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Abstract: Adding acid-modified resin compatibilizers is essential for plastic composites reinforced
with carbon-neutral cellulosic filler. Researchers have measured the efficacy of adding a compat-
ibilizer in the context of mechanics. However, it is necessary to microscopically clarify how the
compatibilizer actually works for quality control and further expansion of applications. In this review,
the author first describes the situation of cellulosic composites and presents issues regarding how one
assesses the role of the compatibilizer. The author then reviews recent multi-scale experimental ap-
proaches to the detection of covalent bonds between the cellulosic filler and compatibilizer, estimation
of nanoscale interphases, and the micron-scale dispersibility of the fillers. With accumulation of such
experimental facts, appropriate parameter settings can be expected for the structural analysis such as
the finite-element method, as well as the potential to provide appropriate explanatory variables for
material/process informatics.

Keywords: cellulose; wood plastic composite (WPC); biocomposite; polypropylene (PP); maleic
anhydride modified polypropylene (MAPP); interface/interphase

1. Introduction

The use of carbon-neutral cellulose as a filler in filler-reinforced plastic composites
can contribute to the global challenge of low carbonization. In general, addition of a
compatibilizer (coupling agent) is essential to mix hydrophobic synthetic plastics with
relatively hydrophilic cellulosic fillers.

One of the most typically used compatibilizers is maleic anhydride-modified polyprop-
ylene (MAPP). Figure 1 shows that in polypropylene (PP)-based wood plastic composites
(WPCs), the PP chains in the MAPP can mix with the PP chains in the matrix because
of van der Waals forces and cause entanglement [1]. Furthermore, researchers generally
agree that under high shear conditions above 130 ◦C at which MAPP can melt, the succinic
anhydride groups introduced into MAPP form covalent and hydrogen bonds with cellulosic
components in wood flour [2].
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The literature discusses the effects of compatibilizers in terms of the relationship
between the composition for compounding and the mechanical properties of the resulting
bulk composites. Of course, the mechanical properties themselves are important, but those
properties involve microscopic structural factors. It is often difficult to obtain definite exper-
imental facts regarding the role of compatibilizers. Consequently, it is necessary to devise
the technical means to do so. Furthermore, if one faces unexpected problems with respect
to the reproducibility of physical properties, such as formability and appearance, the main
factors should be identified by microscopic and systematic criteria. By accumulating such
mechanistic understanding, the reliability of composites will be improved and composites
will be expanded to new markets. Such mechanistic factors will also underlie data-driven
process informatics, which one would expect to evolve.

This article reviews investigations on elucidating the functions of acid-modified resin
compatibilizers as experimentally as possible, not only from the mechanical properties of
the final bulk composite materials but also from molecular, nanometer, and micron scales.
This article reveals that it is useful to incorporate chemical aspects, where necessary, to
those ends. One can also apply the findings of this article to nanocellulose composite
materials, which have been attracting recent attention [3–5].

Herein, cellulosic composite materials are a focus because of the expertise of the author.
However, the experimental approaches exemplified here may be applied to other systems
(e.g., glass fiber-reinforced plastics (GFRPs), carbon fiber-reinforced plastics, adhesion,
lamination, and surface modification) that employ acid-modified resins.

2. Overview of Cellulosic Filler-Reinforced Plastic Composites
2.1. Overview

Filler-reinforced composites are frequently used in structural applications. The main
purpose of the modification is to increase rigidity. Researchers expect cellulosic filler-
reinforced plastic composites to contribute to sustainable development [6–8]. This is
because the fillers exhibit reproducibility, carbon neutrality, and a wide range of procure-
ment, and all of the constituents including the plastic matrix are essentially recyclable [9,10].
Such composite materials are also collectively called natural fiber composite materials [11],
eco-composites [12], or biocomposites [13]. In terms of biocomposites, one often presumes
that the plastic matrix side is also bio-based. Accordingly, one may adopt polysaccharides,
proteins, or aliphatic polyesters as the plastic matrix.

