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Abstract: The present paper is devoted to the problem of the optimal design of thin-walled composite
axially symmetric shells with respect to buckling resistance. The optimization problem is formulated
with the following constraints: namely, all analyzed shells have identical capacity and volume of
material. The optimization procedure consists of four steps. In the first step, the initial calculations
are made for cylindrical shells with non-optimal orientation of layers and these results are used as
the reference for optimization. Next, the optimal orientations of layers for cylindrical shapes are
determined. In the third step, the optimal geometrical shape of a middle surface with a constant
thickness is determined for isotropic material. Finally, for the assumed shape of the middle surface,
the optimal fiber orientation angle θ of the composite shell is appointed. Such studies were carried
for three cases: pure external pressure, pure twisting, and combined external pressure with twisting.
In the case of shells made of isotropic material the obtained results are compared with the optimal
structure of uniform stability, where the analytical Shirshov’s local stability condition is utilized.
In the case of structures made of composite materials, the computations are carried out for two
different materials, where the ratio of E1/E2 is equal to 17.573 and 3.415. The obtained benefit from
optimization, measured as the ratio of critical load multiplier computed for reference shell and
optimal structure, is significant. Finally, the optimal geometrical shapes and orientations of the layers
for the assumed loadings is proposed.

Keywords: axially symmetric shells; buckling; parametric optimization; external pressure; twisting;
composite materials

1. Introduction

Axially-symmetric, thin-walled structures have received considerable attention mainly
due to their practical applications such as underwater pressure hulls, space vehicles, or
pressure tanks [1–4]. Material and structural optimization becomes a central concept
in their design because of the adaptability of composite materials to given design situ-
ations/requirements. To achieve an optimized structure with improved characteristics
(buckling resistance), not only design parameters such as layer thicknesses and ply angles
(stacking sequence configuration) can be employed but also shape/topology of thin-walled
shells should be taken into account.

In general, the shape/topology optimization methods for improving buckling capacity
are based on the variations of the shell meridian (with a positive Gaussian curvature)
that can be represented in the form of ellipsoids, barrel-shaped, egg-shaped, or Cassini
curves [2–13]. Unfortunately, the thin-walled structures are highly sensitive to the buckling
phenomena. Moreover, the geometrical shape of the middle surface, variable or constant
wall thickness, material properties as well as different forms of imperfections have a
significant impact on this problem [9–15].

Among different axially-symmetric shapes of the shells, the so-called barrel-shaped
structures are of special interest. Parametric optimization due to loss of stability of barrel-
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shaped shells subjected to axial compression and a combination of axial compression and
pressure was presented by Błachut [16,17]. The experimental and numerical results of
buckling of barrel-shaped shells under external pressure were reported by Błachut [18]. A
good agreement between them was observed. The numerical simulations were carried out
with the use of Abaqus. In the case of barrel-shaped shells, the critical pressure could be
significantly higher in comparison with cylindrical shells with an equivalent volume of
material. Finally, the optimal shape of the middle surface was determined by Błachut [19]
with the use of the simulated annealing algorithm. The shape of the middle surface was
described by the super-ellipse, where the parameters of this curve were considered as
design variables.

The buckling phenomenon of the barrel-shaped shells was also studied by Jasion and
Magnucki [20]. They analyzed the impact of a decreasing radius of meridional curvature on
the value of critical external pressure. Next, Jasion [21] investigated the axially-symmetric
shells with positive and negative Gaussian curvature under external pressure. Two kinds
of analysis with the use of ABAQUS software were conducted, namely linear eigenvalue
buckling prediction and fully non-linear post-buckling analysis. A significant difference in
the behavior of the shells with negative Gaussian curvature and barrel-shaped shells was
observed. In the post-buckling range, the latter shells reveal the unstable load-deflection
path. Jasion and Magnucki [22] also studied the buckling phenomenon of barrel-shaped
tanks filled with liquid. Finally, Magnucki and Jasion [23] investigated the buckling of the
barrel-shaped shell subjected to radial pressure. The problem was described analytically
and solved approximately with the use of Bubnov’s-Galerkin’s method. Next, the analytical
results were verified with the use of the finite element method. A good agreement of the
analytical and numerical results (membrane stresses, buckling load, and buckling shape)
was reported.

Here it is worth noting that the external load can be also defined as the displacement of
the particular part of a thin-walled structure. The example of this kind of buckling problem
was presented and discussed on the example of the thin-walled column by Stawiarski and
Krużelecki [24].

Very interesting works, which concern the buckling phenomena of the egg-shaped
shells subjected to external pressure, were presented by Zhang and his colleagues [25–27].
In the first work, the influence of the geometrical dimensions on the critical buckling
load was investigated. The shape of the middle surface mimics that of the goose egg.
The analysis was carried out numerically in ABAQUS and compared with the analytical
solution. Next, the non-linear buckling analysis was performed for the variable and
constant thickness shells. The obtained results were also verified experimentally. Finally,
the impact of the geometrical imperfection on the buckling and post-buckling behavior
was also investigated.

The barrel-shaped, pseudo-barrel, and cylindrical shells of a constant mass with the
corrugated middle surface were analyzed by Sowiński [28]. The problem of elastic stability
of these structures was solved with the use of the finite element method. The explicit
finite element solvers (LS-DYNA) were also used for the dynamic buckling behavior of
spherical shell structures colliding with an obstacle block under the sea [4]. There were
also proposed finite elements for nonlinear buckling and post-buckling analyses of plates
and shells subjected to large deflection and rotation [29,30].

Życzkowski and Krużelecki [31] determined the optimal shape of a cylindrical shell
loaded by overall bending moment with the use of the stability constraint in the local
form. Moreover, they proposed a concept of the shell of uniform stability. This concept
was next utilized by Krużelecki and Trzeciak [32] in the case of optimal design of axially-
symmetric shells under hydrostatic pressure and by Życzkowski et al. [33] for buckling
of axially-symmetric shells under thermal load. In order to obtain the solution of the
optimization problem the variational approach was applied. Barski and Krużelecki [34–36]
and Barski [37] used the simulated annealing algorithm and Bezier’s curves in order to
obtain the solution of the optimization problem of shells subjected to combined loadings.
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Such studies were carried for the following loading conditions: bending moment with
shearing force taken into account, bending moment, axial force and twisting, and finally
bending moment and external hydrostatic pressure. The concept of the shell of uniform
stability was also utilized. The relationship, which describes the distribution of the wall
thickness is not available in the analytical closed form. Therefore, the special, iterative
algorithm for wall thickness estimation was also developed. In the latter work, the shape
of the transversal cross-section of the middle surface was also optimized.

The experimental and theoretical studies of buckling and post-buckling behavior of
composite shell structures were recently discussed and presented in the papers [38–44].
Such analyses were related to the structures with cut-outs and reinforcements [38], local
damages [39], multilayered composite shells [40], honeycomb cylindrical shells [41], conical
shells [42], and local buckling of multilayered shells and plates with cut-out under tensile
loadings [43,44]. Concluding the above-mentioned studies, it can be said that an advantage
of using fiber-reinforced composites over conventional metallic materials is that the former
can be tailored to specific requirements of certain applications. However, the large number
of design variables (i.e., fiber orientations angles and thicknesses of a particular layer)
and the complex mechanical behavior associated with such materials make the structural
design much more complex than those involving conventional materials. Also, for many
2D design problems (beams, plates, and shells), there are multiple designs with similar
performance. These designs may have very different stacking sequences, but very similar
or almost identical values of the extensional [A], coupling [B], and bending [D] stiffness
matrices. Moreover, the number of design variables is strongly affected by the type of
kinematical hypothesis used. Broad reviews of the existing approaches to the definition
of design variables were presented by Verchery [45] and Muc and Chwał [46]. In such
cases, it is important to produce all or most design alternatives. It is necessary to point out
that the effectiveness of the optimum design, especially for composite structures, strongly
depends on the proper choice of two elements: (i) the type of design variables and (ii) an
appropriate optimization algorithm.

