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Abstract: Multiscale epoxy/glass composites were fabricated by using E-glass fibers (GF) coated
with different types of graphene nanosheets deposited by electrophoretic deposition. Graphene oxide
(GO) was first synthesized using modified Hummer’s method and its subsequent ultrasonication in
de-ionized water created a stable suspension of GO. GF were immersed in the water/GO suspension
near a copper anode. The electrical potential applied between the electrodes caused GO to migrate
towards the anode. Moreover, the GO coated yarns were exposed to hydrazine hydrate at 100 ◦C
to obtain reduced graphene oxide (rGO) coated yarns. Both GO and rGO coated GF yarns were
used to create unidirectional epoxy-based multiscale composites by hand lay-up. The presence of a
conductive rGO coating on GF improved both the electrical and thermal conductivities of composites.
Moreover, enhanced permittivity was obtained by rGO based epoxy/glass composites, thus giving
the option of using such structures for electromagnetic interference shielding.

Keywords: multifunctional composites; graphene; fiber-matrix interphase; thermal conductivity;
electrical resistivity

1. Introduction

Due to their excellent mechanical properties and thermal and chemical stability, fiber reinforced
polymer composites play an important role for high-end applications in various industrial sectors.
Due to their prominent tensile mechanical properties and relatively low cost as compared to carbon
fibers, E-glass fibers (GF) are often used to reinforce polymer matrices [1–3]. However, such
composites have limitations for some applications due to a higher density and low electrical and
thermal conductivities.

Graphene has been in the spotlight of research since its discovery [4]. In fact, the extraordinary
properties of this two-dimensional (2D) material, such as remarkably high electron mobility at
room temperature (250,000 cm2/V), high thermal conductivity (5000 Wm−1·K−1), and mechanical
stiffness and strength (Young’s modulus = 1 TPa, strength 130 GPa) [5–7], make it an ideal candidate
for the preparation of nanocomposites. Previous studies have confirmed that the dispersion of
graphene in polymeric matrices resulted in not only improving mechanical properties [8], but also
providing functional properties like electrical conductivity [9–11], thermal conductivity [12], dielectric
properties [13–15], and electromagnetic interference shielding [15–17]. Moreover, recent studies have
also indicated that an optimized amount of graphene nanoparticles dispersed in the polymer matrix
can play a positive role in enhancing the fiber/matrix interfacial adhesion between both thermoplastic
and thermosetting polymer matrices and glass fibers [18–20].
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A substantial improvement of the properties of composites has been obtained by a very low
nanofiller content, which has been attributed to the large surface area of the nanofiller and also to their
high aspect ratio. Currently, the scale up to industrially relevant processes of improvement in polymer
properties by nanofillers dispersion is still a big challenge since (i) achieving uniform dispersion of
nanofiller in polymers is not easy; (ii) an adequate interfacial adhesion between matrix and nanofiller is
a big challenge and most importantly; and, (iii) alignment of nanofillers cannot be achieved easily [21].
Both computational simulations and theoretical modelling have revealed significant advantages that
could be realized by nano-scale fillers oriented in polymer matrices. Much work has been conducted
to develop methods for aligning carbon nanofillers in polymer matrices. Looking mainly on carbon
nanotubes (CNTs) and graphene nanosheets, remarkable improvements in mechanical and functional
properties have been reported as compared to randomly-dispersed nanofillers. Various methods have
been proposed to align fillers in polymer matrices like mechanical shearing [22], manufacturing under
applied electric [23–25], and magnetic fields [25–27]. Alignment of nanofillers in an electrical field is
considered as an effective method but the restraint of this technique is that it can only be applied to
materials with very low electrical conductivity, since the field strength is usually restricted to avoid
the dielectric breakdown of the polymer [28]. On the other hand, low magnetic susceptibility of fillers
means that strong magnetic field (25 T or more) is required to align nanofillers like CNT and graphene,
thus restricting the practical application of such methods [28]. Simultaneous dispersion and alignment
can be obtained by using mixing equipment able to apply high shear forces. Unfortunately, these
forces are often not large enough to break the nanofiller aggregates and disperse the nanofillers in the
polymer matrix. Instead, high shear has the drawback to degrade both polymers and nanofillers [29].