2.2. Industrially Important WPC

Among cellulosic filler-reinforced plastic composites, an industrially important com-
posite is the kneading-type WPC that uses wood powder as the filler [14]. WPC, which was
fully introduced into the market in the early 1990s, has a history of 30 years of industrial-
ization, including those made from recycled plastics [15]. WPC has achieved rapid growth
in the form of depriving the market share of natural wood and chemical-injected wood
because of its features such as being maintenance-free and having long-term durability
and stain prevention.

The WPC market has grown at a double-digit rate each year around the world from the
1990s to 2015 [16]. World WPC production in 2012 exceeded 2.4 million tons (e.g., 1.1 million
tons in North America, 900,000 tons in China, 260,000 tons in Europe, 60,000 tons in Japan,
and 45,000 tons in Southeast Asia) [16]. As seen in North America, where it is common
to install outdoor decks in houses, WPC is mainly in demand as an exterior material. In
Japan, the market has expanded as an outdoor building material for public buildings (e.g.,
benches, fences, louvers, and decorative materials). In Europe, WPC’s development as an
automobile component is also occurring [17]. In North America, growth has slowed down
since 2004 because of a high number of lawsuits related to quality issues such as choking,
shrinkage, surface oxidative damage, and fading [16]. Although the WPC market is greatly
affected by the number of new housing projects and is therefore affected by the economy, it
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is regaining its market expansion trend because of expanding demand for double-layer
molded products that are supposed to have solved quality problems [16].

One of the major trends in the world WPC market today is that production of low-
priced WPCs produced in emerging countries is increasing. Furthermore, technological
innovations for high performance as well as environmental considerations such as depen-
dence on fossil resources and reduction of CO2 emissions are required.

3. Issues of Composites and Scope of this Review

There have been comprehensive reviews of cellulosic filler-reinforced plastic com-
posites [11–14,18,19]. The main four influencing factors on the properties of filler-filled
composites are the original properties of the constituents, compounding ratio, composite
structure, and interfacial interaction [20]. Examples of filler properties are particle size, size
distribution, specific surface area, and shape. Stiffness is mainly noted as a property of
the matrix. As the composite structure, segregation and agglomeration of the components
and the orientation of anisotropic particles are attracting attention. Interfacial interac-
tions, which can lead to the formation of interphases, are often regarded as being highly
dependent on individual systems.

This article focuses on what is already regarded as important in industry but has not
been fully systematized: compatibility of the hydrophilic cellulosic filler and hydropho-
bic matrix. The role of the acid-modified resin compatibilizer is directly connected to
the compatibility.

For cellulosic composites, there is also a research focus on developing high-performance
composite materials by chemically modifying the cellulosic filler [21–24]. Although this
focus is important from a long-term perspective, it is realistic from a feedstock perspective
that cheap fillers are simply kneaded with the hydrophobic polymer matrix in the presence
of a compatibilizer, as realized by the WPC industry. The author therefore concentrates on
analyses that can be applied to such systems.

The quality of the filler itself is also important for using the cheap filler as-is. Although
it is challenging to systematically handle variations in filler quality such as the original
plant species (e.g., the molecular composition) and shape, there have been articles on this
topic [18,25,26].

From a processing viewpoint [27], researchers have reported on the usefulness of
solid phase shearing in the non-molten state of the matrix [28]. It is realistic to consider
a system in which pulverization mechanochemically increases the reactivity between
the components because in this case one adds no other substances [29,30]. For these
systems, the energy input will be a decisive issue. These are important topics that one can
summarize separately.

4. Acid-Modified Resins
4.1. General Understanding

Regarding the production of cellulosic filler-reinforced plastic composites, adding an
acid-modified resin compatibilizer is essential to mix the hydrophilic filler and hydrophobic
plastic matrix. MAPP is the most important commercial functionalized polyolefin [31,32].
MAPP is used not only as a compatibilizer, but also for adhesion and improving the
printability of PP. MAPP is in many important commercial products such as GFRP, metal
anticorrosion coatings, and laminated paper sheets [32].