Generally, the discussed above papers mainly concern the barrel-shaped shells made
of isotropic material. However, in the case of composite structures, the shape of the middle
surface and the optimal configuration of the composite material (orientation of the layers)
should be optimized. Therefore, such an optimization problem seems to be very difficult
to solve. The main novelty of the currently presented approach is that the optimization
problem is split into two steps. In the first step, the optimal shape of the middle surface is
looked for. Next, for the optimal shape of the middle surface, the optimal configuration of
the material is estimated. Both steps are realized by relatively simple procedures. However,
the proposed approach seems to be very fast, robust, effective, and leads to a reliable
solution. According to the author’s knowledge, the works where these two optimization
problems (shape of the middle surface and configuration of the composite material) are
studied at the same time are very rare. The current work is devoted to the problem of
optimal design of the composite thin-walled and barrel-shaped structures. The shape of
the middle surface, as well as the configuration of composite material are optimized, for
which the external load reaches the maximum concerning elastic static buckling.

The paper consists of five sections and two appendices (Appendices A and B). The
introduction and literature review are presented in Section 1. The formulation of the
investigated problem as well as a description of the design variables is given in Section 2.
The description of the numerical model and the method of optimization is discussed in
Section 3. The results of the performed studies, including optimization of the axially sym-
metric shells to three different loading conditions (pure external pressure, pure twisting,
complex twisting with external pressure) for three different isotropic and composite materi-
als are presented and discussed in Section 4. The most important results and conclusions are
summarized in Section 5. Moreover, some necessary formulations are given in Appendix A.
The analytical model applied in the optimization technique and its verification with the
use of the finite element analyses is also presented in detail in Appendix B.
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2. Formulation of Optimization Problem

The subject of the optimization is the axially symmetric barrel-shaped shell presented
in Figure 1. The total length of the analyzed structure is designated as L0 and constant
uniform thickness as H. It is assumed that the structure is subjected to three different
loading conditions: pure external hydrostatic pressure p0, pure twisting moment Mt, and a
combined load, which consists of external hydrostatic pressure p0 and twisting moment Mt.

Figure 1. Investigated shell under combined loadings.

Each layer of a laminate can be identified by its location in the laminate (the pair zi,
zi-1, i = 1, . . . ,N—the total number of plies), its fiber orientation θi (Figure 1), and material
properties. Let us assume that each ply in the laminate is made from the same composite
material. The value of the external pressure p0 is defined as the load multiplier. The
twisting moment Mt, which acts at both ends of the structure is expressed as follows:

Mt = mt πp0 R3
0 (1)

where: mt is the dimensionless parameter introduced to have a possibility for free choice
of the magnitude of the twisting moment (mt = 0 means that the twisting moment does
not act), and R0 denotes a constant radius of cylindrical reference shell of a constant length
L0 and a constant thickness H0. Due to the fact that the studied structure is loaded by
uniformly distributed hydrostatic pressure p0, which acts on the end caps as well, the
axial compression has to be taken into account (see Appendix B, Equation (A16)). To
eliminate a ‘circumferential bending’ of the wall of a shell under hydrostatic pressure and
take advantage of membrane stresses under this load, our considerations are limited to
shells with the axially symmetric shape of a middle surface. In other words, a circular
profile of the cross-section constitutes a necessary condition of a membrane state for shells
under uniform pressure (Vlassov [47]).

The geometry of the investigated shell is uniquely defined when the shape of a middle
surface, as well as wall thickness, is determined. As is mentioned above, our considerations
are restricted to the axially symmetric shape of a middle surface, where the profile of each
cross-section of a shell is a circle. Thus, the radius of longitudinal R1 and circumferential
R2 curvature are given as follows:

R1 =

(
1 + R′2

) 3
2

−R′′
, R2 = R

(
1 + R′2

) 1
2 (2)

where (‘) = d/dx and R is a distance from the axis of a structure to a point of a middle surface.
Moreover, it is assumed that the wall thickness H of a studied structure is constant (it is
not a design variable) and its value is to be determined from the optimization constraint,
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which presumes that the optimal structure and reference shell have the same volume of
material. Due to the symmetry of the structure, only the right-hand part of a shell, namely
0 ≤ x ≤ L0/2, is to be only considered, and the condition R′(0) = 0 of symmetry of the
structure is assumed.

Finally, it is assumed that the investigated structure is made of an isotropic material
(where the mechanical properties are described by Young’s modulus E0 and Poisson’s
ratio ν0) as well as transversely isotropic composite material (where the mechanical prop-
erties are described at last by E1, E2, G12, ν12) of symmetric, angle-ply configuration.
Such a configuration is uniquely defined by a single quantity, namely the value of fiber
orientation angle ±θ◦. The applied symmetric composite material consists of eight lay-
ers of equal thickness, where Hi= H/8, i = 1,2, . . . ,8 with layers orientations defined as
[−θ, +θ, −θ, +θ]S.

Thus, the optimization problem can be stated as follows. We look for such a structure,
for which the value of the critical loading parameter p0 = pcr reaches the maximum, namely:

pcr ⇒ max (3)

Design variables are considered with the following quantities: (a) shape of the middle
surface, which is described by function R = R(x) and (b) the fiber orientation angle ±θº
in the composite material of angle-ply configuration. It is assumed that the shape of the
middle surface is described by a simple parametric formula, namely:

R(x) = Rc

(
1−m

(
2 · x
L0

)2
)

(4)

The parameter Rc denotes the radius of the middle surface measured in the geometrical
center of the shell, Rc = R(0), the value of which will be determined later. In the performed
study, the parameter m is assumed as the design variable, which defines the geometrical
shape of the middle surface of the shell. In other words, parameters m and θ are considered
as the design variables. The optimization problem is defined as stated above under the
following constraints:

1. The volume of the material of the optimal structure and reference shell is identical.
2. The capacity of the optimal structure and reference shell is equal.
3. The minimal radius at both ends of the shell is constrained by a lower bound,

R(L0) > Radm.
4. The slope of the meridian is limited by upper bound, |R′| ≤ Radm.
5. The current study is limited to the convex shell (the positive Gaussian curvature),

where R” ≤ 0.

The lower bound values are assumed as follows Radm ≥ 0 and R′adm ≥ 0. The value
of parameter Rc in definition (4) for the assumed value of m is determined with the use
of equality constraint (2) (constraint (A2) in Appendix A). Further, it should be noted
here that the value of the wall thickness of the optimal structure can be readily computed
with the use of the equality constraint (1) (constraint (A1) in Appendix A) from the list
presented above. Moreover, there is no defined restriction imposed on the wall thickness,
for example, lower or upper bound. Restrictions can lead to non-smooth structures, which
are not allowed in the present study. All necessary formulas, as well as dimensionless
definitions of the particular quantities, are discussed in Appendix A.

