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Abstract: The ultimate behaviour of aluminium members subjected to uniform compression or
bending is strongly influenced by local buckling effects which occur in the portions of the section
during compression. In the current codes, the effective thickness method (ETM) is applied to evaluate
the ultimate resistance of slender cross-sections affected by elastic local buckling. In this paper, a
recent extension of ETM is presented to consider the local buckling effects in the elastic-plastic range
and the interaction between the plate elements constituting the cross-section. The theoretical results
obtained with this approach, applied to box-shaped aluminium members during compression or in
bending, are compared with the experimental tests provided in the scientific literature. It is observed
that the ETM is a valid and accurate tool for predicting the maximum resistance of box-shaped
aluminium members during compression or in bending.

Keywords: aluminium alloys; local buckling effects; interactive buckling; effective thickness method;
numerical application; box sections; ultimate resistance

1. Introduction

In recent decades, the use of aluminium alloys has spread into many engineering
fields. In fact, this material is successfully applied in transportation, such as in the rail
industry (subway coaches, sleeping cars), automotive industry (car and moto components,
moving cranes), and shipping industry (motorboats, sailboats). Aluminium alloys are also
successfully used in the civil engineering field where they are employed both as a main
element and as a secondary element within civil structures [1,2]. The main advantages of
aluminium alloys are related to their lightness, corrosion resistance, and high functionality
of structural shapes due to the extrusion process. For these reasons, aluminium material is
competitive with steel in the application of structural design. However, used as structural
material, it is affected by the same problems concerning the steel members, particularly
the instability phenomena which can occur at different levels (Figure 1) and either in the
elastic or plastic range. These phenomena are even more relevant in the case of aluminium
structures, considering that the Young modulus of aluminium is about one third of that
of the steel. In this paper, the attention is focused on studying the effect of local buckling
effects on the ultimate response of aluminium members subjected to uniform compression
or non-uniform flexural bending. Clearly, local and distortional buckling occurs when
the portions of a single aluminium member are subjected to uniform or non-uniform
compression. For this reason, the real prediction of the ultimate response of aluminium
members becomes very complex and, generally, the proposed methodologies by the current
codes underestimate their maximum capacity during compression or bending. Recently,
Krishanun Roy et al. [3,4] highlighted that, in the case of channel section members, the
design codes (Aluminium Design Manual [5] Australian/New Zealand Standards [6],
Eurocode 9 [7] and Eurocode 3 [8]) are conservative within the 20–30% range, with respect
to the experimental tests. The same problem was encountered by Feng et al. [9,10] in the
case of the circular hollow sections of the aluminium alloy with holes during compression
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or bending. In the case of compression, the authors provided a new design equation based
on the current design formulae that use the effective area method (EAM).
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The excessive underestimation of the maximum capacity prediction is related to the
current codes which consider only the elastic local buckling, which affects the ultimate
resistance of the slender aluminium sections and neglects the interaction of the plate ele-
ments constituting the cross-sections and the strain-hardening behaviour of the aluminium
alloys. Instead, for thicker sections, a plastic analysis is adopted in a similar way to the steel
members. This approach leads to underestimated maximum capacity values with respect
to the real behaviour of the aluminium material. Recently, in order to obtain more accurate
predictions of the ultimate resistance of the aluminium sections, different approaches were
presented within the scientific community. Su et al. [11] evaluated the applicability of the
Continuous Strength Method (CSM), which was originally developed for stainless steel
stocky (i.e., small width-to-thickness ratio) cross-sections. Zhu and Young [12] modified
the current Direct Strength Method (DSM) to achieve more accurate design provisions for
flexural SHS members, while Kim and Peköz [13] presented a simplified design approach
called the Numerical Slenderness Approach (NSA) for determining the nominal stresses
of each plate element of a complex section under flexure. In the case of aluminium box
and H-shaped members, the same authors proposed simple mathematical formulations
to predict the ultimate flexural resistance and rotation capacity as a function of the main
nondimensional slenderness parameters [14–19]. These results are currently proposed in
the Annex L of new Eurocode 9 draft [7].

Recently, starting from the effective thickness method (ETM) currently adopted by
Eurocode 9, an extension of this approach is presented in [17], in order to compute the
ultimate resistance of box-shaped members during compression or bending. The new
version of ETM considers the plastic interactive buckling of cross-sections and the strain-
hardening behaviour of aluminium material. In order to evaluate the accuracy of this
simplified approach, a numerical application is provided. In particular, with reference to
the box sections, the experimental results presented in [20–22] are compared with those
obtained by the extension of the effective thickness method.

2. Different Approaches in the Design of Aluminium Section

In the technical literature, there are different simplified methods to evaluate the
behaviour of aluminium members under uniform or non-uniform compression, taking into
account that the response of thin-walled sections is strongly affected by local instability
phenomena which arise in the compressed section. The main approaches, codified and
adopted by the European Eurocodes, are: (1) the width effective approach, (2) the reduced
strength approach, and (3) the effective thickness approach.

The first approach is very well known, being codified for many years with particular
reference to steel structures [8]. It was first introduced by Von Kármán in 1932 [23]. He
stated that, for a fixed thickness, a fictitious plate with the width of be f f would have the
critical stress equal to the yield stress. If the actual plate has a larger width, the capacity is
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the same as that of the fictitious plate. In a plate, the real stress distribution is approximated,
or replaced, with two strips which describe the load-carrying, effective width of the plate.
Consequently, this method is based on reducing the cross-section area in the parts affected
by plate buckling.