One prepares MAPP by kneading maleic anhydride (MAH) with PP in the presence
of organic peroxide (OPO). In MAPP, the acid functional groups are bound to PP in the
form of succinic anhydride (SA). In PP modification, the radicals generated by the OPO
initiate the addition of MAH to PP. The methine hydrogen of PP, which has a low binding
energy, is preferentially abstracted by the radicals generated by OPO. As a result, MAH
grafting and PP backbone cleavage (β-scission) occur competitively [10].

Table 1 summarizes the properties of MAPP that the author has used. The acid
modification degree is expressed as wMA as the SA group content (wt%) in MAPP. In
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this review, when wMA = 2.0 wt%, it is expressed as MAPP20. The author obtained the
series of MAPP from the same PP by a kneading reaction using an OPO and MAH. Due
to the competition between maleic acid modification and depolymerization of PP, wMA
and molecular weight should exhibit a trade-off relationship. This is supported by the fact
that the melt flow rate (MFR) value (Table 1) increased in accordance with the decrease in
molecular weight as wMA increased.

Table 1. Properties of MAPP used. Reprinted from Ref. [33]. Copyright Elsevier Ltd. (2019).

Sample
Code

wMA
(wt%)

Mn
/104

Mw
/104 Mw/Mn

MFR/g/10 min (10 kgf) a

180 ◦C 230 ◦C

MAPP04 0.4 5.9 43 7.4 0.2 1.5
MAPP08 0.8 3.4 23 6.7 0.6 2.2
MAPP12 1.2 3.0 1.7 5.6 5.8 140
MAPP15 1.5 1.5 8.2 5.6 12 250
MAPP20 2.0 1.4 7.4 5.2 50 630

a At the indicated temperature.

When one modifies polyethylene (PE) by a similar process, methylene hydrogen is
abstracted and the generated polymer radicals tend to react with each other and recom-
bine [10]. For this reason, mainly crosslinked PE is produced.

As shown in Figure 1, the PP chains in MAPP as a compatibilizer can mix with PP
in the matrix because of van der Waals forces and cause entanglement [1]. Furthermore,
researchers report that SA groups form covalent and hydrogen bonds with cellulose under
high shear conditions above 130 ◦C [2].

Around 1990, when WPC was about to be introduced to the market, there were
mechanistic studies on the covalent bond between MAPP and cellulose components [34,35].
Gatenholm et al. soaked cellulose fibers and filter paper in a hot toluene solution of
MAPP [35]. Then, they extracted the treated products with toluene to analyze the samples,
from which they removed unreacted MAPP. The cellulose treated with MAPP exhibited
water repellency. In their Fourier-transform infrared absorption (FTIR) spectra, they
detected a carbonyl band indicating formation of an ester bond between cellulose and the
acid functional group of MAPP. They also showed that when they kneaded MAPP-treated
cellulose with PP, the mechanical properties improved compared with PP composites
containing untreated cellulose. The literature provides additional examples [36,37].

Prior to the formation of the WPC market, it was reported in 1984 that MAH can be
esterified at 80 ◦C or higher by swelling wood flour with an aprotic hydrophilic solvent
such as dimethylsulfoxide (DMSO) for the purpose of chemically treating wood [38]. In
other words, the reactivity of MAH is originally high.

Depending on storage conditions, the acid functional group of MAPP may be opened
by the influence of water. Gatenholm et al. pointed out that heat treatment at 180 ◦C for
5 min closed the acid functional groups to restore the anhydride state and improved the
reactivity of MAPP with cellulose [35]. The author agrees that such heat treatment (activa-
tion) is a necessary step to effectively handle MAPP. Performing such activation improves
the reproducibility of good physical properties and avoids unnecessary difficulties.