3. Methods of Finding Solution
3.1. Optimization Procedure

The method proposed here of description of the shape of the middle surface by Equa-
tion (4) seems to be very simple. However, according to the author’s experience [34–37],
the differences between the results obtained from proposed here with a parametric opti-
mization procedure and the results obtained with the use of analytical methods (variational
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approach) or other advanced numerical algorithms, where the shape of the middle sur-
face is described by, for example, Bézier’s curves, are not significant and does not exceed
7%. On the other hand, the simple parametric procedure is very effective and always
provides a good estimation of the global optimum. Moreover, in the case of advanced
optimization algorithms, like evolutionary algorithms or simulated annealing algorithms,
the number of calls of objective function significantly increases in comparison with the
parametric procedure.

Although the current paper concerns mainly the shell of the uniform thickness, the
obtained results of optimization can be readily compared with the results, which one can get
when the shell of uniform stability is assumed. The condition “the shell of uniform stability”
means that local stability is satisfied in the form of equality not only at a dangerous point
but at any point of a shell. In the latter case, the solution of the optimization problem can
be found easily with the use of simple analytical formulas, which are detailed discussed in
Appendix B. Moreover, this comparison can be done in two possible cases. In the first case,
having previously determined the optimal shape of the middle surface, the distribution
of the wall thickness is computed with the use of the Shirshov’s local buckling condition
(Appendix B) [48]. In the second case, the optimal shape of the middle surface is looked
for together with the optimal distribution of the wall thickness. Thus, the optimal shape
of the middle surface can be slightly different in comparison with the shape, which is
obtained when the shell of uniform thickness is assumed. It is rather obvious that the
highest profit from optimization should be expected in the last case. It is worth noting
here that Shirshov’s local stability condition has an approximate character. Therefore, a
special procedure, which is based on the finite element method, designed to verify the
accuracy and effectiveness of the Shirshov’s local stability condition and other necessary
analytical formulas describing mainly the membrane resultant stresses, is also described in
Appendix B.

In the second step of the optimization procedure, for the previously found optimal
shape of the middle surface, the optimal fiber orientation angle θ is looked for. It is assumed
that now the studied structure is made of the composite material which is symmetric to the
middle surface, angle-ply configuration. As is mentioned above, the applied composite
material consists of 8, equally thick Hi = H/8, i = 1, 2, . . . , 8 layers. It is assumed that
the feasible fiber orientation angles θ belong to the range [0◦, 90◦]. The solution of the
optimization problem is estimated by repeatedly computing the critical buckling load
multiplier qcr for the starting value of the angle θ equal to 0◦ and increment dθ = 5◦.
From among the 19 calculated values of the critical load multiplier qcr, as a solution of the
optimization problem, a value of the angle θ is to be chosen, for which the value of critical
load multiplier qcr is the highest. It is worth noting here that for smaller angle increment
dθ, the obtained solutions do not vary significantly. The fiber orientation angle is assumed
to be θ = 0◦ when the fiber is parallel to the circumferential direction.

3.2. Numerical Model and Material Properties

In order to compute the critical buckling load multiplier qcr the finite element method
is applied. The whole calculations are carried out with the use of commercially available
software ANSYS 13.0. The investigated structure is modeled as a shell with the use of
higher-order SHELL281 elements. These elements have in each node three transitional and
three rotational degrees of freedom. As is shown in Figure 2, the regular mapped mesh
is applied. Assuming a cylindrical global coordinate system, where the axis of symmetry
is Z-axis (Figure 1), the imposed boundary conditions are as follows: for Z = −L0/2, and
Z = L0/2, UR = 0 and for Z = 0, UZ = 0 (symmetry condition), where UR and UZ is the radial
and axial component of displacement, respectively. Moreover, to eliminate the possibility
of rigid rotation about axis Z of the whole structure, for Z = 0, Uθ = 0, which is prescribed in
any single point, where Uθ is the circumferential component of displacement. The external
hydrostatic pressure is modeled as a normal surface load applied to all elements. The axial
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compression, caused by external pressure, as well as twisting, is applied to both ends of
the shell as a nodal force FZ and Fθ, the values of which are:

FZ = ±π R(±0.5L0)
2 p0

N
, Fθ = ±

mt π R2
0 p0

N
(5)

where N is a total number of nodes, which are located at the end edges of the structure. The
‘±’ sign denotes that the returns of the Fθ at the ends of the shell have to be the opposite.
The obtained values of critical buckling load multiplier in the case of external pressure
and twisting for simple cylindrical shells made of isotropic material agrees with those
(theoretical and empirical) which are presented by Bushnell [49].

Figure 2. Finite element model of investigated shell for µ = 0.375, R(ξ = 0) = 1.153, m = 0.425.

The calculations are performed for the shell of constant total length L0 = 1000 mm,
and of the following radius R0 = 500, 375, 250, 187.5, 125 mm. Taking into consideration
the dimensionless quantities, which are presented in Appendix A (Equation (A3)), it
corresponds to µ = R0/L0 = 0.5, 0.375, 0.25, 0.188, 0.125. Moreover, the computations are
carried out for two values of a parameter γ = H0/R0 = 0.004, 0.008. Therefore, in the first
case H = 2, 1.5, 1, 0.75, 0.5 mm and in the second case H = 4, 3, 2, 1.5, 1 mm. Finally, after
performing the appropriate convergent tests of numerical solutions, it is assumed that the
size of the finite element is equal to le = 15 mm in all cases.

In the first step of the optimization procedure, the applied isotropic material is as-
sumed to be steel. In the second step of the optimization problem, there are considered
to be two different composite materials, namely carbon fibers/epoxy resin and glass
fibers/polyester resin. The mechanical properties of the applied materials are collected in
Table 1.

Table 1. Mechanical properties of applied materials [50,51].

Material E1 [GPa] E2 [GPa] G12 [GPa] ν12 E1/E2

steel 210.0 210.0 80.77 0.30 1.000
carbon fiber/epoxy resin 181.0 10.3 7.17 0.28 17.573

glass fiber/polyester resin 28.0 8.2 2.80 0.29 3.415

4. Results

The computations are carried out separately for the shells subjected to pure hydrostatic
pressure (Section 4.1), pure twisting (Section 4.2), and finally for different combinations of
mentioned previously components of loading (Section 4.3). The optimization procedure is
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applied to the above three loading cases, in which different materials and geometries were
investigated. According to the optimization procedure, which is described in Section 3, the
results are presented in two parts.

The first part for each particular loading condition is related to the optimization of
the geometry of the isotropic barrel shell. This optimal barrel shape shell curvature is
described by the determined radii r(0) and r(1) or parameter m. For such purpose, the
dimensionless values of the critical buckling load multiplier computed for the reference q0,
for the optimal shell qmax, and for the shell of uniform stability qustb are calculated using
the Formula (A3). It is assumed that associated shells of uniform stability have the same
shape of the middle surface as the structures, which are the solution of the optimization
problem. The values qustb are computed according to the analytical formulas discussed
in Appendix B. Finally, n and n0 refer to the number of the circumferential half-waves
measured in the circumferential direction for the optimal and reference shell, respectively.