The reduced stress method, used in the past in the Aluminium Associated Code [24],
verifies the stress level at which a plate part buckles; if a cross-section is built up from
multiple plate parts, the lowest stress governs the entire cross-section. Therefore, this
method evaluates the capacities of a slender section by considering a reduced value of the
limiting stress acting on the full section.

Finally, the effective thickness approach, first introduced in the British Code of Practice
for Structural Aluminium [25], was recently introduced in EN1999-1-1, which concerns
aluminium alloy structures [7]. This approach is based on replacing the true section with an
effective section, obtained to reduce the actual thickness of the compressed parts. The main
advantage of the effective thickness approach is that the influence of the heat-affected zones
is more easily accounted for in the case of the cross-sections composed by welding. This is
very important in the case of aluminium alloy structures where a significant reduction in
the material properties arises in the heat-affected zones.

Figure 2 shows a qualitative comparison between the different design approaches for
a generic box section subjected to non-uniform compression.
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Nowadays, the current European Code Provisions suggest the use of the effective
width approach and the effective thickness method for the steel and aluminium cross-
section, respectively. In particular, these methods are indirectly used to evaluate the
behaviour of the slender sections, belonging to class 4, affected by the local buckling
occurring in the elastic region.

3. Extension of Effective Thickness Method (ETM)
3.1. Stability of a Single Plate in the Elastic-Plastic Region

According to a single plate under uniform compression (Figure 3), the elastic critical
stress is equal to:

σcr.e = k
π2E

12(1− ν2
e )(b/t)2 (1)

where E is the elastic modulus, νe is the Poisson’s ratio in the elastic range, b is the plate
width, a is the length plate, t is the plate thickness and k is the buckling factor. The factor k
accounts for the edge-restraining conditions and the stress distribution along the loaded
edges. In the case of the plate elements constituting the section of a structural member,
the occurrence of elastic buckling is also affected by the interaction between the plate
elements constituting the member section and by the longitudinal stress gradient. These
effects can be considered by modifying Equation (1) using two factors: ζ and αLS. The ζ
factor accounts for the interaction between the plate elements that constitute the section,
while the αLS factor accounts for the influence of the longitudinal stress gradient occurring
in the structural members under non-uniform bending. Clearly, in the case of uniform
compression, αLS = 1.00. Therefore, including the effects of interactive buckling, the
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longitudinal stress gradient and the non-linear behaviour of material, the elastic buckling
stress can be expressed, by rearranging Equation (1) in the following form:

σcr.e = ζ αLSk
π2E

12(1− ν2
e )(b/t)2 (2)

The correction factor ζ for the interactive buckling can be evaluated by taking into
account that it represents the ratio between the buckling factor k, accounting for interactive
buckling, and the buckling factor k0, evaluated for the isolated plate element, i.e., ζ = kk0 .
The main expressions are provided by BS5950-5 [26], while, regarding the factor accounting
for the influence of the longitudinal stress gradient αLS, the relationships are presented
in [27,28].

The occurrence of buckling in the plastic range can be accounted for using a correction
factor that depends on the non-linear behaviour of the material. By denoting with ξ such a
correction factor, the buckling stress in the plastic range σcr.p is given by:

σcr.p = ζξ αLSk
π2E

12(1− ν2)(b/t)2 (3)

Concerning the Poisson’s ratio in the yield region, Gerard and Wildhorn (1952) [29]
studied the problem in the case of several aluminium alloys and showed that they were
seriously affected by the anisotropy of the material. Therefore, they proposed the follow-
ing expression:

ν = νp −
Es

E
(
νp − νe

)
(4)

where Es is the secant modulus and νp represents the Poisson’s ratio in the plastic range,
which is equal to 0.50. Regarding the plastic coefficient ξ, there are many expressions in the
scientific literature [30]. The main relationships are reported in the following:

• tangent modulus theory ξ1: ξ1 = Et
E

• secant modulus theory ξ2: ξ2 = Es
E

• Pearson (1950), Bleich (1952), Vol’Mir (1965) ξ3: ξ3 =
√

Et
E

• Gerard (1957) ξ4: ξ4 =
√

EsEt
E2

• Weingarten et al. (1960) ξ5: ξ5 = Es
E

√
Et
E

• Stowell (1948), Bijlaard (1949) ξ6: ξ6 = Es
E

[
1
3 + 2

3

√
1
4 + 3

4
Et
Es

]
• Li and Reid (1992) ξ7: ξ7 = Es

E

[
1
2 + 1

2

√
1
4 + 3

4
Et
Es

]
where Et is the tangent modulus and n represents the exponent of the Ramberg–Osgood
law that describes the behaviour of aluminium alloys. Recently, the use of a different
formula was suggested by the same authors for the proposed Annex L of EN 1999-1-1:

ξ8 =
Es

E

[
n− 8

8
+

8
n

√
Et

Es

]
(5)

It is easy to recognize that Equation (5) is a combination of the secant modulus
theory with the Gerard formula. In particular, for the small values of the Ramberg–Osgood
exponent n, Equation (5) tends to provide values close to those given by Gerard. Conversely,
for high values of n, Equation (5) tends to provide values close to the secant modulus theory.
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3.2. Mathematical Steps for the Definition of the New Version of ETM

In this section, the mathematical steps, needed to compute the effective thickness in
the non-linear range as a function of the strain level, are reported. In particular, Equation (3)
can be rewritten as:

Esε = ζξ αLSk
π2E

12(1− ν2)(b/t)2 (6)

where ε is the strain corresponding to buckling. So, the effective ratio b/t can be defined
as a function of the strain level as:(

b
t

)
e f f

=

√
ξE
Es

ζ αLSk
π2

12(1− ν2)

1
ε

(7)

The previous equation can be written as:

(
t
b

)
e f f

=

√
Es

ξE
1

ζ αLSk
12(1− ν2)

π2 ε (8)

by introducing the parameter µ, which accounts the nonlinear behaviour of
aluminium material:

µ =
ξE
Es

1
1− ν2 (9)

Therefore, Equation (8) can be rewritten as:

te f f

t
=

b
t

√
12
π2

1
µ

1
ζ αLSk

ε (10)

remembering that:

λp =
te f f

t
(11)

where λp is the normalised slenderness in the elastic-plastic region. To use the buckling
curves of Eurocode 9 [7], with the normalised slenderness corrected to account for the
non-linearity depending on the strain level, it must be considered that:

λp = 0.03143
β

ε0
(12)
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where ε0 =
√
(250 f0.2) and f0.2 represents the conventional yield stress of the aluminium

material. Therefore:

β

ε0
=

λp

0.03143
=

1
0.03143

√
3

π2
ε

µ ζ αLS

2√
k

b
t

(13)

The factor accounting for the stress distribution along the loaded edge is:

η =
2√
k

(14)

The final expression used to compute the slenderness parameter of the single-plate
element to use with the buckling curves of EN1999-1-1 [7] is:

β

ε0
= 17.54 η

b
t

√
ε

µ ζ αLS
(15)

The last equation computes the effective thickness in the non-linear range as a function
of the strain level ε. In fact, according to EN1999-1-1 [7], the reduction factor accounting for
local buckling is computed as:

ρc = 1 i f β
ε0
≤ 1

2

(
C1 +

√
C2

1 − C2(3 + ψ)
)

ρc =
C1

β/ε0
− C2(3+ψ)

4 (β/ε0)
2 i f β

ε0
> 1

2

(
C1 +

√
C2

1 − C2(3 + ψ)
) (16)

The parameter ψ accounts for the strain distribution along the loaded edge of the
plate. It is given by the ratio between the maximum compression strain at one end of
the plate and the strain at the second end of the plate element. In the case of uniform
compression, it is ψ = 1 while ψ < 0 when the second end of the plate element is subject to
tension. Meanwhile, the values of coefficients C1 and C2 are reported in Eurocode 9 and
they depend on the class of the buckling curves.

4. Numerical Application to the Box Sections

In this section, the numerical application is provided with reference to the box-shaped
members under uniform compression or bending. The aluminium alloy, considered in
this procedure, is EN-AW 6082 T6 and, according to the nominal mechanical proprieties
presented in Eurocode 9, it is characterized by the conventional yield stress f0.2 = 260 MPa
and the ultimate stress fu = 310 MPa; the exponent of Ramberg–Osgood is n = 25. The
nominal Young modulus is assumed to be equal to E = 70 GPa while the geometric
properties of the box section are the plate width equal to 100 mm and the plate thickness
equal to 10 mm.

4.1. Box Sections under Uniform Compression

The application of the effective thickness approach, as previously described, requires
a procedure under displacement control. Regarding the stub columns subjected to uniform
compression, by increasing the values of the axial displacement δ, the corresponding
average strain ε = δ/h is derived; h represents the height of members. Therefore, the
slenderness parameter is given by Equation (14) for the increasing values of the strain level
and computed for the plate elements constituting the member section. It increases with the
increasing values of ε. The appropriate buckling curve is used, according to EN1999-1-1, so
that the effective thickness is computed for all the plate elements and the effective cross-
section area Ae f f is computed. The axial force corresponding to the axial displacement δ is
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obtained as N = σ Ae f f , where σ is the stress level corresponding to ε, evaluated according
to the constitutive stress–strain curve of the material, i.e., the Ramberg–Osgood model:

ε =
σ

E
+ 0.002

(
σ

f0.2

)n
(17)

It is important to underline that the aluminium material could be expressed with
other mathematical models, for example a two stage R-O model, recently proposed by
Yun et al. [31], which appears to be more suitable than the simple R-O law for use in
analytical modelling, numerical simulations, and the advanced design of aluminium
alloy structures.

The numerical procedure is performed step-by-step by means of the MATLAB pro-
gram [32] and it is repeated by varying the plastic coefficient ξ according to the relationships
presented in Section 3.1.

The generic steps of the procedure are shown in Figure 4a. At the initial step, a generic
box section is subjected to the strain level εi and, consequently, to the stress level σi. At
step i + 1, the strain level increases, and it is equal to εi+1, where the corresponding stress
state is σi+1. By applying Equations (14) and (15), the effective thickness of the box section
decreases (red line) with the definition of the reduction coefficient ρ(εi+1).
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In Figure 4b, the results of the numerical procedure are depicted in terms of the load–
strain curves. It is possible to observe that the tangent modulus theory (ξ1) provides lower
load values, while the higher values are obtained by means of the secant modulus theory
(ξ2). Instead, the results provided by the new formulation, i.e., Equation (5), are located
between the Stowell-Bijlaard (ξ6) and Li-Reid (ξ7) results.

4.2. Box Sections under Non-Uniform Bending Moment

The same procedure was repeated in the case of the box-shaped aluminium beam
under the non-uniform bending moment. The mechanical and geometric properties are the
same as those reported in Section 4.1 and, moreover, the beam length is assumed as equal
to 2000 mm.