The aim of this work is hence to create new multifunctional epoxy/glass hierarchical composites
containing GO and rGO nanosheets. In particular, a method of utilizing GO and rGO is proposed in
which electrophoretic deposition (EPD) technique is used to deposit GO nanosheets on E-glass fibers
(GF); while, for rGO, the same GO coated GF were subjected to a thermochemical reduction process,
hence yielding rGO coated GF. The mechanical properties of the composites obtained by using both
GO and rGO coated GF fibers aligned in an epoxy matrix were extensively investigated in our previous
works both from the micromechanical [30] and macromechanical [31] points of view. The peculiar
electrical (resistivity and permittivity) and thermal (stability and conductivity) behaviour induced in
the epoxy/glass composites by the presence of GO/rGO interphases are experimentally investigated
in this manuscript.

2. Materials and Methods

Graphite powder, potassium permanganate, sodium nitrate, sulfuric acid, and hydrogen peroxide
were purchased from Sigma Aldrich (St. Louis, MO, USA) while hydrochloric acid was from Codec
Chemical Co. Ltd. (Tokyo, Japan). All of the chemicals were of analytical grade and used without
further purification. A bi-component epoxy resin, provided by Elantas Italia S.r.l. (Collecchio, Italy),
consisting of an epoxy base (EC 252) and an aminic hardner (W 241), was selected as polymer matrix.
E-glass fibers, with the trade name XG 2089, were kindly supplied by PPG Fiber Glass© (Pittsburgh,
PA, USA), and were used as received. The fibers, with an average fiber diameter was 16.0 ± 0.1 µm,
were supplied with an epoxy compatible silane-based sizing.

GO was synthesized according to a modified Hummer’s method. In particular, 1 g of graphite
powder was mixed in 46 mL of H2SO4 cooled in an ice bath, followed by the addition of 1 g of
NaNO3 and the mixture was stirred for 15 min. In the next step, 6 g of KMnO4 were gradually added,
while keeping the temperature of the mixture under 20 ◦C in order to avoid exothermic reactions.
The mixture was stirred for at least 24 h at 35 ◦C. Then, a surplus of deionized water was added while
the temperature was kept between 60 ◦C and 80 ◦C. At the end, a solution of 30% H2O2 with deionized
water was added to the mixture to stop the reaction. The resulting suspension was thoroughly washed
using an HCl solution and distilled water to remove Mn ions and acid respectively. The obtained
brown solution was dried in a vacuum oven at 50 ◦C for at least 36 h. The brown cake obtained was
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then used to create GO suspension (1 mg/mL) by adding a quantity of it in deionized water and
subjecting it to ultrasonication to create a stable suspension.

A schematic description of the EPD process used to deposit GO nanosheets on GFs is illustrated
in Figure 1. The electrodes were copper sheets of 1 mm thickness and GF were placed in front of an
electrode using a metallic window. This approach is needed due to the non-conducting nature of GF.
Therefore, in order to deposit the nanoparticles on the GF, the anode was placed behind the fibers
during the deposition process. The electrodes along with a metallic frame holding GF bundles were
immersed in a GO dispersion in deionized water with a concentration of 1 mg/mL. When voltage
is applied between the electrodes, GO nanosheets move toward the anode, hit GFs and deposit on
their surface. The deposition on one side of the fibers was carried out at 10 V/cm for 5 min, and the
same was repeated while reversing the metallic frame to expose the uncoated portion towards cathode
while coated side of the fibers towards the anode. After the whole coating process, the fibers were
dried under vacuum at 50 ◦C for at least 12 h.
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Figure 1. Schematic diagram of the electrophoretic deposition setup.

Fibers coated were placed in a glass container and the reduction of the GO coating was carried
out by placing a tissue paper soaked with hydrazine hydrate (N2H4) in the container. The container
was covered and then heated at 100 ◦C for 24 h.

Composites were produced by a conventional hand lay-up method. Uncoated GF, GO coated
GF, and rGO coated GF bundles were wetted with the uncured epoxy resin by using a roller and
stacked in a metal mold. After laminating a number of laminas enough to reach the desired laminate
thickness (which in turns depends on the type of test performed), a constant pressure of approximately
1 kPa was applied on the mold, and curing was performed by pre-curing at room temperature for at
least 3 h and then for 15 h at 60 ◦C. The obtained composites were termed as Ep-GF, Ep-GO-GF, and
EprGO-GF, respectively.

