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Abstract: Graphene oxide is an imperative modified form of graphene. Similar to graphene, graphene
oxide has gained vast interest for the myriad of industrial applications. Conjugated polymers or
conducting polymers are well known organic materials having conducting backbone. These polymers
have semiconducting nature due to π-conjugation along the main chain. Doping and modification
have been used to enhance the electrical conductivity of the conjugated polymers. The nanocom-
posites of the conjugated polymers have been reported with the nanocarbon nanofillers including
graphene oxide. This review essentially presents the structure, properties, and advancements in the
field of conducting polymer/graphene oxide nanocomposites. The facile synthesis, processability,
and physical properties of the polymer/graphene oxide nanocomposites have been discussed. The
conjugated polymer/graphene oxide nanocomposites have essential significance for the superca-
pacitors, solar cells, and anti-corrosion materials. Nevertheless, the further advanced properties
and technical applications of the conjugated polymer/graphene oxide nanocomposites need to be
explored to overcome the challenges related to the high performance.

Keywords: graphene oxide; conjugated polymer; nanocomposite; conductivity; supercapacitor

1. Introduction

Conducting polymers or conjugated polymers form important group of polymers
having semiconductivity and electronic materials [1]. The discovery of conjugated poly-
mers is reported back to 1970s, which led to the development of wide range of conducting
polymers polyacetylene, polycarbazole, polyaniline, polypyrrole polythiophene, etc. [2–4].
The conjugated polymers have beneficial electronic, optical, durability, heat stability, and
other physical properties [5,6]. These polymers shown wide ranging applications in super-
capacitors, sensors, photovoltaics, light emitting diodes, and electronic devices [7–9]. The
conducting polymers have also been used in the biomedical field [10,11]. Graphene is a two
dimensional one atom thick nanocarbon nanomaterial [12,13]. Graphene oxide, modified
form of graphene, is remarkable candidate for the formation of polymeric nanocompos-
ites [14,15]. Graphene oxide has been filled in the conjugated, thermoplastic, and ther-
mosetting matrices. The polymer/graphene oxide nanocomposites have been explored
for the thermal, mechanical, and electrical properties and advance applications [16,17].
Graphene oxide based nanomaterials have found applications in the photovoltaics, super-
capacitors, sensors, batteries, fuel cells, radiation shielding, etc. [18–20]. In this review,
essential prospects of the conducting polymer/graphene oxide nanocomposites have been
presented. Particularly, the preparation, properties, and advanced performance of the
conducting polymer based nanocomposites have been discussed. The conducting poly-
mer/graphene oxide have found future potential for the efficient materials for energy
devices and corrosion resistance materials. Conjugated polymer design and modifica-
tion, and graphene oxide modification can be focused to improve the performance of the
conducting polymer/graphene oxide in the technical applications.
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2. Graphene Oxide

Graphene is a nanoallotropic form of carbon [21]. The word ‘graphene’ is derived
from graphite with the suffix ‘-ene’. In graphite, the graphene nanosheets are stacked
together through the weak dispersion forces. Graphene is a two dimensional monolayer
of carbon atoms [22]. Graphene consists of a single layer of hexagonally arranges carbon
atoms [23]. It is a thinnest known material in the word. The carbon atoms in one atom
thick layer nanostructure are sp2 hybridized and have delocalized π-electron clouds [24].
Graphite is an inexpensive source of graphene [25]. The graphene has been produced on
large scale through the exfoliation and micro-mechanical cleavage of graphite. Moreover,
the sophisticated techniques such as chemical vapor deposition, plasma enhanced chemical
vapor deposition and thermal chemical vapor deposition techniques have been used [26].
Graphene oxide (GO) is an important modified form of graphene. GO simply consists
of a graphene nanosheet with the surface groups [27,28]. GO possess the hydrophilic
surface functionalities including the epoxide, carboxylic acid, hydroxyl, carbonyl, etc. [29].
Figure 1 compares the structure of graphene and GO. Various methods have been used
to develop GO including the Brodie, Hummers and Offeman, and modified Hummers
method [30]. Initially, Brodie method has been used i.e., the mixture of potassium chlorate
and nitric acid converts graphite to GO [31]. Hummers and Offeman proposed the use
of potassium permanganate, sodium nitrate, and sulfuric acid to transform graphite to
GO [32]. An important use of GO has been found with the polymer matrices. GO has
been used to enhance the electrical conductivity, thermal stability, thermal conductivity,
chemical stability, and mechanical constancy. The polymer/GO nanocomposites have
been used in the electronics [33], sensors [34], supercapacitors [35], energy devices [36],
membranes [37,38], etc.
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3. Conjugated Polymer

