear during
abrasive wear of the original Al2O3/TiC-ceramic samples decreases by 1.2 times when
TiZrN coatings are deposited after diamond grinding and by 1.9 times when those coatings
are deposited after removing the defective layer. The volumetric wear of those ceramics
reduces by 2.8 and 5.7 times, respectively, when depositing the CrAlSiN/DLC coatings
(Figure 15a). For the original SiAlON-ceramic samples, the volumetric wear decreases by
3.1 times when TiZrN coatings are deposited after diamond grinding and by 5 times when
those coatings are deposited after removing the defective layer. The volumetric wear of
those ceramics reduces by 8.1 and 22.5 times, respectively, when depositing CrAlSiN/DLC
coatings (Figure 15b).

At the same time, the coating effect is most pronounced for SiAlON ceramics. Under
the same testing conditions, the original SiAlON-ceramic samples have noticeably greater
volumetric wear than Al2O3/TiC-ceramic samples. The effect is due to the higher hardness
of Al2O3/TiC (Table 1) and the fact that this indicator primarily determines the resistance
to abrasive wear [79]. In addition, Al2O3/TiC ceramics are characterized by a slightly lower
coefficient of friction against steel compared to SiAlON ceramics, which also affects the
wear rate when interacting with the counter body [80,81].
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Figure 16. The nature of the change over time in the friction coefficient of samples made of Al2O3/TiC
ceramics with TiZrN (a) and CrAlSiN/DLC (b) coatings deposited on the surface layer after diamond
grinding (left) and bombardment with argon atoms (right).

3.3. Wear Resistance of Samples Made of Al2O3/TiC and SiAlON Ceramics after Complex
Plasma-Beam Surface Treatment under Conditions of Fretting Wear

Figures 17 and 18 show optical images of wear spots on samples of Al2O3/TiC and
SiAlON ceramics formed during testing under fretting conditions (after 105 friction cycles).
Experimental results are presented for ceramic samples with TiZrN and CrAlSiN/DLC
coatings deposited to the surface layer after various types of processing, such as diamond
grinding and bombardment with argon atoms with energy of 5 keV. It was found that, as in
the case of abrasive wear, the state of the surface layer (its defectiveness) also significantly
contributes to the wear rate of samples made of Al2O3/TiC and SiAlON ceramics under
conditions of fretting wear. At the wear spots (Figures 17 and 18), qualitative differences are
brightly pronounced in the area of tribocontact of ceramic samples with different defects in
the surface layer. It can be seen that the two variants of the coatings deposited on ceramic
samples after diamond grinding are characterized by significantly larger sizes of wear spots
and by the significant adhesion of particles detached from the materials during testing
(wear products). It is apparently due to the already discussed discontinuity of coatings
formed on ceramic samples after diamond grinding, their probable local delamination
under mechanical loads, and the absence of a stable boundary anti-friction film between
the ceramics and the counter body. The normal force has fairly large values, and the
slippage amplitude is very small, which makes it difficult to remove wear products from
the tribocontact zone and promotes their adhesion to the ceramics, which can further
accelerate wear under fretting conditions. The coating performs anti-friction and protective
functions for a longer time and minimizes the amount of wear products in the case of
its deposition on a ceramic base after removing the defective layer. Such coatings on the
contact surfaces of ceramic samples constrain the development of a wear spot and reduce
the size of those spots compared to samples with discontinuous and porous coatings.
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A quantitative assessment of the wear resistance of coatings deposited on ceramic
samples with different states of the surface layer after testing under fretting conditions
is presented in Figure 19. The volumetric wear during testing under fretting conditions
for original Al2O3/TiC-ceramic samples decreases by 1.4 times when TiZrN coatings are
deposited after diamond grinding and by 2.0 times after removing the defective layer. The
volumetric wear of those ceramics reduces by 1.5 and 3.1 times, respectively, when deposit-
ing the CrAlSiN/DLC coatings (Figure 19a). For the original SiAlON-ceramic samples, the
volumetric wear decreases by 1.4 times when TiZrN coatings are deposited after diamond
grinding and by 2.5 times after removing the defective layer. The volumetric wear of
those ceramics reduces by 1.7 and 4.0 times, respectively, when depositing CrAlSiN/DLC
coatings (Figure 19b).
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4. Conclusions

(1) Intense thermomechanical action during high-performance diamond grinding during
the shaping of sintered ceramic blanks (for example, Al2O3/TiC and SiAlON), as a
result of which the required allowance is removed, leads to the formation of a surface
layer with numerous defects.

(2) Increased defectiveness of the surface layer of ceramic samples after diamond grinding
when depositing functional coatings (for example, TiZrN and CrAlSiN/DLC) signifi-
cantly worsens the conditions for the film growth and predetermines the formation
of discontinuous and porous coatings that cannot ensure a stable anti-friction wear-
resistant film at the “counter body–coating” interface, which reduces the potential
effectiveness of coatings under conditions of abrasive exposure and fretting wear.

(3) The equipment and technological approach described by the authors and based on
“dry” etching (bombardment) of the surface with beams of accelerated argon particles,
which occurs with physical sputtering of the surface layer to the required depth,
can be used for high-performance removal of defects from the surface of ceramic
samples after diamond grinding (the etching rates of 5.9–6.0 µm/h for Al2O3/TiC
and 8.8–8.9 µm/h for SiAlON).

(4) The proposed technological approach, involving etching with argon atoms with an
energy of 5 keV, ensures almost complete removal of the defective layer on samples
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made of Al2O3/TiC and SiAlON ceramics and reduces the index of defectiveness of
the surface layer, calculated as the product of density of defects per unit surface area
and the defective layer’s thickness, by several orders of magnitude comparing that
indicator for traditional diamond grinding.

(5) There are no pronounced discontinuities and pores in the microstructure of TiZrN and
CrAlSiN/DLC coatings deposited on a “defect-free” surface layer. Under mechanical
loads, those coatings ensure a stable boundary anti-friction film between the ceramic
material and the counter body. That significantly increases the wear resistance of
Al2O3/TiC- and SiAlON-ceramic samples.

(6) Complex plasma-beam surface treatment of ceramic samples, including removal of the
defective layer and subsequent deposition of functional coatings, provides a reduction
in volumetric wear of Al2O3/TiC ceramics after diamond grinding by 1.9 times for
TiZrN coatings and by 5.7 times for CrAlSiN/DLC coatings under conditions of
abrasive wear (at 20 min exposure). The volumetric wear of SiAlON ceramics after
diamond grinding is reduced by 5 times for TiZrN coatings and by 22.5 times for
CrAlSiN/DLC coatings.

(7) Complex plasma-beam surface treatment of ceramic samples provides a reduction
in volumetric wear of Al2O3/TiC ceramics after diamond grinding by 2.0 times for
TiZrN coatings and by 3.1 times for CrAlSiN/DLC coatings under conditions of
fretting wear (at 105 friction cycles). The volumetric wear of SiAlON ceramics after
diamond grinding is reduced by 2.5 times for TiZrN coatings and by 4.0 times for
CrAlSiN/DLC coatings.
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