X-ray diffraction (XRD) measurements were performed with a X-ray diffractometer (Rigaku III
Dmax, Tokyo, Japan) with a monochromatic radiation source (Cu-Kα, wavelength around 51.54056 Å).
The measurements were carried out in a 2θ range of 5◦–80◦ with a step size of 0.04◦.

Field emission scanning electron microscopy (FESEM) microscopic observations were performed
by a Zeiss Supra 40 microscope (Carl Zeiss AG, Oberkochen, Germany). Before observations, the
specimens were coated by a platinum/palladium alloy (80:20) layer of about 5 nm in thickness.

The cross-section of multiscale composites was observed by optical microscopy technique (using
a Zeiss Axiophot optical microscope (Carl Zeiss AG, Oberkochen, Germany), connected to a Leica
DC300 digital camera (Leica microsystems, Wetzlar, Germany) and by FESEM. The specimens were
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prepared by polishing the cross-sectional surface using abrasive grinding papers with grit size 800,
1200, and 4000, sequentially.

Two different resistivity measurement methods were utilized based on the electrical behavior of
the fabricated composite materials. For specimens having resistivity levels more than 106 Ω·cm, the
electrical resistivity was evaluated using a Keithley 8009 resistivity test chamber connected to a Keithley
6517A high-resistance meter. However, for more conductive samples, a 6-1/2-digit electrometer/high
resistance system (Keithley model 6517A) was used and a 2-points electrical measurement was chosen
as test configuration. Electrical resistivity was measured along three orthogonal directions as defined
in Figure 2.
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Figure 2. Description of directions in terms of orientation for electrical resistivity and thermal
conductivity measurements.

The measurement of relative permittivity and dielectric loss of the composites (uncoated and
graphene reinforced composites) were performed by an Agilent 4284A impedance analyzer (Agilent
Technologies, Santa Clara, CA, USA) in the frequency range from 20 up to 106 Hz. The dimensions
of the specimens were around 10 mm × 10 mm × 1.5 mm, and an aluminum foil was used as
conductive electrode plate placed on the top and below of the specimen to create the parallel plate
testing configuration.

The thermal stability of the multiscale composites were investigated using thermogravimetric
analysis (TGA) using a Mettler TG50 thermobalance (Mettler-Toledo, Columbus, OH, USA).
Around 40 mg of the specimens were selected of epoxy and composites, respectively. The tests
were conducted between 25 ◦C and 700 ◦C using a heating rate of 10 ◦C where the onset temperature
(associated to a mass loss of 5%) and the residual mass at 700 ◦C were determined. The maximum
degradation temperature was evaluated from the main peak of mass loss rate curves.

Thermal conductivity measurements were hence performed by a Netzsch Laser Flash Analysis
LFA 447 (Netzch, Selb, Germany). It consists of exposing an energy pulse from a light source (laser
or xenon flash lamp) on one side of a specimen (10 mm × 10 mm × 2 mm) [32] and measuring the
temperature history on the other side using a liquid nitrogen cooled infrared detector. The thermal
conductivity of the specimens was measured along three orthogonal directions (x-axis, y-axis and z-axis
of Figure 2) and at three different temperatures i.e., 25 ◦C, 50 ◦C and 75 ◦C by performing three shots,
respectively. The data were analyzed using the software Proteus (Netzch, Selb, Germany) whereas
Cowan method was used to calculate thermal diffusivity (α) with pulse correction. A standard Pyrex
7740 reference material prepared according to ASTM-E 1461 was used to determine the heat capacity
(cp) and then was matched with the samples. Sample density (ρ) was determined by measuring the
mass and volume of the specimen. Finally, the thermal conductivity (λ) was calculated using the
following equation:

λ = α × ρ × cp



J. Compos. Sci. 2017, 1, 12 5 of 13

3. Results and Discussion

3.1. Graphene Oxide Synthesis and Its Reduction

Figure 3 shows the characterization results of synthesized graphene nanosheets. The X-ray
diffractograms of precursor graphite, synthesized GO and rGO products are exhibited in Figure 3a,
where graphite exhibits an intense peak (0 0 2) at 26.4◦ which is typical of the crystalline nature of
graphite powder. During the chemical reaction, the oxidation process of graphite powder causes a
replacement of the (0 0 2) peak with a (0 0 1) diffraction peak of GO. This is due to the insertion of
oxygen based functional groups in GO and water molecules, which increases the interlayer spacing in
the graphite layers including water molecules [33]. On the other hand, the rGO diffractogram reveals a
peak relocated back to the position of pristine graphite peak due to the removal of most of the oxygen
groups of GO, thus decreasing the interlayer spacing. It is interesting to note that both GO and rGO
peaks are broader and less intense hence confirming the exfoliation process.
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Figure 3. (a) X-ray diffractograms of pristine graphite, GO and rGO (the internal box shows the
magnified picture of diffractograms of GO and rGO); (b,c) FESEM images of exfoliated GO nanosheets.

Figure 3b,c shows the exfoliation of GO sheets as observed from FESEM analysis. GO nanosheets
were several micrometers large in lateral size but with different layered thickness. In addition,
the characteristic wrinkling of nanosheets can be observed as commonly encountered in thin films
and membranes.

3.2. Electrophoretic Deposition of GO and Composite Fabrication

Figure 4a shows the GF pasted on a metallic frames, whereas Figure 4b shows the GF that was
obtained after the EPD of GO nanosheets. The slight color change of GF from white to beige suggests
the coating of GO on GF. In order to reduce the GO coating on GF laminate obtained in previous step,
the same was subjected to thermochemical reduction, the resultant fibers appeared to be dark grey in
color which visually confirms the reduction of GO coating to rGO (Figure 4c).
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Figure 4. Metallic window frames with (a) uncoated E-glass fibers (GF) and (b) GO coated GF and
(c) rGO coated GF.

The appearance of the electrophoretically deposited GO and rGO coatings on GF can be visualized
with FESEM observations. In Figure 5, a comparison of the FESEM pictures of uncoated, GO and rGO
coated GF surfaces is presented. The coating of both GO and rGO appears to be quite compact and
uniform in thickness for a certain length.
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Figure 5. Field emission scanning electron microscopy (FESEM) pictures of GF (a) coated with GO
using applied field of 10 V/cm (b) and rGO after chemical reduction (c).

The quantitative analysis of the depositions of GO and rGO interphase was evaluated, in which
the fibers before and after deposition were weighed. Four fiber laminates (100 mm × 100 mm) were
weighed first and then the deposition of GO was carried out as described in this work previously.
After drying of the fibers under vacuum at 50 ◦C, the fibers were again weighed to find the difference
of the weight due to deposition. Afterwards, epoxy resin was infused and cured, and the final weight
of the composite was measured. By taking the ratio of deposition and composite weight, the GO
deposition weight content in Ep-GO-GF composites was calculated to be around 0.31% ± 0.03% over
the total weight of the composite. However, to evaluate the deposition content of rGO in the composite,
the GO coated fibers were weighed first and were then subjected to reduction process. rGO weight
was evaluated with respect to the percentage decrease in weight from GO due to reduction which was
0.11%, hence the final weight content of rGO in Ep-rGO-GF was practically the same.

The fiber volume fraction of the composites was determined quantitatively by considering the
weight of the fibers before composite fabrication and then measuring the weight of the whole composite
after curing. The weight of the matrix was then calculated by subtracting the weight of the composite
by the weight of the fiber and by considering the densities of the fiber and the matrix, the volume of
fiber used and volume of the composite was calculated. In this way, the fiber volume fraction of the
composite was estimated to be around 50% by volume.

The cross-sectional views of the composites observed through OM and FESEM are shown in
Figure 6. The images reveal a highly compact fiber arrangement embedded in epoxy matrix along with
some resin rich areas and voids which is typical of composites fabricated by hand lay-up method.
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Figure 6. Cross-section of composite observed through optical and electron microscopy at
different magnifications.

3.3. Electrical Resistivity

The effect of GO and rGO coatings on the volume electrical resistivity values along the x axis
of the glass-epoxy composites is summarized in Table 1. As expected, the electrical resistivity of
epoxy-glass composites is not modified by the presence of insulating GO coating. On the other hand,
the presence of a rGO coating on the glass fibers lead to a drop of the electrical resistivity by 12 orders
of magnitude thus yielding an electrical conductive behaviour.

