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Abstract: Damage detection, using vibrational properties, such as eigenfrequencies, is an efficient and
straightforward method for detecting damage in structures, components, and machines. The method,
however, is very inefficient when the values of the natural frequencies of damaged and undamaged
specimens exhibit slight differences. This is particularly the case with lightweight structures, such
as fiber-reinforced composites. The nonlinear support vector machine (SVM) provides enhanced
results under such conditions by transforming the original features into a new space or applying
a kernel trick. In this work, the natural frequencies of damaged and undamaged components are
used for classification, employing the nonlinear SVM. The proposed methodology assumes that the
frequencies are identified sequentially from an experimental modal analysis; for the study propose,
however, the training data are generated from the FEM simulations for damaged and undamaged
samples. It is shown that nonlinear SVM using kernel function yields in a clear classification boundary
between damaged and undamaged specimens, even for minor variations in natural frequencies.

Keywords: damage detection; supervised learning; nonlinear support vector machine; modal analy-
sis; fiber-reinforced composites

1. Introduction

Reliable detecting of internal damages in composites is still a challenging issue for
many applications, such as aerospace, automotive, and other fields. There are rich exper-
imental, numerical, and analytical models for the in situ detection, cf. [1]. The models,
however, suffer from prediction accuracy, owing to the fact that composites exhibit a high
degree of anisotropy and uncertainty. Among them, the methods developed based on
the structural dynamics provide more reliable results because the dynamic characteristics
of composite structures and components change, due to damage that occurs during the
manufacturing process or operating conditions [2]. This is more critical for fiber-reinforced
composite structures as they exhibit complicated structural components that are subject to
invisible delamination [3].

In vibration-based methods [4], the damage detection is based on recorded signals
detecting the local vibrational behavior in the time, frequency, or modal domains, as dis-
placement, velocity, or acceleration. Damage detection is then performed by extracting
vibration characteristics from the response spectrum and applying a pattern recognition
method that compares current characteristics with the (undamaged) reference condition.
Comparing vibrational parameters such as eigenfrequencies is very efficient and straight-
forward, owing the fact that delamination is detected at a specific vibration mode or in
many modes [5,6]. Since the natural frequencies are global features of structures, a small
delamination does not lead to a remarkable shift of the natural frequencies. For that reason,
one has to identify higher mode frequencies in order to detect delamination associated
to the local variation in the structure. This makes detecting damaged and undamaged
samples very costly and difficult. To this end, the data-driven methods based on machine
learning are used.
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Machine learning-based methods, such as deep convolutional neural networks [7,8],
can effectively utilize the large amount of data without relying on complex feature ex-
traction in composites. The method utilizes time/frequency signals in a two-dimensional
image employing a wavelet transform technique. The generated images are then labeled
and applied for damage classification. The effectiveness of methods is limited if signals
for damaged and undamaged samples exhibit a narrow difference. The support vector
machine (SVM) is a convenient procedure in such cases. A comparison between the
performance of SVM and artificial neural networks for damage detection is presented
in [9].

The main idea behind the SVM is creating a boundary (hyperplane) separating the
data in classes [10,11]. The hyperplane is found by maximizing the margin between classes.
The training phase is performed employing inputs, known as feature vector, while outputs
are classification labels. The major advantage is the ability to form an accurate hyperplane
from a limited amount of training data. The linear SVM has been recently studied for
damage detection [12–16]. In the first work, for instance, a story of a shear building has
been investigated, where the authors mentioned that the method is able to determine the
damage location with only two vibration sensors. Other works have utilized temperature
as an additional feature for the SVM algorithm. The classical linear SVM leads in a not clear
margin for detecting damaged and undamaged samples, owing the fact that the training
data may not be linearly separable. Accordingly, the reliability of the method cannot be
guaranteed if the difference between the frequencies of damaged and undamaged samples
is quite small. Furthermore, the linear SVM cannot represent the score of all damages as a
simple parametric function of the natural frequencies, similar to other supervised machine
learning methods. For that reason, the method suffers from a clear representation of the
boundary between damaged and undamaged samples. The first solution strategy, for such
situations, is mapping the original feature space to a high dimensional feature space, which
is linearly separable [17]. Efficient methods for nonlinear SVM utilize the kernel trick [18].
The kernel trick provides this facility, in order to use the tensor product of the original
feature space instead of high dimensional nonlinear mapping. Using the nonlinear SVM,
each mode has its own weights, according to the difference between the value of their own
frequency ratios of the training data sample. The nonlinear SVM using kernel function
yields in a clear classification boundary between damaged and undamaged specimens,
even for minor variations in natural frequencies, as demonstrated in this paper.