Conjugated polymers or conducting polymers form an important separate class of
polymers. Conjugated polymers are usually not characterized under the general groupings
of the thermoplastic or thermosetting polymers. The intrinsically electrically conducting
polymers or conjugated polymers have electrical and optical properties alike semiconduc-
tors [39]. However, the conjugated polymers have the advantages of light weight and
easy processing compared with the metal based materials [40]. Such conjugated organic
polymers are also known as synthetic metals [41]. The intrinsically conjugated polymers
have integral conjugated electron system and high electron affinity [42]. There are al-
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ternating single and double bonds in the structure causing delocalized electrons in the
hybrid orbitals. The electrical conductivity of the conjugated polymers has been further
enhanced using the dopants and oxidation-reduction reactions. The electron movement
of the double bonds to the neighbouring atoms usually causes charge transfer through
the system, which is often designated as resonance. The charge mobility may lead to the
electrical conductivity of the polymers. The presence of charge in the conjugated polymers
have caused increased doping capability of these materials. Initially, polyacetylene was
discovered and considered as an intrinsically electrically conjugated polymer [43]. The elec-
trical conductivity of polyacetylene has been studied and enhanced with the doping [44,45].
Other important electrically conducting polymers are polyaniline (PANI) [46], polypyrrole
(PPy) [47], polythiophene (PTh) [48], poly (p-phenylene) [49], polycarbazole [50], and their
derivative polymers (Figure 2). Among the conjugated polymers, PANI is an important and
mostly used conjugated polymer. Polyaniline has fine processing, facile synthesis, employ
inexpensive monomers, high conductivity, and potential applications [51]. Bhadra et al. [52]
studied the electrical conductivity of PANI. The electron transport and percolation thresh-
old phenomenon of the PANI matrix have been studied. All the intrinsically electrically
conducting polymers have fine physical properties, the facile synthesis techniques, and the
technical fields.
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Figure 2. Some important conducting polymers.