4.2. Difficulty in Estimating the Effect of an Acid-Modified Resin Compatibilizer

Regarding acid-modified resins used as compatibilizers for filler-reinforced plastic
composite materials, many researchers may think that the efficacy of adding them is
obvious. The author has the following experience: upon participation in very large interna-
tional exhibitions and speaking with the staff of compatibilizer manufacturers across the
world, these researchers shared which products were effective for WPC (kneading type
wood plastic composites). Upon further inquiries, the author learned that the effect of the
compatibilizer had been investigated in detail mainly for GFRP but there is substantial
unpublished data.
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The aforementioned work of Gatenholm et al. [35] is often cited as the rationale for
the fact that MAPP forms ester bonds with cellulosic components. This was a study of
the action of dissolved MAPP on cellulose solids. There is controversy as to whether ester
bonds are formed in practical kneading [39].

Considering the quantitative relationship, it is quite difficult to estimate the true
effect of MAPP. The content of the acid-modification portion (acid modification degree,
wMA) introduced into MAPP in the form of SA is generally approximately several weight
percent. MAPP with wMA = 2 wt% is one of the highly acid-modified products among
those commercially available. Even with such an MAPP, only one SA group is introduced
to 126 propylene repeating units (in the case of MAPP, one generally introduces the SA unit
as a monomer rather than in a polymerized—oligo SA—state [40]). Moreover, regarding
commercial WPC, the concentration of added MAPP is as low as a few percent because the
manufacturers want to reduce the quantity of added MAPP, which is relatively expensive,
as much as possible. It is thus difficult to quantitatively discuss the effect of adding MAPP
by spectroscopy or thermal analysis, especially for the final composite. Figure 2 illustrates
this situation.
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In WPC, researchers have shown by acoustic emission that destruction proceeds
nonuniformly [41]. This also reflects the difficulty in detecting the specific factors that lead
to the physical properties of this type of composite.

Another issue for examining the role of MAPP is its diversity. For example, there
have been many investigations on the effects of adding MAPPs with different wMA val-
ues. However, researchers often make comparisons using MAPPs provided by different
manufacturers. In addition, the properties (homo- or co-polymerized) of PP used as the
base resin for acid modification by each manufacturer and their molecular weights are not
uniform. Thus, it was difficult to conduct a systematic investigation.

5. Recent Research on the Function of MAPP by Experiments on Various Scales

Recently, the author’s group has clarified spectroscopically the bonds between acid-
modified resin and cellulosic filler [2], as well as evaluated the wettability of the acid-
modified resin to the filler and clarified its effect on physical properties [33]. Most recently,
we proposed a simple quantitative evaluation for the dispersibility of fillers in composite
materials [42]. Including those, in this section, the author presents studies which elucidate
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the function of compatibilizers as quantitatively as possible on an experimental level and
use a chemical perspective on a molecular, nanometer, and micron scale.

5.1. Analysis at a Molecular Level: Detection of Binding between Cellulosic Filler and
Acid-Modified Resin by Spectroscopy
5.1.1. Increasing the Sensitivity of Spectroscopy

In the previous section, the author referred to a pioneering work [35] around 1990
for the detection of ester bonds in MAPP and cellulose components, where a combination
of solvent extraction and FTIR was adopted for analyzing WPC-like composites. In that
example, esterification was performed by immersing the cellulose fiber in a hot toluene
solution of MAPP. However, it was debatable whether similar bond formation would occur
in actual kneading [39].

Carbon-13 labeling of MAPP can solve the low analytical sensitivity of the acid
functional groups of MAPP. Laborie et al. kneaded [1,4-13C2]-MAPP with cellulose powder,
unsulfonated kraft pine lignin, or maple wood flour [43]. As the natural abundance ratio of
13C, which gives signals in solid-state nuclear magnetic resonance (NMR), is low at 1.1 %,
they used 13C-labeled MAPP to enhance the sensitivity. They assigned the solid-state NMR
signal of the SA group of MAPP and focused on the molecular mobility; i.e., measured the
single-proton longitudinal relaxation in the rotating frame, T1ρ

H. MAPP interacted with
lignin more strongly than cellulose in wood. With this special MAPP, much information
can be elucidated from solid-state NMR spectra.