Table 1. Electrical resistivity values of composites with uncoated and coated fibers.

Property Ep-GF Ep-GO-GF Ep-rGO-GF

Volume resistivity (Ω·cm) 3.7 × 1014 6.9 × 1013 4.5 × 102

In order to investigate the effect of having a continuous rGO interphase oriented along the
fibers direction, the electrical resistivity of the composites was tested along three mutually orthogonal
directions i.e., x-axis, y-axis and z-axis. In Figure 7, the volume resistivity values along the three
directions of rGO coated composite are compared. The composites showed a very low resistivity along
the x-axis which contains the continuous path for electrons to travel through the structure. On the other
hand, the y-axis and z-axis showed a higher resistivity because of the alternating conductive (graphene)
and non-conductive (epoxy) layers. Between these, y-axis had less resistivity as compared to z-axis as
the load was applied on this direction during the composite manufacturing hence compressing the
fibers and providing better tunneling effect or possibly direct contact between the fibers.

J. Compos. Sci. 2017, 1, 12  8 of 13 

 

Scanning 

electron 

microscopy 

(High 

magnifcation) 

   
 Ep-GF Ep-GO-GF Ep-rGO-GF 

Figure 6. Cross-section of composite observed through optical and electron microscopy at different 

magnifications. 

3.3. Electrical Resistivity 

The effect of GO and rGO coatings on the volume electrical resistivity values along the x axis of 

the glass-epoxy composites is summarized in Table 1. As expected, the electrical resistivity of  

epoxy-glass composites is not modified by the presence of insulating GO coating. On the other hand, 

the presence of a rGO coating on the glass fibers lead to a drop of the electrical resistivity by 12 orders 

of magnitude thus yielding an electrical conductive behaviour. 

Table 1. Electrical resistivity values of composites with uncoated and coated fibers. 

Property Ep-GF Ep-GO-GF Ep-rGO-GF 

Volume resistivity (Ω cm) 3.7 × 1014 6.9 × 1013 4.5 × 102 

In order to investigate the effect of having a continuous rGO interphase oriented along the fibers 

direction, the electrical resistivity of the composites was tested along three mutually orthogonal 

directions i.e., x-axis, y-axis and z-axis. In Figure 7, the volume resistivity values along the three 

directions of rGO coated composite are compared. The composites showed a very low resistivity 

along the x-axis which contains the continuous path for electrons to travel through the structure. On 

the other hand, the y-axis and z-axis showed a higher resistivity because of the alternating conductive 

(graphene) and non-conductive (epoxy) layers. Between these, y-axis had less resistivity as compared 

to z-axis as the load was applied on this direction during the composite manufacturing hence 

compressing the fibers and providing better tunneling effect or possibly direct contact between the 

fibers. 

 

Figure 7. Volume resistivity of Ep-rGO-GF composites measured along three different directions of 

the sample with respect to fiber orientation. 

  

x-axis

y-axis

z-axis

0 1x10
3

2x10
3

3x10
3

Volume resistivity (.cm)

D
ir

e
c
ti
o

n

Figure 7. Volume resistivity of Ep-rGO-GF composites measured along three different directions of the
sample with respect to fiber orientation.



J. Compos. Sci. 2017, 1, 12 9 of 13

3.4. Dielectric Properties

As a control test, the permittivity of uncoated fiber composite was measured at room temperature.
As it can be seen in Figure 8a, the permittivity level did not change as the applied frequency increased,
which is in accordance with the behavior commonly observed for insulating materials such as epoxy
and GF [34]. Due to the insulating nature of GO, coating of GF with GO did not provide any capacitive
properties to Ep-GO-GF composite. In the case of rGO coated fibers, however, the composite showed an
improvement over the entire frequency range. At 100 Hz, the permittivity value increased by a factor
of 3.6 when compared to the value measured on the composite with uncoated fibers. The induction of
permittivity in glass/epoxy composites was due to the presence of rGO interphase, which possesses a
higher electrical conductive. A similar trend was also obtained in the case of dissipation factor of the
composites, while being tested for their capacitive properties, as shown in Figure 8b.
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Figure 8. Dielectric properties of the investigated composites: (a) permittivity (or dielectric constant)
related to the applied frequency; and, (b) dissipation factor (or dielectric loss).