4. Conjugated Polymer/Graphene Oxide Nanocomposites

Graphene and GO have been considered as efficient nanofillers for the polymeric
nanocomposites [53–55]. Graphene and GO have been used to improve the electrical,
mechanical, thermal, and other physical properties of the polymer/graphene and poly-
mer/graphene oxide nanocomposites [56,57]. Pristine graphene has dispersion problems
in the polymer matrices due to the nanosheet wrinkling. As compared with graphene, GO
possess surface functionalities for better dispersion in the polymer nanocomposites [58].
Consequently, the interfacial interactions between the polymers and GO nanosheets may
resolve the dispersion problems. Appropriate processing techniques are also essential for
better nanofillers dispersion [59]. The homogeneous GO dispersion may result in the high
glass transition temperature, thermal stability, conductivity, and mechanical strength of the
nanocomposites. Accordingly, the conjugated polymers such as PANI, PPy, and PTh have
been filled with graphene and GO to form the nanocomposites [60–62].
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Polyaniline and GO based nanocomposites have been successfully designed [63].
Li et al. [64] formed the polyaniline/reduced graphene oxide nanocomposites using in situ
polymerization. The aniline monomer and GO contents affected the morphology of the
nanocomposites. Chauhan et al. [65] filled the PANI matrix with the reduced GO to develop
the nanocomposites. The increase in the reduced GO contents improved the electrical con-
ductivity and capacitance of the polyaniline/reduced graphene oxide nanocomposites [66].
The surface functional GO such as substituted with sulfonic groups has also been used as
the nanofiller for conducting polymers [67,68]. The polyaniline/sulfonated GO nanocom-
posites possess high electron transport properties [69]. Fan et al. [70] converted GO to
sulfonated graphene and filled in the PANI matrix to form the polyaniline/sulfonated
graphene (PANI/SG) nanocomposites. The in situ polymerization was used. Figure 3
depicts the process of the conversion of GO into SG nanosheet. Here, the benzene sulfonic
acid was used to convert the GO into SG. Transmission electron microscopy (TEM) was
used to study the morphology of SG obtained from GO, PANI, and SG/PANI nanocom-
posite (Figure 4a–c). The SG had plate-like structure, whereas neat PANI form nanorods.
The PANI/SG shown homogeneously dispersed sheet like morphology. The homogeneous
morphology was due to the interactions between the polymer and sulfonated nanofillers.
Gao et al. [71] prepared reduced GO nanofiller using NaBH4. Then, the reduced GO was
covalently grafted to the aniline monomer using p-phenylenediamine, aryldiazonium salt,
and NaNO2. In this way, several systems of the polyaniline/graphene oxide nanocompos-
ites have been designed and studied for the important properties and applications.
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Polypyrrole is also an important conjugated polymer known for its easy synthesis,
solubility, and high electrical conductivity [72]. Graphene nanofillers have been used
to form the polypyrrole/graphene nanocomposites [73–75]. GO has been used with the
PPy matrix to increase the physical properties of polypyrrole/graphene oxide (PPy/GO)
nanocomposites [76,77]. GO dispersion in the PPy matrix has been used to incresae the
physical properties [78]. The synergistic effects in PPy/GO have improved the electro-
chemical properties, electron mobility and thermal transport in the systems. Moreover, GO
has been used to increase the mechanical properties and thermal stability of the PPy/GO
nanocomposites [79]. The electrochemical polymerization, in situ route, and emulsion
polymerization have been used as successful methods to form the PPy/GO nanocom-
posites [80,81]. Deng et al. [82] used the electrochemical technique to form the PPy/GO
nanocomposites. The platinum electrode was used as references and coated with the PPy
and PPy/GO nanocomposites. The electrochemical synthesis route for the formation of
the nanocomposite is given in Figure 5. The nanocomposite was developed using the elec-
trostatic interactions between the pyrrole cations and negatively charged GO nanosheets.
Figure 6 shows the electrochemical impedance spectroscopy (EIS) results for the Pt electrode
and the electrodes modified with PPy and PPy/GO with different GO contents.
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Figure 6. Electrochemical properties of Pt electrode modified with electrochemically deposited
PPy, PPy/GO (0.5), and PPy/GO (1.0) coatings [82]. PPy/GO = polypyrrole/graphene oxide;
Pt = platinum.

The neat Pt electrode had higher impedance than the PPy and nanocomposites in
the frequency range of 10–105 Hz. The nanofiller loading of 1 wt.% further reduced the
impedance, compared with the 0.5 wt.% PPy/GO. The impedance values of the PPy,
PPy/GO (0.5 wt.%), and PPy/GO (1.0 wt.%) were 115 kΩ, 40 kΩ, and 26 kΩ, respectively.
The difference in the impedance values were attributed to the morphological difference
and effect of GO in the nanocomposites.
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Polythiophene and its derivatives are important matrices for the nanocomposites [83].
Shamsayei et al. [84] prepared the polythiophene/graphene oxide (PTh/GO) nanocom-
posites. The electrochemical technique was used for the PTh/GO nanocomposites. The
conductivity and morphology properties were studied. Yang et al. [85] proposed the poly(3-
hexylthiophene)/reduced modified graphite oxide (P3HT/re-mGO) nanocomposites. In
solvent, the neat re-mGO was aggregated, whereas P3HT/re-mGO nanocomposite has
fine dispersion [86]. The morphology study by Atomic force microscopy (AFM) reveals
the adhering of polymer chains with the GO nanosheets. The polymer was coated on the
nanofiller surface (Figure 7).
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phase images (right) [85]. P3HT/re-mGO = poly(3-hexylthiophene)/reduced modified graphite
oxide.

Bora et al. [87] prepared the PTh/GO nanocomposites through the interfacial polymer-
ization. The nanofiller loading improved the electrical conductivity of the nanocomposites
to 2.7 × 10−4 S cm−1. The thermogravimetric analysis (TGA) was used to study the
thermal stability of the nanocomposites (Figure 8 and Table 1). Incorporating the GO
nanofiller in the PTh matrix improved the thermal stability of the polymer matrix. The
PTh/GO nanocomposite (3 wt.% nanofiller) revealed increase in the weight retention to
19%, compared with the neat PTh (4%). The weight loss of the PTh matrix occur in the
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range 200–300 ◦C. For the nanocomposites, the degradation starts at higher temperatures
of 248–260 ◦C.
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Table 1. TGA data for PTh, GO and PTh/GO composites [87].