In the second part of each optimization procedure, there are performed calculations for
transversely anisotropic cylindrical and barrel shells. First of all, the calculations are made
for cylindrical geometry with orientations of fibers θ = 90◦. This allows for the determina-
tion of the value of the critical load multiplier for reference structure designated as qcom

0.
In the next step, the optimal fiber orientation angle for cylindrical shell θcyl is determined.
It should be noted, that the layers orientations are defined as [−θcyl, +θcyl, −θcyl, +θcyl]S,
as is presented in Figure 1. For the optimal configuration of the layers in the cylindrical
shell, the maximum load multiplier for cylindrical shell qcom

cyl is calculated. The results are
presented in the form of the ratio qcom

cyl and qcom
0, which gives information concerning the

increase of the critical buckling load in the optimal cylindrical shell. In the final step, the
optimal configuration of the fibers orientation angle θmax is determined for the optimal
barrel shape of the middle surface. The same as for cylindrical shape, it means that the
layers orientations for barrel shape shell are defined as [−θmax, +θmax, −θmax, +θmax]S, as
presented in Figure 1.

4.1. Composite Shell under Hydrostatic Pressure

The results of optimization in the case of the shell under hydrostatic pressure are
collected in Tables 2–4 and Figures 3 and 4. The determined optimal barrel shape geometries
for the isotropic shell are summarized in Table 2. Generally, the optimal shape of the middle
surface is far from the cylinder. It is worth noting here that starting from µ = 0.25 the
inequality constraint (3), which limits the length of the radius of the shell at both ends
is active, r(1) ≥ 0.5. The highest profit from optimization is observed for the shells for
which the parameter µ is relatively large. Together with decreasing the value of ratio µ,
the profit from optimization also decreases. However, in the case of µ = 0.25, the profit
is slightly higher in comparison with the shell, where µ = 0.375. It can be explained by
the fact, that for that structure (µ = 0.25) the character of the observed buckling pattern is
changed, which is shown in Table 5.

Table 2. Results of optimization for shell under hydrostatic pressure.

µ q0·10−6 qmax/q0 qustb/q0 h n/n0 r(0) r(1)

γ = 0.004

0.500 2.500 3.461 3.767 0.937 36/16 1.115 0.753
0.375 2.162 3.476 3.693 0.938 32/14 1.159 0.647
0.250 1.773 3.570 3.547 0.961 28/10 1.216 0.500
0.188 1.517 3.220 3.233 0.987 30/10 1.216 0.500
0.125 1.223 2.670 2.750 1.007 20/8 1.216 0.500

γ = 0.008

0.500 11.811 3.012 3.189 0.937 26/12 1.115 0.753
0.375 10.364 2.980 3.082 0.938 24/12 1.159 0.647
0.250 8.457 3.046 2.975 0.961 22/10 1.216 0.500
0.188 7.115 2.761 2.757 0.987 22/8 1.216 0.500
0.125 5.903 2.238 2.279 1.007 14/6 1.216 0.500
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Table 3. Results of optimization for composite shell under external pressure, E1/E2 = 17.573.

µ γ
Cylindrical Pipe Optimal (Barrel) Shape

qcom
0·10−6 qcom

cyl/qcom
0 θcyl [◦] 1 qmax/qcom

0 θmax [◦] 1 n/n0

0.500

0.004

0.781 2.091 10 5.495 15 22/20
0.375 0.683 2.084 0 5.457 10 18/18
0.250 0.569 2.028 0 5.460 0 16/16
0.188 0.495 2.099 5 4.785 0 16/14
0.125 0.411 1.996 0 3.903 0 10/12

0.500

0.008

3.659 2.126 5 4.851 25 18/16
0.375 3.217 2.045 0 4.768 15 14/14
0.250 2.655 2.065 5 4.723 0 12/12
0.188 2.353 1.998 0 4.068 0 10/12
0.125 1.938 2.189 10 3.386 0 8/10

1 layer orientations are defined as [−θ, +θ, −θ, +θ]S.

Table 4. Results of optimization for composite shell under external pressure, E1/E2 = 3.415.

µ γ
Cylindrical Pipe Optimal (Barrel) Shape

qcom
0·10−6 qcom

cyl/qcom
0 θcyl [◦] 1 qmax/qcom

0 θmax [◦] 1 n/n0

0.500

0.004

1.489 1.368 0 4.080 10 28/18
0.375 1.300 1.357 0 4.140 0 24/16
0.250 1.053 1.377 0 4.354 0 22/12
0.188 0.913 1.357 0 3.880 0 22/10
0.125 0.741 1.423 0 3.210 0 16/10

0.500

0.008

6.949 1.372 0 3.579 15 22/14
0.375 6.079 1.364 0 3.609 5 18/12
0.250 5.001 1.348 0 3.719 0 16/10
0.188 4.391 1.410 0 3.238 0 16/10
0.125 3.552 1.345 0 2.727 0 12/8

1 layer orientations are defined as [−θ, +θ, −θ, +θ]S.

Figure 3. Optimization profit qmax/qcom
0 as a function of fiber orientation angle θ, E1/E2 = 17.573.
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Figure 4. Optimization profit qmax/qcom
0 as a function of fiber orientation angle θ, E1/E2 = 3.415.

Table 5. Buckling patterns of reference and optimal shells under external pressure, γ = 0.008.

Ref. Cylindrical
Metal Shell

Optimal Metal
Barrel Shell

Ref. Composite
Cylindrical

Shell θ = 90◦
Optimal Composite

Barrel Shell

µ = 0.500

µ = 0.375

µ = 0.250
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Table 5. Cont.

Ref. Cylindrical
Metal Shell

Optimal Metal
Barrel Shell

Ref. Composite
Cylindrical

Shell θ = 90◦
Optimal Composite

Barrel Shell

µ = 0.188

µ = 0.125

In Table 5, the corresponding buckling patterns of the cylindrical references are also
presented. For shorter shells, the half-waves are observed near both ends. For the longer
structures, the buckling pattern is shifted to the center of the structure. Generally, the total
number of half-waves for the optimal structure is over two times higher in comparison
with the reference one. The obtained profit is also slightly higher for the thinner shells. It is
worth stressing here that in the case of the shells of uniform thickness the observed values
of h are not very far from the unity. Thus, the thicknesses of the real optimal structures
do not vary significantly. Additionally, it should be stressed here that the profit from
optimization qustb, computed under the assumption of the shell of uniform stability, is
similar to that which is obtained for the shell of uniform thickness. This is an important
conclusion from a practical point of view because the structure of uniform thickness is
easier to manufacture.

In the next step of the proposed optimization procedure, the reference structure is
changed. Now the reference shell is a cylindrical shell with such an angle-ply configuration
for which the critical buckling load multiplier qcom

0 reaches the lowest possible value. It
occurred that the lowest value of qcom

0 is always obtained for fiber orientation angle θ = 90◦.
It should be noted here that the curves presented in Figures 3 and 4 are prepared

under the assumption that the optimal fiber orientation angle θ is observed for the shell,
where the shape of the middle surface is determined previously in the first step of the
optimization procedure for isotropic material.

