Supplementary Materials: Fast and Facile Synthesis of Pt Nanoparticles Supported on Ketjen Black by Solution Plasma Sputtering as Bifunctional HER/ORR Catalysts

Chitlada Mani-Lata, Chadapat Hussakan, and Gasidit Panomsuwan

Table S1. The HER and ORR onset potentials of the catalysts in this work and Pt catalysts in literatures. All electrochemical measurements were recorded in 0.5 M H₂SO₄ solution at room temperature.

Sample	Catalyst Loading on GC Electrode (μg _{Pt} cm ⁻²)	HER Onset Potential (V <i>vs</i> . RHE)	ORR Onset Potential (V <i>vs.</i> RHE)	Reference
KB	-	-	0.29	This work
5-Pt/KB (5.5%)	11.7	-0.02	0.77	This work
10-Pt/KB (10.6%)	22.5	-0.02	0.78	This work
20-Pt/KB (17.9%)	38.0	-0.02	0.80	This work
20% Pt/VC	42.4	-0.02	0.83	This work
7% Pt/CNF	13.7	-0.15	-	[S1]
15% Pt/GN	14.5	-0.02	-	[S2]
3.5% Pt/MWCNT	-	0.00	-	[S3]
3.5% Pt/rGO	-	-0.02	-	[S3]
14.1 Pt/HPC	14.9	-0.02	-	[S4]
40% Pt/KB	22.6	-	0.83	[S5]
40% Pt/C-JM	50.9	-	0.93	[S6]
Pt nanocube/KB	-	-	0.94	[S7]
20% Pt/G	32.4	-	0.87	[S8]
20% Pt/G-CNF	32.4	-	0.88	
20% Pt/G-PCNF	32.4	-	0.91	
20% Pt/rGO	50	-	0.92	[S9]
20% Pt/CNT	12.2	-	0.93	[S10]
16.6% Pt/MWCNT	41	-	0.81	[S11]
20% Pt/OMC	105	-	0.94	[S12]
20%Pt/TiO ₂ /C	56	-0.02	0.90	[S13]
20% Pt/C	45	0.01	0.90	[S14]

Figure S1. CV curves at different cycles measured in N₂-saturated 0.5 M H₂SO₄ solution: (a) 20-Pt/KB and (b) 20% Pt/VC.

Figure S2. CV curves at different cycles measured in O₂-saturated 0.5 M H₂SO₄ solution: (a) 20-Pt/KB and (b) 20% Pt/VC.

References

- Yang, T.; Du, M.; Zhu, H.; Zhang, M.; Zou, M. Immobilization of Pt nanoparticles in carbon nanofibers: bifunctional catalyst for hydrogen evolution and electrochemical sensor. *Electrochim. Acta* 2015, 167, 48–54.
- Yan, X.; Li, H.; Sun, J.; Liu, P.; Zhang, H.; Xu, B.; Guo, J. Pt nanoparticles decorated high-defective graphene nanospheres as highly efficient catalysts for the hydrogen evolution reaction. *Carbon* 2018, 137, 405–410.
- Zhou, D.; Jiang, B.; Yang, R.; Hou, X.; Zheng, C. One-step synthesis of monodispersed Pt nanoparticles anchored on 3D graphene foams and its application for electrocatalytic hydrogen evolution. *Chin. Chem. Lett.* 2020, *31*, 1540– 1544.
- S4. Song, M.; Song, Y.; Li, H.; Liu, P.; Xu, B.; Wei, H.; Guo, J.; Wu, Y. Sucrose leavening-induced hierarchically porous carbon enhanced the hydrogen evolution reaction performance of Pt nanoparticles. *Electrochim. Acta* 2019, 320, 134603.
- Inoue, H.; Hosoya, K.; Kannari, N.; Ozaki, J. Influence of heat-treatment of Ketjen Black on the oxygen reduction reaction of Pt/C catalysts. J. Power Sources 2012, 220, 173–179.
- Zhang Y.; Shen, S.; Wang, Y.; Ding, W.; Wu, R.; Li, L.; Qi, X.; Wei, Z. Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test. *J. Power Sources* 2015, 273, 62–69.

- Jukk, K.; Kongi, N.; Tammeveski, K.; Solla-Gullon, J.; Feliu, J. M. PdPt alloy nanocubes as electrocatalysts for oxygen reduction reaction in acid media. *Electrochem. Commun.* 2015, 56, 11–15.
- S8. Fu, W.; Wang, Y.; Mao, L.; Jin, J.; Yang, S.; Li, G. Facile one-pot synthesis of graphene-porous carbon nanofibers hybrid support for Pt nanoparticles with high activity towards oxygen reduction. *Electrochim. Acta* 2016, 215, 427 –434.
- Dembinska, B.; Zlotorowicz, A.; Modzelewska, M.; Miecznikowski, K.; Rutkowska, I. A.; Stobinski, L.; Malolepszy, A.; Krzywiecki, M.; Zak, J.; Negro, E.; Di Noto, V.; Kulesza, P. J. Low-noble-metal-loading hybrid catalytic system for oxygen reduction utilizing reduced-graphene-oxide-supported platinum aligned with carbon-nanotube-supported iridium. *Catalysts* 2020, *10*, 689.
- S10. Zhang, S.; Shao, Y.; Lin, Y. Carbon nanotubes decorated with Pt nanoparticlesviaelectrostatic self-assembly: a highly active oxygen reduction electrocatalyst. *J. Mater. Chem. A* **2010**, *20*, 2826–2830.
- S11. Banham D.; Feng F.; Pei K.; Yeb, S.; Birss V. Effect of carbon support nanostructure on the oxygen reduction activity of Pt/C catalysts. J. Mater. Chem. A, 2013, 1, 2812–2820.
- S12.] Li X.; Ge S.; Hui C. L.; Hsing I. M. Well-dispersed multiwalled carbon nanotubes supported platinum nanocatalysts for oxygen reduction. *Electrochem. Solid State Lett.* 2004. 7, A286–A289.
- S13. Ma, J.; Habrioux, A.; Alonso-VanteJ N. Enhanced HER and ORR behavior on photodeposited Pt nanoparticles onto oxide–carbon composite. *J. Solid State Electrochem.* **2013**, *17*, 1913–1921.
- S14. Jahan, M.; Liu, Z.; Ping Loh, K. A Graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. *Adv. Funct. Mater.* **2013**, *23*, 5363–5372.