This paper is organized as follows: the necessary theory of linear and nonlinear SVM,
parameter setting, and algorithm are presented in Section 2. A numerical case study is
presented in Section 3. The conclusion is given in the last section of the paper.

2. Theory of Nonlinear Support Vector Machine

The selection of a classification algorithm in machine learning based methods for a
particular task is still a challenging issue. Each algorithm has certain peculiarities and
makes certain assumptions. Generally, there is no classifier that would be suitable for
all scenarios. In practice, it is always advisable to compare the performance of various
learning algorithms, in order to select the best model for a given task. One major deciding
criteria for using SVM is where limited data samples are available and the level of noise in
the data collocation.

2.1. Linear SVM

The class boundaries determined by the linear SVM are so-called large margin clas-
sifiers and leave as wide a range as possible, free of objects around the class boundaries,
known as a hard margin. The aim of classification is to decide to which class a new
data object can be assigned, based on existing data and data assignments. Assume that
a training database of x = (x1, x2, . . . , xn) , with an associated binary class assignment of
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yi = {−1,+1}, is known. Based on this data, the various machine learning algorithms try
to find Hyperplane H, given by:

wT · x + b = 0 (1)

in which wT ={w1, w2, . . . , wn}T denotes the normal vector to the Hyperplane, and b is the
bias. A higher number of dimensions, n, leads to a more complex hyperplane. The solution
is to find values for w and b, in order for the hyperplane to be used to assign new objects
to the correct classes. The hyperplane with the largest object-free area is considered the
optimal solution, cf. Figure 1.
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+
b
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x
+
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Figure 1. Two-dimensional hyperplane (dashed line) in the SVM, with support vectors x+ and x−,
belong to both classes.

Considering two support vectors, x+ and x−, belonging to classes yi = +1 and
yi = −1, respectively, one can show that the margin γ is the projection of the vector
x+ − x− on the normalized vector w, i.e.:

γ =
(
x+ − x−

)
· w
‖w‖ =

(
wx+ −wx−

)
· 1

‖w‖2 (2)

Since wx+ = 1− b and wx− = −1− b, Equation (2) yields in:

γγγ =
2

wT ·w (3)

In which, the second norm is ‖w‖2 = wT ·w. The margin is a function of w and, thus,
the maximum margin solution is found by solving the following constrained optimiza-
tion problem:

arg min
w,b

1
2 wTw (4)

s.t. yi(wTxi + b) ≥ 1 (5)
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The constraint yi(wTxi + b) ≥ 1 holds for each training sample xi closest to the
hyperplane (support vectors). In order to solve this constrained optimization problem, it
can be transferred to an unconstrained problem, by introducing the Lagrangian function L.
The primary Lagrangian, with Lagrange multiplier, αi, is given by:

L =
1
2

wTw−
n

∑
i=1

αi

[
yi(wTxi + b)− 1

]
(6)

The Lagrangian should be minimized, with respect to w and b, and maximized, with
respect to αi. The optimization problem is a convex quadratic problem. Setting ∇L = 0
yields the optimal value for the parameters, i.e.:

w∗ =
n

∑
i=1

αiyixi, and
n

∑
i=1

αiyi = 0 (7)

Substituting for w and considering ∑n
i=1 αiyi = 0 in Equation (6) gives the dual

representation of the maximum margin problem, which depends only on the Lagrange
multipliers and is to be maximized w.r.t, αi:

arg max
αi

∑n
i=1 αi − 1

2 ∑n
i=1 ∑n

j=1 αiαjyiyjxixj (8)

s.t. ∑n
i=1 αiyi = 0, and αi ≥ 0 (9)