Generally, the profit from optimization increases together with increasing ratio E1/E2.
For E1/E2 = 17.573, the highest values of qmax/qcom

0 ratio are observed for relatively short
structures with parameters µ = 0.5, and µ = 0.375. However, in the case of E1/E2 = 3.415, the
highest value of qmax/qcom

0 ratio is obtained for the shell with parameter µ = 0.25. For these
shells, the optimal fiber orientation angles θmax vary from 5◦ to 25◦. In the case of longer
structures µ < 0.375 the optimal angle θmax = 0◦. In both cases of E1/E2 ratio, the profit
form optimization is higher for the shells with parameter γ = 0.004. In comparison with
the cylindrical shells (Tables 3 and 4), the profit from optimization is over two times higher.
Thus, one can say that the change of the shape of the middle surface has a decisive impact
on the final results. The obtained buckling patterns of optimal structures are very similar
to those which are presented in Table 4. Finally, it is worth stressing here that the obtained
results, namely the values of qmax/qcom

0 ratio, are significantly higher in comparison with
the results which are presented for isotropic shells for all studied cases.
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4.2. Composite Shell under Twisting

The results of optimization of the shell subjected to twisting are presented in
Figures 5 and 6 and Tables 6–9. In the case of the shell of uniform thickness, the profit
from optimization does not vary significantly with respect to parameter µ as well as
γ and it does not exceed qmax/q0 = 1.712 (Table 6). In comparison with a shell under
external pressure, the profit from optimization is much smaller. Moreover, to the contrary
of the shell of uniform stability, together with decreasing parameter µ the profit from
optimization slightly increases. A clear discrepancy between the shell of uniform thickness
and the shell of uniform stability is observed. The results obtained for the shell of uniform
stability are generally worse in comparison with the shell of uniform thickness. As is
discussed in Appendix B, these discrepancies can be caused by a very rough estimation
of membrane resultant stress caused by twisting. The wall thickness h, like previously in
the case of the structure under external pressure, is also very close to unity. This fact is
also very important from a practical point of view. For the shells, where µ ratio is equal to
µ = 0.125 the wall thickness for the optimal structure is even slightly greater in comparison
with the cylindrical reference shell.

Figure 5. Optimization profit qmax/qcom
0 as a function of fiber orientation angle θ, E1/E2 = 17.573.

Figure 6. Optimization profit qmax/qcom
0 as a function of fiber orientation angle θ, E1/E2 = 3.415.
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Table 6. Results of optimization for shell under twisting.

µ q0·10−6 qmax/q0 qustb/q0 h n/n0 r(0) r(1)

γ = 0.004

0.500 7.823 1.688 1.611 0.957 34/20 1.093 0.803
0.375 7.368 1.671 1.587 0.965 32/18 1.113 0.753
0.250 6.749 1.672 1.575 0.973 26/16 1.170 0.619
0.188 6.329 1.702 1.569 0.987 22/14 1.216 0.500
0.125 5.770 1.712 1.474 1.007 18/12 1.216 0.500

γ = 0.008

0.500 33.552 1.638 1.502 0.957 24/16 1.093 0.803
0.375 31.668 1.619 1.487 0.959 22/14 1.126 0.728
0.250 29.129 1.623 1.468 0.970 18/12 1.182 0.590
0.188 27.334 1.651 1.453 0.987 16/12 1.216 0.500
0.125 24.928 1.651 1.365 1.007 14/10 1.216 0.500

Table 7. Results of optimization for composite shell under twisting, E1/E2 = 17.573.

µ γ
Cylindrical Pipe Optimal (Barrel) Shape

qcom
0·10−6 qcom

cyl/qcom
0 θcyl [◦] 1 qmax/qcom

0 θmax [◦] 1 n/n0

0.500

0.004

2.535 1.695 20 2.951 55 38/24
0.375 2.428 1.666 15 2.802 55 36/22
0.250 2.297 1.617 0 2.596 55 30/20
0.188 2.209 1.589 0 2.531 55 24/18
0.125 2.086 1.549 0 2.386 15 14/16

0.500

0.008

10.083 1.715 25 2.864 50 28/18
0.375 10.245 1.695 20 2.777 55 26/18
0.250 9.627 1.651 15 2.636 55 22/16
0.188 9.262 1.612 10 2.555 50 16/14
0.125 8.775 1.581 0 2.366 30 10/12

1 layer orientations are defined as [−θ, +θ, −θ, +θ]S.

Table 8. Results of optimization for composite shell under twisting, E1/E2 = 3.415.

µ γ
Cylindrical Pipe Optimal (Barrel) Shape

qcom
0·10−6 qcom

cyl/qcom
0 θcyl [◦] 1 qmax/qcom

0 θmax [◦] 1 n/n0

0.500

0.004

4.552 1.238 0 2.052 50 36/22
0.375 4.362 1.233 0 1.972 55 34/20
0.250 4.100 1.221 0 1.894 55 28/18
0.188 3.911 1.214 0 1.885 20 20/16
0.125 3.602 1.214 0 1.933 0 16/14

0.500

0.008

19.259 1.244 20 2.016 50 26/16
0.375 18.368 1.240 0 1.952 50 24/16
0.250 17.280 1.232 0 1.881 55 20/14
0.188 16.562 1.219 0 1.859 25 16/12
0.125 15.539 1.207 0 1.832 15 12/12

1 layer orientations are defined as [−θ, +θ, −θ, +θ]S.

The number of half-waves is much higher in the case of optimal structures in com-
parison with reference ones and the number of half-waves decreases together with the
decreasing value of parameter µ. Similarly, as in the case of shells under external pres-
sure, the number of half-waves observed for the optimal structure decreases together with
an increasing value of γ. On the contrary of the structure under external pressure, all
half-waves are localized at both ends of the shell, what is depicted in Table 9. The center
of the structure seems to be unaffected by the buckling phenomenon. Finally, starting
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from µ = 0.188, the inequality constraint (3), where r(1) ≥ 0.5, is active for both values of
parameter γ.

Table 9. Buckling patterns of reference and optimal shells under twisting, γ = 0.008.

Ref. Cylindrical
Metal Shell

Optimal Metal
Barrel Shell

Ref. Composite
Cylindrical

Shell θ = 90◦
Optimal Composite

Barrel Shell

µ = 0.500

µ = 0.375

µ = 0.250

µ = 0.188

µ = 0.125

As before, in the case of the second step of the optimization procedure, where the
optimal fiber orientation angle is looked for, it occurred that the lowest value of the critical
load multiplier is obtained for cylindrical reference where the fiber orientation angle θ = 90◦

in all analyzed cases.
To the contrary of shells under hydrostatic pressure, in the case of shells under

twisting the profit from optimization is the highest for the structures where the µ = 0.5
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for all investigated cases. Generally, a clear maximum can be observed in Figures 5 and 6,
which correspond to the fiber orientation angle θmax = 50◦ or θmax = 55◦. For the shells,
where µ = 0.188, 125 the value of θmax is changing. The profit from optimization depends
mainly on the ratio E1/E2. If the E1/E2 ratio is greater, the observed results are also higher.
The impact of parameter γ on the results are not significant as in the case of shells subjected
to hydrostatic pressure. In comparison with the cylindrical shells (Tables 7 and 8), the profit
from optimization is significantly higher.

Therefore, similarly to the case of shells under hydrostatic pressure, the change of the
shape of the middle surface has a significant impact on the final results from optimization.
Moreover, the obtained maximal values of qmax/qcom

0 are higher in comparison with results,
which are presented in the case of corresponding isotropic structures. Finally, as mentioned
in the previous section, the buckling patterns of the optimal structures, which are made
of composite material with optimal fiber orientation angle θmax, are very similar to those
which are presented in Table 9. However, the number of half-waves varies significantly.