3.5. Thermal Stability

Figure 9 shows the TGA curves of the composites containing uncoated, GO and rGO coated
fibers, and a summary of the obtained results is given in Table 2. The thermal stability of epoxy/glass
fiber composites increases for both GO and rGO coated glass fibers where rGO interphase impart
a better thermal stability (onset temperature for thermal degradation of 354.4 ◦C) as compared to
composites containing GO interphase (340.3 ◦C). In the case of composites containing GO coated
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fibers, the relatively low thermal stability could be attributed to the decomposition of the oxygen
functional moieties such as epoxy and hydroxyl which takes place around 250 ◦C. However, composites
containing rGO coated fibers offer better thermal stability than others due to difficult path effect of
graphene nanosheets (non-oxidized) which delays the escape of volatile degradation products thus
favoring the char formation process. Similar trend was also observed in the residual mass of the
composites at 700 ◦C after the test, which supports the above results.
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Figure 9. Thermogravimetric analysis (TGA) thermograms of uncoated and graphene coated fiber
reinforced composites. (a) Residual mass as a function of temperature; (b) derivative of the mass loss.

Table 2. Results of TGA on composites with uncoated and coated fibers.

Characteristic Ep-GF Ep-GO-GF Ep-rGO-GF

Onset temperature (◦C) 331.8 340.3 354.4
Residual mass at 700 ◦C (%) 64.2 71.6 77.8

Peak temperature (◦C) 380.3 380.3 380.3
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3.6. Thermal Conductivity

The influence of GO and rGO interphase on the thermal conductivity of samples was evaluated
by testing the composite samples without and with graphene interphase (GO and rGO). Thermal
conductivity was tested along three different mutual orthogonal directions, respectively, along (x)
and transversally (y and z) to fiber direction and at three different temperatures i.e., 25 ◦C, 50 ◦C
and 75 ◦C. Figure 10 reveals the effect of the presence of an interphase along all of the directions
(i.e., x-axis, y-axis, and z-axis of the composite) in the fiber reinforced composites produced. In case
of the x-axis (Figure 10a), the thermal conductivity of composites containing rGO coated fibers was
significantly higher than that of composites with uncoated fibers or GO coated fibers (around +20%).
This increase of thermal conductivity is also a confirmation of the reduction of GO during chemical
treatment with hydrazine hydrate. Moreover, the advantage of aligning (even a very low content of)
rGO nanosheets as a continuous interphase between the matrix and fiber results in a 20% increase in
the thermal conductivity. Along the y-axis and z-axis of the composites, the thermal conductivity did
not showed any significant change, as shown in Figure 10b,c. In these two directions, the GO or rGO
interphase did not create a continuous network making it impossible to create a percolation threshold
enough to improve the thermal conductivity.
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4. Conclusions

In this study, epoxy/glass composites were prepared in which the glass fibers (GF) were coated
with either GO or rGO. The coating of GO on GF was performed using electrophoretic deposition
with deposition parameters being optimized to obtain a homogenous coating. rGO coated GF were
obtained by subsequent chemical reduction of the GO coating. Multiscale composites were produced
by the hand lay-up method, which produced high fiber volume fraction composites containing around
50% of fiber volume content with only 0.3% by weight of graphene nanosheets. The interphase of
graphene nanosheets was effective in improving the thermal stability of the composites.

Electrical resistivity measurements revealed that the orientation of rGO nanosheets along the
length of the fibers offered the lowest resistivity as compared to other orientations, hence confirming the
advantage of oriented and aligned rGO interphase for tailored functional properties. The conductive
behavior of epoxy/glass composite containing rGO interphase also induced the property of permittivity
in the composites. This was verified along with the other composites containing uncoated and GO
coated fibers. This functionality offers the possibility to use such composites for electromagnetic
interference shielding in advanced applications. Other than electrical functionalities, the aligned rGO
interphase along with the fibers in epoxy/glass composites offered a better thermal conductivity.
This was verified by comparing the thermal conductivity values along other orientations of the
composite based on either uncoated, GO, or rGO coated GF. This result supports the advantage of
aligning graphene interphase in epoxy/glass composites for improved functional properties.

Acknowledgments: The authors greatly acknowledge the help of Gian-Franco Dalla Betta and Andrea Ficorella
in carrying out the dielectric properties measurement in their laboratory.
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