Note that the dual optimization problem depends only on linear combinations of
training points. Furthermore, Equation (8) characterizes the support vector machine, which
gives the optimal separation hyperplane by maximizing the margin. According to the
Karush–Kuhn–Tucker (KKT) conditions, the optimal point (w∗ , b∗ ) is achieved for each
Lagrange multiplier αi. Support vectors Sv = {(xi, yi)} are those corresponding to αi > 0.
Since, for all sample data out of Sv, the corresponding αi = 0, the optimal solution depends
only on few training points, the support vectors. Having solved the above optimization
problem for finding values of αi, the optimal bias parameter b∗ is estimated [19]:

b∗ =
1

Nv

Nv

∑
i=1

[
yi −

Nv

∑
j=1

αiyixixj

]
(10)

in which Nv is the total number of support vectors. Giving the optimal value of parameters,
w∗ and b∗, the new data x′ is classified by using the prediction model, ỹ, as:

ỹ(x′) = sign
(
w∗ · x′ + b∗

)
(11)

2.2. Nonlinear SVM

The above described SVM classifies the data using a linear function. However, this is
only practical if the underlying classification problem is also linear. In many applications,
however, this is not the case. The training samples are not strictly linearly separable in
reality. This may be due to measurement errors in the data or the fact that the distributions
of the two classes naturally overlap. This is achieved by transforming the data into a
higher-dimensional space, in which one hopes for a better linear separability. A nonlinear
functional is used to map the given feature space x into a higher dimension space Φ(x) =
{φ1(x), φ2(x), . . . , φm(x)}, by embedding the original features so that:

w =
m

∑
i=1

αiyiφi(x), m > n (12)

Accordingly, the scalar product 〈xi, xj〉 in Equation (8) is replaced by a scalar product
of 〈φ(xi), φ(xj)〉 in the new space of Rm. Defining the new space as {z1, z2, . . . , zm}, the
transformed linear hyperplane is then defined as:
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wT · z + b = 0 (13)

Thus, defining the new observables z of the data, the SVM algorithm learns the
hyperplanes that optimally split the data into different classes using the new space. The
steps described above for the linear SVM can then be used here again. The major issue,
however, is that the number of components in the nonlinear transformation increases
extremely. Particularly, the large number of additional features leads to the curse of
dimensionality. This yields an inefficiency of the method, in terms of computational time.
The kernel trick solves this issue, as described below.

Kernel Trick

For the non-linear classification, the so-called kernel trick is used, which extends the
object area by additional dimensions (hyperplanes), in order to map non-linear interfaces.
The most important feature of the kernel trick is that it allows us to operate in the original
feature space, without computing the new coordinates in a higher dimensional space. In
this context, the kernel trick is used, owing the fact that a linear SVM is constructed for
nonlinear SVM. The kernel function is then defined as:

K(xi, xj) = Φ(xi)
T ·Φ(xj) (14)

With this new definition, the dual optimization in Equation (8) is then defined as:

arg max
αi

∑n
i=1 αi − 1

2 ∑n
i=1 ∑n

j=1 αiαjyiyjK(xi, xj) (15)

s.t. ∑n
i=1 αiyi = 0, and αi ≥ 0 (16)

The selection of the most suitable kernel depends heavily on the problem and the data
available. A fine-tuning of the kernel parameters is a tedious task. Any functions whose
Gram-matrix

[
K(xi, xj)

]
is positive-definite can be used. The polynomial function with

parameters a and d and the radial basis function with parameters γ are two well-known
kernel functions, which satisfy this condition:

K(xi, xj) = (a + xixj)
d, K(x1, x2) = exp(−γ(x1 − x2)

2) (17)

A cross-validation algorithm is then used to set the parameters. By assigning the
parameters with different values, the SVM classifier achieves different levels of cross-
validation accuracies. The algorithm then examines all values to find an optimal point
that returns the highest cross-validation accuracy. In the absence of expert knowledge,
the choice of a particular kernel can be very intuitive and straightforward, depending on
what kind of information we are expecting to extract about the data. In the lake of any
information, the first attempt is to try the linear kernel K(xi, xj) = xi · xj.

2.3. Numerical Algorithm

The numerical procedure employed for the simulation is given in Algorithm 1. As
stated, the data set X includes the first N vibration modes for damaged and undamaged
samples, i.e., X =

[
f u
1 , f u

2 , . . . , f u
N | f d

1 , f d
2 , . . . , f d

N
]
, with f u

i and f d
i as the ith-mode natural

frequency of undamaged and damaged samples, respectively. The numerical process
of the nonlinear SVM is started with the pre-processing of the data, e.g., normalization
the frequencies of all modes in the range of [0, 1]. A minimization process is performed
to finding the optimal value of parameters of kernel functions. For that, the absolute
minimum distance between the normalized frequencies are used. Once parameters of the
kernel are identified, and the non linear SVM is applied for classification. The process ends
then for classifying new data.