4.3. Shell under Combined Loadings

In the case of the shell structures subjected to combined loadings the main aim of
carried out computations is to determine the impact of the gradually increasing twisting
(the value of parameter mt) on the solution of the optimization problem. Taking into
consideration the discrepancy between the analytical and numerical results observed
for the shells of uniform stability (Appendix B) under pure twisting, the appropriate
comparisons are not presented now. The calculations are made for isotropic metal shells
and composite shells with mechanical properties described by the ratio E1/E2 = 17.573.
The results obtained for the isotropic shells for parameter γ = 0.004 and γ = 0.008 and for
different values of ratio µ are summarized in Figure 7. As can be observed (Figure 7), for
the isotropic shells for which the ratio µ = 0.5, even a small contribution of twisting in
combined loadings causes a visible reduction of the profit from optimization. In the case of
the other investigated shells of uniform thickness, the obtained results are similar, which
are depicted in Figure 7.

Figure 7. The profit from optimization qmax/q0 as a function of twisting parameter mt for metal optimal barrel.

In the case of composite shells, the optimization is performed for two geometries
defined by the parameters γ and µ. In the first case, in which the shell has shortened length,
the parameters are equal to γ = 0.004 and µ = 0.5. For such geometry, there have been
two optimal geometries of the barrel-shaped shell found (see Table 2 for pure hydrostatic
pressure, and Table 6 for pure twisting). In the second case, in which the shell has a shape
of a long pipe, the parameters are equal to γ = 0.008 and µ = 0.125. In this case, only one
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shape of the optimal shape is studied. As mentioned above, mt = 0 means that the studied
shell is subjected to external pressure only. On the other hand, if the parameter mt → ∞,
the profit from optimization, measured as qmax/q0, is expected to be identical, as in the case
of pure twisting.

As can be observed in Tables 10 and 11, the obtained results strictly depend on the
magnitude of the applied twisting. In both cases of the set of geometrical parameters (γ and
µ) together with the increasing value of mt (higher mt means greater influence of twisting)
the value of the critical load for the reference structures also decreases. The profit from
optimization in all analyzed structures also decreases. In the case of cylindrical shells, the
profit obtained from optimization is almost identical and for the relatively small values
of twisting the profit is over qcom

cyl/qcom
0 = 2 and together with increasing the twisting

is below qcom
cyl/qcom

0 = 1.5 for µ = 0.125. However, a significantly different tendency is
observed in the case of the optimal value of the fiber orientation angle θ. For the relatively
small magnitude of twisting, the optimal fiber orientation angles are identical for studied
cylindrical shells θcyl = 10◦ but for the more participation of the twisting, the tendency is
different. In the case of shorter structures, the value of θcyl increases to 15◦ and in the case
of the longer ones the θcyl decreases to 0◦.

Table 10. Results of optimization for composite shell under combined loadings, γ = 0.004 and µ = 0.5 and E1/E2 = 17.573.

mt
Cylindrical Pipe

Optimal (Barrel) Shape:
rC = r(ξ = 0) = 1.115,

r(ξ = 1) = 0.753, m = 0.325

Optimal (Barrel) Shape:
rC = r(ξ = 0) = 1.093,

r(ξ = 1) = 0.803, m = 0.265

qcom
0·10−6 qcom

cyl/qcom
0 θcyl [◦] qmax/qcom

0 θmax [◦] 1 qmax/qcom
0 θmax [◦] 1

0 0.781 2.090 10 5.495 15 5.359 10

0.5 0.780 2.088 10 5.221 20 5.109 15

1 0.778 2.085 10 4.988 55 4.865 60

2 0.770 2.069 5 4.616 55 4.542 60

5 0.722 1.960 10 3.872 55 3.853 55

9 0.646 1.892 15 3.476 55 3.485 55

15 0.555 1.820 15 3.249 55 3.274 55

25 0.460 1.764 15 3.101 55 3.135 55

∞-Pure
twisting 2.535 1.695 20 2.916 50 2.951 55

1 layer orientations is defined as [−θ, +θ, −θ, +θ]S.

The change of the shape of the middle surface of the structure causes a further increase
in the profit from optimization. It is worth noting that in the case of the shorter shells
the obtained values of the ratio qmax/qcom

0 are significantly larger in comparison with the
longer ones. It should be stressed here that the optimal fiber orientation significantly differs
for the structures where µ = 0.5 and µ = 0.125. In the first case, generally, the optimal fiber
orientation angle is greater in comparison with those which are obtained in the latter case.
For the shorter shells, the optimal value of θmax is about 55◦ whereas for the longer ones
the value of θmax is almost constant and equal to 0◦.

Finally, the shapes of the buckling patterns of the studied structures are presented in
Table 12. Generally, it can be observed that in the case of cylindrical structures the buckling
patterns obtained for all structures are very similar. The number of half-waves in the case
of optimal cylindrical reference shells is generally greater in comparison with the optimal
ones. However, in the case of shells of barrel shape, the buckling half-waves are generally
localized in the neighborhood of the end caps of the structure. Therefore, the introduction
of the variable thickness together with the change of the shape of the middle surface seems
to be quite justified.
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Table 11. Results of optimization for composite shell under combined loadings, γ = 0.008 and
µ = 0.125, E1/E2 = 17.573.

mt
Cylindrical Pipe

Optimal (Barrel) Shape:
rC = r(ξ = 0) = 1.216,

r(ξ = 1) = 0.500, m = 0.589

qcom
0·10−6 qcom

cyl/qcom
0 θcyl[◦] 1 qmax/qcom

0 θmax [◦] 1

0 1.938 2.189 10 3.386 0

0.5 1.937 2.189 10 3.385 0

1 1.936 2.186 10 3.383 0

2 1.929 2.180 5 3.372 0

5 1.891 2.100 0 3.302 0

9 1.808 1.956 0 3.146 0

15 1.669 1.825 0 2.913 0

25 1.466 1.724 0 2.678 15

∞-Pure
twisting 8.775 1.581 0 2.366 30

1 layer orientations are defined as [−θ, +θ, −θ, +θ]S.

Table 12. Buckling patterns of reference and optimal shells under twisting, γ = 0.004.

Ref. Composite Cylindrical
Shell θ = 90◦

Optimal. Composite
Cylindrical Shell

Optimal Composite
Barrel Shell

mt = 0.5

mt = 1

mt = 2

mt = 5

mt = 15
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5. Conclusions

The presented work is devoted to the parametric optimization of axially-symmetric
shells subjected to different loading conditions including pure external hydrostatic pressure,
pure twisting, and a combination of external hydrostatic pressure and twisting. The
proposed optimization procedure consists of two steps. In the first step, the optimal shape
of the middle surface, as well as the constant uniform wall thickness, is looked for. In the
next step, for the previously determined optimal shape of the middle surface, the optimal
fiber orientation angle θ is determined. The obtained results can be summarized as follows:

1. The proposed optimization technique, based on splitting the procedure into two
steps (the shape of the middle surface and the layer configuration are optimized
separately), gives considerable benefits in the case of anisotropic structures subjected
to combined loadings, and allows for the determination of more optimal geometries
for all investigated loading conditions.