Sample
Weight Loss (%) Weight Retention at

600 ◦C (%)At 200 ◦C At 300 ◦C At 500 ◦C

PTh 10 15 80 4

PTh/GO 1 8 13 77 11

PTh/GO 2 7 12 73 17

PTh/GO 3 6 10 70 19

GO 1 25 35 60

5. Significance of Conjugated Polymer/Graphene Oxide Nanocomposites

Supercapacitors are efficient energy storage devices. Supercapacitor generally stores
energy on the conducting material surface. High performance supercapacitors have been
developed using the conducting polymers and nanocomposites [88–90]. Polythiophene
based supercapacitors possess high electrical conductivity, charge mobility, chemical stabil-
ity, and environmental friendliness [91]. The PTh/GO nanocomposites have been applied
in the supercapacitors [92,93]. For this purpose, the PTh/GO nanocomposites have been de-
veloped through the in situ oxidative polymerization technique [94–96]. Various derivatives
of PTh have also been used in supercapacitors. The poly(3,4-ethylenedioxythiophene) (PE-
DOT)/GO based supercapacitors had high specific capacitance of 201 Fg−1 [97–99]. The PE-
DOT/GO nanocomposite revealed high specific capacitance of 320 Fg−1. The poly(9-butyl-
3,6-di (thien-2-yl)-9H-carbazole)/GO showed specific capacitance of 296 Fg−1 [100,101].
The interactions between the polythiophene and GO through π-π stacking or non-covalent
linking have enhanced the electron mobility, capacitance values, and charge/discharge
performance [102–104]. Zhou et al. [105] produced the PPy/GO nanocomposite using the
electrochemical method. The electrochemical co-deposition of PPy/GO nanocomposite
on the fluorine-doped tin oxide (FTO) substrate is given in Figure 9a,b. Figure 9c depicts
the formation of layered supercapacitor device with PPy/GO sandwiched between the
FTO substrates. Fan et al. [70] reported the supercapacitor based on the PANI/SG derived
from GO. Figure 10 shows the change in the specific capacitance with current density of the
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nanocomposites. The specific capacitance of the SG, PANI, and PANI/SG was decreased
with the current density from 0.5–4 Ag−1. The highest specific capacitance was found for
the PANI/SG nanocomposites in the range of 410–478 Fg−1. The high capacitance of the
PANI/SG nanocomposites was due to the improved interactions between the conjugated
polymer and nanofillers and electron transportation.
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The increasing demand of multi-purpose energy devices have developed the advanced
solar cells based on the conjugated polymers [106]. Blending of the conducting polymers
with nanocarbons (graphene, GO, carbon nanotube) have improved the power conversion
efficiencies of the solar cells [107]. The nanocarbons such as GO may act as electron
accepting materials in the solar cell nanocomposites [108]. GO own large surface area and
electron transport pathways for high charge/electron conductivity [109]. Consequently,
the solar cells have been integrated with the PTh/GO based nanomaterials [110–112].
Agbolaghi et al. [113] formed the polyaniline-grafted reduced graphene oxide (PANI-g-
rGO) nanocomposite using the in situ oxidative polymerization method. The PANI-g-rGO
improved the solar cell efficiency to 7%. Stylianakis et al. [114] established the poly(3-
hexylthiophene)/GO nanocomposites for the bulk heterojunction solar cell. The GO act
as electron acceptor and poly(3-hexylthiophene) function as electron donor [115–117].
Moreover, GO was finely dispersed in the polymeric matrix and developed percolation
network for the efficient electron transportation [118,119].