In this case, the iterative procedure is more complicated than the previous case. In fact,
the strain level and, consequently, the corresponding stress σ, are not constant, but vary
along the section height, as shown in Figure 5a. For this reason, it is not possible to apply a
continuous relation, as depicted for the uniform compression, but a fiber model is used to
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evaluate the curvature χ as a function of the strain level ε. Finally, the bending moment
M is evaluated by means of the rotational equilibrium equation between the compression
parts and the tension parts. Moreover, the rotation θ corresponding to the attainment of
the flexural resistance M was calculated by integrating the curvature diagram χ along the
shear length Ls of the structural member:

θ =

Ls∫
0

χ[M(x)]dx (18)

Obviously, the rotation θu, can be estimated by means of Equation (18) for χ[M(x)] = χu,
i.e., the curvature corresponding to the maximum bending moment Mu. Meanwhile, the
maximum rotation θm, corresponding to the point where the moment resistance drops
below the conventional yield value M0.2, can be computed as:

θm = θu + (χm − χu)Lp (19)

where χm is the ultimate curvature and Lp is the length of the plastic hinge evaluated as the
distance between the points where the conventional yield curvature χ0.2 and χm occurs.

The generic steps of the procedure are shown in Figure 5a, while in Figure 5b, the
results of the numerical procedure are depicted in terms of the moment–curvature curves.
The considerations, made in the case of uniform compression, are still valid for the box-
shaped beam under a non-uniform bending moment.
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5. Comparison with Experimental Tests

The accuracy of the previous methodology is evaluated by comparing the theo-
retical results with those provided in the scientific literature. The following analyses
were performed by varying the plastic coefficient ξ according to the relationships pro-
vided in Section 3. The numerical results are reported in Appendix B. In particular, in
Tables A3 and A5, the experimental and numerical values are shown in Tables A3 and A5,
while the ratio values are shown in Tables A4 and A6. In the case of uniform compression,
the theoretical results are compared with the stub column tests performed by Su et al. [21],
while, in the case of bending moment, the theoretical values are compared with the results
of the three-point bending tests performed by Moen et al. [20] and Su et al. [22]. For the
sake of completeness, the experimental results were compared with those obtained by
Eurocode 9, taking into account the local buckling effects for the fourth-class sections. The
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mean values, the standard deviations σ, and the variation coefficients COV of the ratios
between the theoretical and experimental results are reported in Tables A4 and A6.

By the comparison between the experimental tests and the theoretical methodologies,
it is possible to observe that the Eurocode 9 provides underestimated resistance values with
respect to the experimental tests and, consequently, the new methodology results are more
accurate. Moreover, by observing the theoretical values obtained by varying the plastic
coefficient ξ, it is evident that the new expression reported in Equation (5) provides the
values of the maximum compressive load and ultimate flexural resistance, which are more
similar to the real behaviour of the aluminium members. In fact, in the case of uniform
compression, the mean value of the ratio Nu.ETM/Nu.exp is about 1.00, while the standard
deviation is equal to 0.09. In the case of bending moment, the mean value of the ratio
Mu.ETM/Mu.exp is about 0.96 with the standard deviation equal to 0.06. In Figure 6a,b, the
comparison between the results of ETM with the plastic coefficient ξ8 and the experimental
results are reported, respectively, in the case of uniform compression and bending moment.
Instead, as seen in the numerical application (Section 4), it is evident that the tangent
modulus theory (ξ1) underestimates the resistance values, while the secant modulus theory
(ξ2) overestimates them. The theories of Stowell-Bijlaard (ξ6) and Li-Reid (ξ7) provide the
values very similar to the experimental one; however, from a stochastic point of view, they
are characterized by a greater dispersion of the results.
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6. Conclusions

In this work, a numerical application of the extension of the effective thickness method
(ETM) is presented. This approach was developed to define a simplified method to predict
the ultimate behaviour of aluminium members in compression or in bending. The extension
of ETM considers the strain-hardening behaviour of aluminium alloys, the interaction
between plate elements constituting a generic cross-section, and, finally, the local buckling
in the elastic-plastic region. In order to evaluate the influence of the plastic coefficient on
the ultimate resistance of box-shaped aluminium members, an iterative procedure was
performed by means of the MATLAB program. It was clear that the tangent modulus
theory provided the lower values of the ultimate resistance, while the higher values were
obtained by means of the secant modulus theory.

In order to consider the influence of the strain-hardening behaviour of aluminium
alloys, a new formulation of the plastic coefficient was proposed. This relationship is
a function of the Ramberg–Osgood exponent n; in this sense, it is the different inelastic
behaviour which characterizes each aluminium alloy. The results provided by the new
formulation are located between the Stowell-Bijlaard and Li-Reid results.
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For evaluating the accuracy of this procedure, a comparison between the numerical
results with those presented in the scientific literature is provided. The theoretical results
were computed according to Eurocode 9 and the new version of ETM by varying the
plastic coefficients.

The values of the ultimate resistance computed by the new methodology are more
similar to the corresponding experimental values. Specifically, by comparing the results, it
is evident that the Eurocode 9 approach underestimates the maximum resistance of the
aluminium members both during compression and bending. Consequently, the current
code has a safety advantage, but the aluminium alloys may be uncompetitive from the
economic and design point of view. Conversely, the new approach provides the maximum
resistance values similar to the experimental results. In fact, in the case of uniform com-
pression, the mean values of the ratios Nu.ETM/Nu.exp are nearly 1.00, except when the
plastic coefficient is computed by means of the tangent modulus theory (ξ1) or Weingarten
theory (ξ5). In case of the prediction of the flexural resistance, the mean values of the ratios
Mu.ETM/Mu.exp are almost greater than 0.90. Additionally, in this case, when the plastic
coefficient is computed by means of the tangent modulus theory (ξ1) or Weingarten theory
(ξ5), the theoretical values are underestimated with respect to the experimental results.