2. In the case of the isotropic structure under hydrostatic pressure, profit from optimiza-
tion is the highest for structure, where µ = 0.5 and γ = 0.004. The obtained qmax/q0

ratio varies from 3.461 to 2.238.
3. In the case of isotropic shells subjected to pure twisting the profit from optimization

varies insignificantly (from 1.712 to 1.619) and is smaller in comparison with shells
under hydrostatic pressure. A very slight impact of parameters µ and γ on final
results is observed.

4. Generally, in the case of composite shells, the profit from optimization is significantly
higher as in the case of isotropic shells. For shells under hydrostatic pressure, the
qmax/qcom0 ratio varies from 5.495 to 3.386 for E1/E2 = 17.573, and from 4.080 to 2.727
for ratio E1/E2 = 3.415. The value of parameters µ and γ as well as the E1/E2 ratio
have a significant influence on the final results.

5. For the composite shells subjected to twisting the impact of the parameters µ and γ

are not significant except the E1/E2 ratio. The obtained results vary from 2.951 to 2.366
for E1/E2 = 17.573, and from 2.052 to 1.832 for E1/E2 = 3.415. A clear maximum in the
relationship between qmax/qcom0 ratio and the fiber orientation angle θ is observed.

6. In the case of structures subjected to combined load (external pressure and twisting),
a significant profit of the application of the barrel-shaped shell is observed. A larger
increase of this profit (qmax/qcom0 is from 5.359 to 2.951) is observed for shorter shells
(γ = 0.004 and µ = 0.5). In the case of the longer shells, this profit is much smaller
(from 3.386 to 2.366). Optimal fiber orientation angle θmax is significantly different in
such cases.

7. In the case of the structures, where the participation of twisting is significant, it seems
to be a justified extension of the optimization procedure by the introduction of the
variable thickness as the additional design variable.
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Appendix A

Below, concerning the discussed previously the formulation of the optimization prob-
lem, equality and inequality constraints (Section 2), all necessary relationships are shown.
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In the case of the equality constraint (1), the relationship describing the volume of material
of the optimal structure and reference shell can be written as follows:

Vm = 4 π H

L0
2∫

0

R2dx = 2 π R0 H0 L0. (A1)

Next, the capacity of the optimal container is identical to the capacity of the reference
structure constraint (2), namely:

2π

L0
2∫

0

R2dx = 2π L0 R2
0. (A2)

For further computations, the following dimensionless quantities are introduced:

µ = R0
L0

, γ = H0
R0

, ξ = 2·x
L0

, r = R
R0

, r1 = R1
R0

, r2 = R2
R0

, h = H
H0

,

vm = Vm
2 π L0R0 H0

, qcr =

√
pcr

√
3(1−ν2

1)
2E1

· γ, mt =
Mt

π p0 R3
0
,

(A3)

where E1 and ν12 are the material properties shown in Table 1. Then, the equality constraints
(A1) and (A2) in the dimensionless form can be rewritten as follows:

vm = h
1∫

0

r2dξ = 1 ,
1∫

0

r2dξ = 1 (A4)

Similarly, as above, the inequality constraints can be expressed in the dimensionless
form as:

r(1) ≥ radm, r′′ ≤ 0,
∣∣r′∣∣ ≤ 0, (A5)

where (‘) = d/dξ, radm = Radm/R0, r′adm = µR′adm. It is worth noting that the last constraint
from (A5) is not taken into account in the current study.

In the dimensionless form the Equation (4), which describes the shape of the middle
surface, takes the following form:

r(ξ) = rc
(

1−mξ2
)

(A6)

The parameter rc denotes the radius of the middle surface measured in the middle
of the shell rc = r(0). Its value can be determined with the use of equality constraint (A2).
Substituting (A6) into the dimensionless form of (A2), the second relationship in (A4), the
value of rc can be written as follows:

r0 =
1√

1− 2
3 m + 1

5 m2
(A7)

Having completely defined the shape of the middle surface of the shell, the uniform
constant thickness can be calculated with the use of equality constraint (A4):

h =
1

1∫
0

r2dξ

(A8)

Additionally, it is assumed that the minimum radius, the first inequality constraint in
(A5), at the ends of the structure is restricted to r(1) = rmin ≥ 0.5. Finally, it should be noted
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here that for the shape of the middle surface, described by the expression (4), the rest of the
inequality constraints in (A5) are also satisfied.

Appendix B. Local Stability Condition and Shell of Uniform Stability

The instability of thin-walled structures very often have a local character and the
buckling does not depend essentially on the applied boundary condition. This is particu-
larly true in the case of the ‘non-uniform’ geometry of a shell and the non-uniform state of
stresses. In other words, instability can be determined by the stress state and the shape
of a shell. The buckling phenomenon is initiated in the weakest zone of a structure. Here
it is worth noting that if the thickness of the wall is relatively small in comparison with
other dimensions, like the total length or diameter of a shell, the loss of stability can be
more important in structural design than strength conditions. Some general theorems
referring to the stability of elastic structures subjected to combined loadings are given by
Papkovich [52]. One of them shows that for conservative loadings, the interaction surface
is a convex one. Such a surface may also be constructed in the stress space:

F
(

σi
σcr

i

)
= 0 (A9)

where σcr
i denotes critical stress. For the non-uniform stress distribution, the stresses in

Equation (A9) may be considered maximal ones or stresses at certain points. Equation (A9)
is called the local formulation of the stability condition. The optimization of shells with
respect to their stability presents considerable difficulties connected with very complex
stability equations, especially when both the middle surface and variable thickness are
unknown, particularly in the case of non-uniform stress distribution. To avoid these
difficulties a simplified local formulation of the stability condition should be introduced.

Making use of the hypothesis of the locality of buckling to the problem of optimal
design, Życzkowski and Krużelecki [31] proposed a concept of the shell of uniform stability
which can be stated as follows: if a condition of local stability is satisfied in the form of
equality not only at a dangerous point but at any point of a shell, such a structure is called
‘the shell of uniform stability’.

However, in the case of a shell with a double curvature and non-uniform (lateral and
longitudinal), stress distribution application of the stability condition in the form of the
Equation (A9) is practically impossible because the critical stress σcr

i for an arbitrarily
shaped shell (even for single stress) is usually unknown. In those cases, Equation (A9)
should be replaced by more general ones allowing for analysis of an arbitrarily shaped
shell. For a shell with a double curvature, Shirshov [48] transforms the problem of global
stability to a simpler problem of the local stability of such a structure. Using the linear
theory of shell stability, applying the equation given by Vlassov, and assuming a sinusoidal
deflection mode over a small restricted area, Shirshov obtains a rather simple formula for
the critical loading parameter q, namely:

q = 2
√

DEH
K1 cos2 φ + K2 sin2 φ

N2 cos2 φ + 2S cos φ sin φ + N1 sin2 φ
, (A10)

where K1 and K2 denote meridional and circumferential curvatures, respectively. D stands
for the shell stiffness, E is Young’s modulus and H is the wall thickness of the shell. The
parameter φ is a certain variable with respect to which the critical loading multiplier q
should be minimized. In Equation (A10) the membrane resultant stresses depend on q in
the following way:

N1 = qN1, N2 = qN2, S = qS, (A11)
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where S is resultant stress due to twisting. Minimization of q with respect to φ leads to
two solutions:

q1,2 = 2
√

DEH
K1z2

1,2 + K2

N2z2
1,2 + 2Sz1,2 + N1

, (A12)

where

z1,2 = −K1N1 − K2N2

K1S
∓

√(
K1N1 − K2N2

K1S

)2

+ 4
K2

K1
(A13)