J. Compos. Sci. 2021, 5, 303 6 of 9

Algorithm 1: Numerical procedure for classification using nonlinear SVM.
Data: Read data set X
Result: Classifying damaged and undamaged samples
Initialization kernel parameters γ;
while N ≤ no. of modes do

set x1 = f u
i , i = 1 : N;

set x2 = f d
i , i = 1 : N;

Data pre-processing, normalization in [0, 1];
Calculate minimum distance between normalized frequencies;
Define radial basis function kernel;
Estimate optimum kernel parameters;
Apply nonlinear SVM using the kernel;

end
Validate the SVM model for new parameters;

3. Numerical Results

To demonstrate the feasibility of the proposed method, sample components of dam-
aged and undamaged fiber-reinforced composites are assumed to be tested by the experi-
mental modal analysis for identifying the eigenfrequencies. Such a classical experimental
procedures is explained in [3], where, to realize the delamination in the damaged samples,
very thin plastic foils are artificially implemented between the layers along the fibers, cf.
Figure 2.

(a) (b) (c)

Figure 2. (a) Sample composite component with artificial delamination, (b) the position of delamination, (c) FEM model for
data generation.

The position of the artificial delamination is shown in Figure 2b. The FEM model
in Figure 2c, with and without delamination, is employed for extraction of the training
data. To investigate the impact of delamination size on the natural frequencies, various foil
lengths are considered. The results are shown in Figure 3.

As shown, for various sizes of delamination (in % of the component length), the fre-
quency differences are very slight. The difference is remarkable for large delamination sizes,
particularly, for the 2nd vibration mode. Considering this, any conventional classification
procedure cannot be utilized for detection the damaged and undamaged samples. The
results are shown Figure 4 for the first 25 natural frequencies of a total of 100 damaged and
undamaged specimens from the FEM simulation in for the original feature space (x1, x2).

The SVM algorithm seeks for the optimum value of the parameter γ for the kernel in
Equation (17). A custom kernel with free parameters is chosen. The cross-validation search
procedure consists of a heuristic line search to determine a promising parameter for each
mode. The trend process for all vibrational mode is shown in Figure 5.
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Figure 3. The impact of delamination size on frequency difference of damaged and undamaged
samples for the 1st and 2nd modes.

Figure 4. The first 25 eigenfrequencies, [Hz], for damaged and undamaged samples are slightly
different and not linearly separable (horizontal axis: no. of samples).

As shown, the minimum value of gamma is achieved for mode 21. This ensures the
maximum distance for other modes when the kernel is used in classification of the given
original features, (x1, x2).

Once the parameters are set, the nonlinear SVM is applied to classify the samples.
To this end, two classes are defined, class −1 for damaged and class +1, for un-damaged
samples. A custom function that accepts matrix of feature space as inputs is defined where
the Gram matrix using the defined kernel is calculated. The training process uses fitcsvm
function in Matlab where an SVM classifier using the defined kernel is employed. This
returns a classification SVM model that uses the best estimated feasible point. The best
estimated point is the set of parameters that minimizes the upper bound of the cross-
validation loss based on the underlying kernel. The results are shown in Figure 6.
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Figure 5. Optimum values of the kernel parameter for each vibration mode.

As expected, the method results in a large intraclass distance between features to
identify classes with very similar values in the dataset, i.e., a small interclass distance.

Figure 6. Classification of the damaged and undamaged components using the kernel trick.
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4. Conclusions

Damage detection methods employing natural frequencies have been extensively
investigated using various machine learning algorithms. However, not much attention
has been paid to cases where small interclass distance. This is particularly the case with
lightweight structures, such as fiber-reinforced composites. The nonlinear SVM machine
has been proposed for such situations. The method uses a custom-defined kernel function
for the classification. The major effort is in setting the parameters for the kernel. In this
work, a cross-validation procedure, using random search, has been used. It has been shown
that nonlinear SVM, with the kernel trick, yields a clear classification boundary between
damaged and undamaged specimens, even for minor variations in natural frequencies.
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