Additionally, the theoretical values obtained by applying the new formulation of
the plastic coefficient (ξ8) are more accurate. In fact, the mean value, and the standard
deviation of the ratio between the experimental and theoretical results are equal to 0.99 and
0.09 in the case of uniform compression and 0.96 and 0.06 for the beams during bending.
Therefore, the new formulation (Equation (5)) provides the theoretical results with a very
low dispersion index both during compression and bending.

Consequently, we can conclude that the new version of the effective thickness ap-
proach is valid and more accurate for predicting the maximum resistance of box-shaped
aluminium members during compression or bending.

In a future development, for evaluating the accuracy of this method to predict the
maximum deformation capacity of the members during compression or bending, stub
column tests and three-point bending tests could be performed to compare the theoretical
load–strain and bending-curvature curves with directly experimental ones. Moreover,
in order to define a general procedure to be adopted within the design codes, this new
version of ETM and its numerical applications could be extended to the other cross-
sections (H-shaped, channel and angle sections) and other aluminium alloys with different
heat-treatments.
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validation, A.P., V.P. and E.N.; formal analysis, A.P.; investigation, A.P.; resources, A.P.; data curation,
A.P.; writing—original draft preparation, A.P., writing—review and editing, E.N.; visualization,
A.P.; supervision, E.N. and V.P. All authors have read and agreed to the published version of
the manuscript.
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Appendix A

According to Figure A1, the main mechanical and geometrical properties of the
specimens, considered in the comparison with the theoretical results, are collected in the
following Tables A1 and A2:
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Table A1. Experimental properties of stub column tests.

Specimen Alloy B1
[mm]

t1
[mm]

B2
[mm]

t2
[mm]

a
[mm]

A
[mm2]

E
[MPa]

f0.2
[MPa]

fu
[MPa]

n
[-]

H64 × 64 × 3
A 6061 T6 63.90 2.81 63.90 2.81 191.10 686.65 66,000 234 248 12
B 6061 T6 63.90 2.85 63.90 2.85 191.50 695.97 66,000 234 248 12

H70 × 55 × 4.2
A 6061 T6 69.90 4.08 54.90 4.08 209.80 951.78 65,000 193 207 22
B 6061 T6 69.90 4.09 54.90 4.09 209.90 953.95 65,000 193 207 22

H95 × 50 × 10.5 A 6061 T6 94.80 10.36 49.70 10.36 284.90 2564.72 71,000 229 242 11
H120 × 70 × 10.5 A 6061 T6 119.90 10.39 69.90 10.39 360.00 3512.24 69,000 226 238 10
H120 × 120 × 9 A 6061 T6 120.00 8.91 120.00 8.91 360.20 3959.25 65,000 225 234 13
N95 × 50 × 10.5 A 6063 T5 94.90 10.37 49.70 10.37 285.20 2568.86 69,000 179 220 10

N120 × 70 × 10.5 A 6063 T5 119.90 10.45 69.80 10.45 360.90 3527.92 71,000 139 194 9
N120 × 120 × 9 A 6063 T5 120.00 8.92 120.00 8.92 361.30 3963.33 69,000 181 228 9

Table A2. Experimental properties of three-point bending tests.

Specimen Alloy B1
[mm]

t1
[mm]

B2
[mm]

t2
[mm]

L
[mm]

A
[mm2]

E
[MPa]

f0.2
[MPa]

fu
[MPa]

n
[-]

Q1-1m-1 6082 T6 99.60 5.94 100.30 5.89 1000 2224 68,886 315.50 323.50 64.0
Q1-1m-2 6082 T6 99.60 5.94 100.30 5.89 1000 2224 68,886 315.50 323.50 64.0
Q1-2m-1 6082 T6 99.60 5.94 100.30 5.89 2000 2224 68,886 315.50 323.50 64.0
Q1-2m-3 6082 T6 99.60 5.94 100.30 5.89 2000 2224 68,886 315.50 323.50 64.0
Q2-1m-1 6082 T4 100.00 5.95 100.00 5.88 1000 2225 66,868 176.60 283.40 38.0
Q2-1m-2 6082 T4 100.00 5.95 100.00 5.88 2000 2225 66,868 176.60 283.40 38.0
Q2-2m-1 6082 T4 100.00 5.95 100.00 5.88 2000 2225 66,868 176.60 283.40 38.0
Q2-2m-2 6082 T4 100.00 2.89 99.70 2.83 1000 1110 66,853 120.10 221.00 26.0
Q3-1m-1 6082 T4 100.00 2.89 99.70 2.83 1000 1110 66,853 120.10 221.00 26.0
Q3-1m-3 6082 T4 100.00 2.89 99.70 2.83 2000 1110 66,853 120.10 221.00 26.0
Q3-2m-1 6082 T4 100.00 2.89 99.70 2.83 2000 1110 66,853 120.10 221.00 26.0
Q3-2m-2 6082 T4 100.10 5.94 100.00 5.98 2000 2243 66,880 314.00 333.40 65.0
Q4-2m-1 7108-T7 100.10 5.94 100.00 5.98 2000 2243 66,880 314.00 333.40 65.0
Q4-2m-2 7108-T7 60.00 2.29 119.40 2.58 1000 867 66,577 288.50 302.30 51.0
R1-1m-1 6082 T6 60.00 2.29 119.40 2.58 2000 867 66,577 288.50 302.30 51.0
R1-2m-1 6082 T6 60.00 2.29 119.40 2.58 2000 867 66,577 288.50 302.30 51.0
R1-2m-2 6082 T6 60.00 2.29 119.40 2.58 3000 867 66,577 288.50 302.30 51.0
R1-3m-1 6082 T6 60.00 2.29 119.40 2.58 3000 867 66,577 288.50 302.30 51.0
R1-3m-2 6082 T6 60.10 2.94 100.00 2.94 1000 906 66,225 281.40 290.40 45.0
R2-1m-1 6082 T6 60.10 2.94 100.00 2.94 1000 906 66,225 281.40 290.40 45.0
R2-1m-2 6082 T6 60.10 2.94 100.00 2.94 2000 906 66,225 281.40 290.40 45.0
R2-2m-1 6082 T6 60.10 2.94 100.00 2.94 2000 906 66,225 281.40 290.40 45.0
R2-2m-2 6082 T6 60.10 2.94 100.00 2.94 3000 906 66,225 281.40 290.40 45.0
R2-3m-1 6082 T6 60.10 2.94 100.00 2.94 3000 906 66,225 281.40 290.40 45.0
R2-3m-2 6082 T6 69.80 4.09 55.20 4.09 695 906 67,000 207.00 222.00 16.0
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Table A2. Cont.