The value of critical load multiplier q is determined by one of Equation (A12), whichever
leads to a smaller value. The experimental results which confirm the hypothesis of the local
stability condition in the case of the shell under different loading conditions are discussed
in Ref. [49]. Here it is worth noting that using different governing stability equations,
Axelrad [53] also obtained the formulae (A10) describing the critical membrane resultant
stresses. In the case when the resultant stress S≡ 0 the critical load multiplier q is described
by simpler formulae, namely:

q1 = 2
√

DEH
K2

N1
, q2 = 2

√
DEH

K1

N2
, q = min(q1, q2) (A14)

On the other hand, when N1 ≡ 0 and N2 ≡ 0 the critical load multiplier can be written
as follows:

q = 2
√

DEH
√

K1K2

S
(A15)

In the case of axially-symmetric shell subjected to hydrostatic pressure and twisting
the meridional resultant stress take the following form (Girkmann [54], Flügge [55]):

N1 = p0
R2

2R2

(
R2 − R2

01

)
(A16)

where R01 means a radius of openings at the ends of a shell (R01 = 0 denotes closed ends of
a shell). Next, taking into account the Laplace’s relation between the membrane meridional
and circumferential resultants, namely:

N2 = p0R2 −
R2

R1
N1 (A17)

the hoop resultant takes the following form:

N2 = p0R2 − p0
R2

2
2R1R2

(
R2 − R2

01

)
(A18)

Finally, the last resultant caused by twisting is:

S =
Mt

2πR2 (A19)

where Mt is a twisting moment described by Equation (1). Substituting Equations (A16)
and (A18), and (A19) into (A12), the function, which describes the variable wall-thickness
H, can be obtained in the most general form. This function, given in the dimensionless
form is presented below (Trzeciak [56]), namely:

h(ξ) = qcr
r2

r

√√√√kr2 ∓

√(
r2

01 + (k− 1)r2
)2

+
k m2

t
r2

2
, (A20)
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where

r1 = −

(
1 + 4µ2r′2

) 3
2

4µ2r′′
, r2 = r

√
1 + 4µ2r′2, k =

r1

r2
, r01 =

R01

R
. (A21)

The sign ‘±’ means that among two possible values of h the appropriate is that which
provides greater wall thickness. In the case of a shell subjected to hydrostatic pressure, the
function describing the wall thickness h can be computed with the use of Equation (A20)
with assumption mt = 0 or with the use of Equation (A14). The appropriate relationships
take the following forms:

h(ξ) = qcr
r2
r

√
r2(2k− 1) + r2

01, N2 = Ncr,

h(ξ) = qcr
r2
r

√
r2 − r2

01, N1 = Ncr.
(A22)

Finally, in the case of pure twisting, the wall thickness is described in the expression
which can be obtained with the use of (1), (A15) and (A19):

h(ξ) = qcr
(r1r2)

1
4

r
(A23)

For the shell of uniform stability, the equation describing the dimensionless volume of
material vm takes the following form:

vm =

1∫
0

h(ξ)r2dξ = 1 (A24)

To verify discussed above analytical model of the shell of uniform stability, the ad-
vanced numerical procedure is proposed. This procedure is based on the finite element
method and it consists of the following steps:

1. First of all, the maximal value of critical load multiplied and the corresponding shape
of the middle surface of the shell is determined with the use of Equations (A6), (A7),
and (A24). The variable wall thickness is described by one of the expressions (A20),
(A22), or (A23) depending on which case of the load is studied.

2. The determined previously optimal shape of the middle surface is imported to the
system of the finite element method. Next, the regular mesh, which consists of
quadrilateral elements, is generated as shown in Figure 2. The size of the elements is
assumed as le = L0/40.

3. It is assumed that the thickness in each finite element is constant and its value is
computed with the use of the expression (A20), (A22), or (A23) in the point where
ξ = (ξi + ξi + 1)/2, i = 1,2, . . . , 40. Of course, the mentioned coordinates ξi and ξi + 1
describe the X coordinate of the nodes which create each following ring of finite
elements. For all these elements the wall thickness H is identical.

4. For such a finite element model the buckling analysis is performed. If the value of the
obtained critical load multiplier is identical in comparison with the value computed
with the use of analytical formulas described in Appendix B, which means that the
analytical model provides reliable and accurate results.

The verification is performed for the isotropic shells subjected to pure external hydro-
static pressure and pure twisting. The obtained results are presented in Tables A1 and A2.
As can be observed in the case of pure external pressure the numerical and analytical results
are relatively similar. It is worth noting that generally the loss of stability is caused by the
circumferential resultant stress N2. However, in the case of the shell where µ = 0.5, there are
the zones where the buckling is caused by the meridional resultant stress N1. The presented
in Table A1 results are obtained for such structures where only circumferential resultant
stress N2 causes the loss of stability in the whole shell. In other words, the critical load



J. Compos. Sci. 2021, 5, 128 23 of 25

multiplier computed with the use of the case where N2 = Ncr always gives smaller values of
qcr in comparison with the case where N1 = Ncr. Generally, the discrepancy does not exceed
2% in all investigated cases. However, in the case of pure twisting, a significant discrepancy
is observed. This can be caused by the fact that the assumed approximation of the resultant
stress S, Equation (A19), is very rough. Therefore, the comparison of the optimal solutions
is presented only in the case of isotropic structures subjected to external pressure.

Table A1. Optimal shell of uniform stability under hydrostatic pressure.

µ q0·10−6 qustb/q0 qmes/q0 n/n0 r(0) r(1)

γ = 0.004

0.500 2.500 3.953 3.961 70/16 1.137 0.702
0.375 2.162 3.934 3.945 74/14 1.216 0.500
0.250 1.773 3.547 3.573 42/10 1.216 0.500
0.188 1.517 3.233 3.263 30/10 1.216 0.500
0.125 1.223 2.750 2.791 20/8 1.216 0.500

γ = 0.008

0.500 11.811 3.347 3.356 50/12 1.137 0.702
0.375 10.364 3.282 3.293 52/12 1.216 0.500
0.250 8.457 2.975 3.007 30/10 1.216 0.500
0.188 7.115 2.757 2.798 12/8 1.216 0.500
0.125 5.903 2.279 2.325 14/6 1.216 0.500

Table A2. Optimal shell of uniform stability under twisting.

µ q0·10−6 qustb/q0 qmes/q0 n/n0 r(0) r(1)

γ = 0.004

0.500 7.823 1.611 1.813 44/20 1.093 0.803
0.375 7.368 1.587 1.839 42/18 1.115 0.753
0.250 6.749 1.575 2.015 40/16 1.170 0.619
0.188 6.329 1.569 2.237 38/14 1.216 0.500
0.125 5.770 1.474 2.123 28/12 1.216 0.500

γ = 0.008

0.500 33.552 1.502 1.669 30/16 1.093 0.803
0.375 31.668 1.487 1.762 30/14 1.126 0.728
0.250 29.129 1.468 1.928 30/12 1.181 0.590
0.188 27.334 1.453 2.081 28/12 1.216 0.500
0.125 24.928 1.365 1.978 20/10 1.216 0.500
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