The electromagnetic radiation emission can daunt the performance of electronic de-
vices and systems [120]. Consequently, the electromagnetic radiation emission has been
deliberated as the environmental pollution. Incidentally, the polymeric nanocompos-
ites have been applied to block the electromagnetic waves [121]. Graphene oxide has
been used as an significant polymeric nanofiller in conducting polymers for EMI shield-
ing [122]. Research attempts have been performed on the polyaniline and graphene oxide
based nanocomposites for EMI shielding [123]. The EMI shielding efficiency of the poly-
mer/graphene oxide has been found up to 40 dB. The polyaniline and graphene decorated
with silver nanoparticles had EMI shielding efficiency of 29.33 dB [124]. In addition to
polyaniline, poly(3,4-ethylenedioxythiophene) and GO based nanocomposites have also
been reported [125–127]. It has been observed that the fine electrical conductivity is needed
for the high EMI shielding efficiency. Subsequently, the conducting nanocomposites have
ability to overcome the problem of electromagnetic radiation and low absorption [128].
The high EMI shielding performance of the polymer/graphene oxide nanocomposites can
be useful for the electronic and optoelectronic devices [129].

Corrosion is a severe technical issue for the metal industries [130,131]. Various meth-
ods have been developed to prevent the erosion of metal based materials such as protec-
tive coatings, corrosion inhibitors, and better-quality anti-corrosion methods [132–134].
The anti-corrosion performance of polymers have been enhanced using the nanocarbon
nanofillers such as graphene and GO [135–137]. The thin layers of GO have been studied as
anti-rusting coatings [138]. The GO coatings have been used to inhibit the erosion of copper
and nickel [139,140]. The PANI/GO nanofiber based coatings have been used for the corro-
sion resistance [141]. The PTh/GO nanocomposites have been used for the anti-rusting
coatings [142]. Further investigations on the anti-corrosion and electrical conductivity
properties of the conjugated polymers and graphene oxide based nanocomposites may
expand this field for future advancements in this field [143].

6. Future and Summary

Graphene oxide-based conjugated polymer nanocomposites are still at the initial
stages of development and there are growing interests in overcoming the challenges
and applications of these materials. The attainment of ideal dispersion state of the GO
nanoparticles and property enhancement are the challenging factors. The homogeneous
nanofiller dispersion may offer large interfacial area between the matrix and the GO
reinforcement. Consequently, the reinforcing effect of the nanofiller involve several features
such as aspect ratio of GO, nanofiller orientation, polymer matrix type, polymer/nanofiller
ratio, and nanofiller dispersion in the matrix. The challenging problem which need to be
addressed is the large scale production of the uniformly dispersed conjugated polymer/GO
nanocomposites. Primarily, fine GO dispersion and interaction in matrix/nanofller is a
major challenge.
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According to above literature, conjugated polymer base materials have been discov-
ered as a broad research field. Polyaniline, polypyrrole, polythiophene, and PTh deriva-
tives have been polymerized using various polymerization techniques and filled with the
graphene based nanofillers. It has been observed that the structure and morphology of
the conducting polymer/GO depend on the fabrication technique used and the synthe-
sis conditions. Here, the challenging factors are the identification of efficient synthesis
method, optimum reaction conditions, and the choice of matrix and functional GO. In situ
method has been perceived as the most widely used method in this regard. Moreover, the
interactions in the conducting polymer/GO nanostructures may enhance the electrical
conductivity and essential features of these materials. The structure-property relation-
ships are predicted to establish the advanced applications of the conjugated polymer/GO
nanocomposites. Supercapacitor performance can be enhanced by using the conjugated
polymer/GO and doped polymer matrices. The photovoltaic effect of the conducting poly-
mer/GO can also be improved using the doping process. The anti-corrosion performance
of the conjugated polymer/GO coatings can also be upgraded using design improvement
and doping techniques. In future, the conducting polymer/GO can be significantly used for
the microelectronics applications. Progress in the conjugated polymer/GO nanocomposites
may also lead to fine digital integrated circuits. The biomedical field is also awaiting
the use of conjugated polymer/GO nanocomposites. For future advancements, various
features of conjugated polymer/GO need to be considered including the modification of
the conjugated main chain, functionalities of GO, altered synthesis strategies, mechanism
of conjugated polymer/GO interaction, and structure-property relationship.

Briefly speaking, this review states essentials aspects of the conjugated polymer/GO
nanocomposites. Conjugated polymer/GO nanomaterials have enhanced the morphologi-
cal, electrical, thermal, and mechanical features. The physical properties and applications
of the conjugated polymer/GO nanocomposites have been reviewed. Progress in the
conjugated polymer/GO nanocomposites revealed solicitations in supercapacitors, solar
cells, and corrosion protective coatings.
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