Specimen Alloy B1
[mm]

t1
[mm]

B2
[mm]

t2
[mm]

L
[mm]

A
[mm2]

E
[MPa]

f0.2
[MPa]

fu
[MPa]

n
[-]

H55 × 70 × 4B3 6061 T6 54.70 4.09 69.80 4.09 693 956 67,000 207.00 222.00 16.0
H95 × 50 × 10B3 6061 T6 94.70 10.34 49.60 10.34 695 951 68,000 229.00 242.00 11.0
H50 × 95 × 10B3 6061 T6 49.50 10.34 94.60 10.34 693 2556 68,000 229.00 242.00 11.0
H64 × 64 × 3B3 6061 T6 63.90 2.89 63.80 2.89 693 2552 67,000 232.00 245.00 10.0

H120 × 120 × 9xB3 6061 T6 120.00 8.90 119.90 8.90 691 705 65,000 225.00 234.00 13.0
H120 × 70 × 10xB3 6061 T6 119.80 10.28 69.80 10.28 691 3953 68,000 226.00 238.00 10.0
H70 × 120 × 10xB4 6061 T6 69.80 10.26 119.80 10.26 692 3475 68,000 226.00 238.00 10.0
H70 × 55 × 4B3-R 6061 T6 69.80 4.07 54.80 4.07 694 3470 65,000 193.00 207.00 22.0
H50 × 95 × 10B3-R 6061 T6 49.50 10.33 94.70 10.33 693 948 68,000 229.00 242.00 11.0
H64 × 64 × 3B3-R 6061 T6 63.90 2.83 63.90 2.83 696 2552 67,000 232.00 245.00 10.0
N120 × 70 × 10B3 6063 T5 120.00 10.40 69.90 10.40 689 691 71,000 139.00 194.00 9.0
N70 × 120 × 10B3 6063 T5 69.90 10.40 119.90 10.40 688 3517 71,000 139.00 194.00 9.0
N120 × 120 × 9B3 6063 T5 119.90 8.90 119.90 8.90 693 3515 69,000 181.00 228.00 9.0

Appendix B

In this section, the numerical comparison between the theoretical and experimental
results are collected in the following tables. In particular, the experimental results presented
in the scientific literature are reported in the first column; the theoretical results computed
according to Eurocode 9 are listed in the second column. In the last columns, the values
derived by the new version of ETM are reported in the last columns. Specifically, they are
computed by varying the plastic coefficients according to the relationships provided in
Section 3. Moreover, the mean value [µ], the standard deviation [σ] and the coefficient of
variation [COV] of the ratio between the theoretical and experimental results are reported
in the final part of Tables A4 and A6.

Table A3. Comparison between the theoretical and experimental results in the case of uniform compression.

Specimen
Nu.exp
[kN]

Nu.EC9
[kN]

Nu.ETM [kN]

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8

H64 × 64 × 3
A 164.2 150.68 129.07 154.95 138.10 136.50 135.18 145.12 147.57 158.13
B 165.4 152.86 131.54 158.33 141.07 139.34 137.92 148.37 150.87 160.54

H70 × 55 × 4.2
A 196.2 183.69 167.99 193.69 179.37 176.82 175.13 188.61 190.26 191.31
B 196.9 184.11 168.37 194.30 179.82 177.37 175.53 189.21 190.79 191.74

H95 × 50 × 10.5 A 626.2 587.32 620.66 776.37 783.85 690.55 651.70 750.18 757.69 722.86
H120 × 70 × 10.5 A 862.5 793.77 795.71 1008.01 980.70 886.35 843.13 968.12 979.62 924.23
H120 × 120 × 9 A 981.5 890.83 839.36 1027.42 959.40 914.06 888.85 991.79 1001.69 987.83
N95 × 50 × 10.5 A 609.8 459.83 494.87 626.53 649.24 554.78 516.96 603.68 610.10 574.76
N120 × 70 × 10.5 A 736.9 490.38 504.22 646.89 667.38 568.00 528.23 620.91 627.97 603.69
N120 × 120 × 9 A 811.1 717.36 693.58 889.77 857.29 774.95 735.97 850.14 861.62 812.48

Table A4. Ratio values between the theoretical and experimental results in the case of uniform compression.

Specimen Nu.EC9/Nu.exp
Nu.ETM/Nu.exp

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8

H64 × 64 × 3
A 0.92 0.79 0.94 0.84 0.83 0.82 0.88 0.90 0.96
B 0.92 0.80 0.96 0.85 0.84 0.83 0.90 0.91 0.97

H70 × 55 × 4.2
A 0.94 0.86 0.99 0.91 0.90 0.89 0.96 0.97 0.98
B 0.94 0.86 0.99 0.91 0.90 0.89 0.96 0.97 0.97

H95 × 50 × 10.5 A 0.94 0.99 1.24 1.25 1.10 1.04 1.20 1.21 1.15
H120 × 70 × 10.5 A 0.92 0.92 1.17 1.14 1.03 0.98 1.12 1.14 1.07
H120 × 120 × 9 A 0.91 0.86 1.05 0.98 0.93 0.91 1.01 1.02 1.01
N95 × 50 × 10.5 A 0.75 0.81 1.03 1.06 0.91 0.85 0.99 1.00 0.94

N120 × 70 × 10.5 A 0.67 0.68 0.88 0.91 0.77 0.72 0.84 0.85 0.82
N120 × 120 × 9 A 0.88 0.86 1.10 1.06 0.96 0.91 1.05 1.06 1.00

Mean value [µ]: 0.88 0.84 1.03 0.99 0.92 0.88 0.99 1.00 0.99
Standard deviation [σ]: 0.09 0.08 0.11 0.13 0.10 0.09 0.11 0.11 0.09

Coefficient of variation [COV]: 0.11 0.10 0.11 0.13 0.10 0.10 0.11 0.11 0.09



J. Compos. Sci. 2021, 5, 291 13 of 15

Table A5. Comparison between the theoretical and experimental results in the case of bending moment.

Specimen
Mu.exp
[kNm]

Mu.EC9
[kNm]

Mu.ETM [kNm]

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8

H70 × 55 × 4.2B3 4.75 4.16 4.76 6.09 5.64 5.18 4.94 4.94 5.48 4.75
H55 × 70 × 4.2B3 6.76 4.63 4.70 5.10 4.83 4.81 4.64 4.64 4.72 6.56

H95 × 50 × 10.5B3 12.09 12.68 12.91 13.91 12.91 12.91 12.84 12.84 12.91 11.33
H50 × 95 × 10.5B3 21.09 17.05 23.63 25.04 24.07 23.74 23.57 23.57 23.95 19.25

H64 × 64 × 3.0B3 4.1 3.72 4.10 4.56 4.49 4.30 4.12 4.12 4.35 4.17
H120 × 120 × 9.0xB3 44.42 38.47 45.36 46.35 41.42 42.27 42.64 45.64 46.34 41.79

H120 × 70 × 10.50xB3 23.59 22.92 25.36 26.35 26.42 26.27 25.64 25.64 26.34 22.41
H70 × 120 × 10.50xB4 37.86 29.53 37.93 37.91 37.93 37.93 37.59 37.59 37.92 32.63

H70 × 55 × 4.2B3-R 4.82 3.83 4.29 4.49 4.29 4.29 4.18 4.18 4.29 4.75
H64 × 64 × 3.0B3-R 10.28 3.65 3.55 4.05 3.98 3.66 3.49 3.49 3.86 11.33
N120 × 70 × 10.5B3 20.72 14.3 16.43 20.36 21.39 17.92 16.40 16.40 19.79 18.17
N70 × 120 × 10.5B3 37.3 18.43 16.38 31.02 31.30 28.96 26.01 26.01 30.80 29.36
N120 × 120 × 9.0B3 40.53 30.93 26.60 42.40 43.03 38.20 35.11 41.11 41.45 42.01

Q1-1m-1 27.87 22.42 23.41 27.74 24.59 24.21 24.11 26.11 27.06 25.44
Q1-1m-2 27.87 22.42 23.41 27.74 24.59 24.21 24.11 24.11 27.06 25.44
Q1-2m-1 27.15 22.42 23.41 27.63 24.48 24.07 23.97 24.97 26.92 25.32
Q1-2m-3 27.39 22.42 23.41 27.63 24.48 24.07 23.97 24.97 26.92 25.32
Q2-1m-1 18.43 12.55 16.53 19.27 17.47 16.99 16.76 17.76 18.95 16.78
Q2-1m-2 18.3 12.55 16.53 19.27 17.47 16.99 16.76 17.76 18.95 16.78
Q2-2m-1 17.76 12.55 16.53 19.27 17.47 16.99 16.76 17.76 18.95 16.78
Q2-2m-2 18.3 12.55 16.53 19.27 17.47 16.99 16.76 17.76 18.95 16.78
Q3-1m-1 4.78 4.3 3.76 4.76 4.40 4.15 4.05 4.05 4.43 4.67

Q3-1m-3 4.69 4.3 3.75 4.74 4.38 4.13 4.03 4.03 4.43 4.67
Q3-2m-1 4.64 4.3 3.75 4.74 4.38 4.13 4.03 4.03 4.43 4.65
Q3-2m-2 4.87 4.3 3.75 4.74 4.38 4.13 4.03 4.03 4.43 4.65
Q4-2m-1 28.81 22.39 22.90 27.55 24.18 24.11 24.04 25.04 26.82 25.22
Q4-2m-2 27.85 22.39 22.90 27.55 24.18 24.11 24.04 25.04 26.82 25.22
R1-1m-1 8.1 7.53 7.62 9.14 8.28 8.13 8.01 8.31 8.98 7.90
R1-2m-1 8.1 7.53 7.62 9.14 8.28 8.13 8.01 8.31 8.98 7.86

R1-2m-2 8.1 7.53 7.62 9.13 8.27 8.13 8.00 8.31 8.97 7.86
R1-3m-1 7.62 7.53 7.62 9.13 8.27 8.13 8.00 8.31 8.97 7.85
R1-3m-2 7.54 7.53 6.96 8.65 7.85 7.60 7.40 7.80 8.45 7.85
R2-1m-1 8.65 7.22 6.96 8.65 7.85 7.60 7.40 7.80 8.45 8.35
R2-1m-2 8.65 7.22 6.96 8.62 7.83 7.58 7.38 7.78 8.42 8.35
R2-2m-1 8.58 7.22 6.96 8.62 7.83 7.58 7.38 7.78 8.42 8.33
R2-2m-2 8.8 7.22 6.96 8.61 7.82 7.57 7.38 7.88 8.41 8.33
R2-3m-1 9.03 7.22 6.96 8.61 7.82 7.57 7.38 7.88 8.41 8.33
R2-3m-2 8.95 7.22 6.96 8.61 7.82 7.57 7.38 7.88 8.41 8.33

Table A6. Ratio values between the theoretical and experimental results in the case of bending moment.

Specimen Mu.EC9/Mu.exp
Mu.ETM/Mu.exp

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8

H70 × 55 × 4.2B3 0.88 1.00 1.28 1.19 1.09 1.04 1.04 1.15 1.00
H55 × 70 × 4.2B3 0.68 0.70 0.75 0.71 0.71 0.69 0.69 0.70 0.97

H95 × 50 × 10.5B3 1.05 1.07 1.15 1.07 1.07 1.06 1.06 1.07 0.94
H50 × 95 × 10.5B3 0.81 1.12 1.19 1.14 1.13 1.12 1.12 1.14 0.91

H64 × 64 × 3.0B3 0.91 1.00 1.11 1.10 1.05 1.01 1.01 1.06 1.02
H120 × 120 × 9.0xB3 0.87 1.02 1.04 0.93 0.95 0.96 1.03 1.04 0.94
H120 × 70 × 10.50xB3 0.97 1.08 1.12 1.12 1.11 1.09 1.09 1.12 0.95
H70 × 120 × 10.50xB4 0.78 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.86

H70 × 55 × 4.2B3-R 0.79 0.89 0.93 0.89 0.89 0.87 0.87 0.89 0.99
H64 × 64 × 3.0B3-R 0.36 0.35 0.39 0.39 0.36 0.34 0.34 0.38 1.10
N120 × 70 × 10.5B3 0.69 0.79 0.98 1.03 0.86 0.79 0.79 0.95 0.88
N70 × 120 × 10.5B3 0.49 0.44 0.83 0.84 0.78 0.70 0.70 0.83 0.79
N120 × 120 × 9.0B3 0.76 0.66 1.05 1.06 0.94 0.87 1.01 1.02 1.04
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Table A6. Cont.

Specimen Mu.EC9/Mu.exp
Mu.ETM/Mu.exp

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8

Q1-1m-1 0.80 0.84 1.00 0.88 0.87 0.87 0.94 0.97 0.91
Q1-1m-2 0.80 0.84 1.00 0.88 0.87 0.87 0.87 0.97 0.91
Q1-2m-1 0.83 0.86 1.02 0.90 0.89 0.88 0.92 0.99 0.93
Q1-2m-3 0.82 0.85 1.01 0.89 0.88 0.88 0.91 0.98 0.92
Q2-1m-1 0.68 0.90 1.05 0.95 0.92 0.91 0.96 1.03 0.91
Q2-1m-2 0.69 0.90 1.05 0.95 0.93 0.92 0.97 1.04 0.92
Q2-2m-1 0.71 0.93 1.09 0.98 0.96 0.94 1.00 1.07 0.94
Q2-2m-2 0.69 0.90 1.05 0.95 0.93 0.92 0.97 1.04 0.92
Q3-1m-1 0.90 0.79 1.00 0.92 0.87 0.85 0.85 0.93 0.98

Q3-1m-3 0.92 0.80 1.01 0.93 0.88 0.86 0.86 0.95 1.00
Q3-2m-1 0.93 0.81 1.02 0.94 0.89 0.87 0.87 0.96 1.00
Q3-2m-2 0.88 0.77 0.97 0.90 0.85 0.83 0.83 0.91 0.95
Q4-2m-1 0.78 0.79 0.96 0.84 0.84 0.83 0.87 0.93 0.88
Q4-2m-2 0.80 0.82 0.99 0.87 0.87 0.86 0.90 0.96 0.91
R1-1m-1 0.93 0.94 1.13 1.02 1.00 0.99 1.03 1.11 0.98
R1-2m-1 0.93 0.94 1.13 1.02 1.00 0.99 1.03 1.11 0.97

R1-2m-2 0.93 0.94 1.13 1.02 1.00 0.99 1.03 1.11 0.97
R1-3m-1 0.99 1.00 1.20 1.09 1.07 1.05 1.09 1.18 1.03
R1-3m-2 1.00 0.92 1.15 1.04 1.01 0.98 1.03 1.12 1.04
R2-1m-1 0.83 0.80 1.00 0.91 0.88 0.86 0.90 0.98 0.97
R2-1m-2 0.83 0.80 1.00 0.91 0.88 0.85 0.90 0.97 0.97
R2-2m-1 0.84 0.81 1.00 0.91 0.88 0.86 0.91 0.98 0.97
R2-2m-2 0.82 0.79 0.98 0.89 0.86 0.84 0.90 0.96 0.95
R2-3m-1 0.80 0.77 0.95 0.87 0.84 0.82 0.87 0.93 0.92
R2-3m-2 0.81 0.78 0.96 0.87 0.85 0.82 0.88 0.94 0.93

Mean value [µ]: 0.82 0.85 1.02 0.94 0.91 0.89 0.92 0.99 0.95
Standard deviation [σ]: 0.13 0.15 0.14 0.13 0.13 0.13 0.14 0.14 0.06

Coefficient of variation [COV]: 0.16 0.18 0.14 0.14 0.14 0.15 0.15 0.14 0.06
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