The author’s group, meanwhile, detected the bonding between cellulosic filler and
normal MAPP by concentrating the binding sites and adopting an appropriate spectro-
scopic method [2]. In this section, the author introduces an example, in which the cellulose
component was selectively decomposed and extracted by the cellulolytic enzyme cellulase
from the composites obtained by kneading cellulose powder and MAPP. The binding site of
cellulose and MAPP was concentrated to improve the spectroscopic sensitivity (Figure 3).
In addition to FTIR, “gel (swollen)-state NMR”, which has recently attracted attention in
the analysis of plant cell walls [44–47], was used for spectroscopy. In swollen-state NMR,
the surface and interface of pulverized samples are selectively swollen by the deuterated
solvent, the molecular mobility is increased, and NMR signals are obtained. One can
analyze the surface/interface of composite materials by selecting an appropriate solvent
system [48–51]. Through a series of measurements, we succeeded in detecting binding
between the cellulosic filler and MAPP by this NMR technique [2] as follows.
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5.1.2. Preparation of Composites and Concentration of Binding Sites by
Enzymatic Degradation

In general, the concentration of the SA group introduced into MAPP is low, approxi-
mately a few percent in terms of the MAPP, and the concentration of MAPP in the com-
posites is also a few percent, as aforementioned. It is thus necessary to separately evaluate
the behavior of MAPP in the composite materials. In this example, to simplify evaluation
of the system, we prepared binary composites of microcrystalline cellulose (MCC; Avicel
PH-101; Sigma–Aldrich Co. LLC.; particle size, ~50 µm) and MAPP20 (see Table 1 for the
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characteristic values) by thermal-kneading at a weight ratio of MCC/MAPP20 = 90/10.
The kneading temperature was set at 120 ◦C or 160 ◦C, which is below or above the melt-
ing point of MAPP20 (~156 ◦C). Each sample is designated as MCC/MAPP20-120 and
MCC/MAPP20-160 in accordance with the kneading temperature. As MCC has no melting
point (cellulose pyrolyzes at around 320 ◦C before reaching the theoretical melting point),
the appearance of the MCC/MAPP20 binary composites was powdery.

The MCC/MAPP20 composites were subjected to enzyme treatment with cellulase
derived from Trichoderma viride. The degradation and removal percentages of MCC
in MCC/MAPP20-120 and MCC/MAPP20-160 were 83.9% and 57.2%, respectively. In
MCC/MAPP20-160, which was kneaded at a temperature at which MAPP20 melted, MCC
coating by MAPP20 was remarkable and enzymatic degradation was inhibited. The sample
code after the enzyme treatment is appended with -E and written as MCC/MAPP20-160-E.

5.1.3. FTIR Spectroscopy of Samples with Concentrated Binding Sites

Using FTIR spectroscopy, we focused on the bands of SA unit of MAPP20. Figure 4
shows FTIR spectra expanded for the region in which the carbonyl band appears. MCC
showed no absorption in this region, and MAPP20 had the bands for carbonyl groups
of the acid anhydride at 1862 and 1783 cm−1. Another absorption was also confirmed at
1739 cm−1 for MAPP20. For the as-prepared MCC/MAPP20 (not enzymatically treated), it
was not possible to confirm the bands of acid anhydrides of a low concentration.
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The acid anhydride bands appeared only after enzymatic treatment. As the enzymatic
treatment of MCC/MAPP20 was performed in an aqueous system, however, the SA units in
MAPP20 could be hydrolyzed to dicarboxylic acids, which could complicate assignment of
the carbonyl region. FTIR measurements were therefore performed after the heat treatment,
referring to a report that heat treatment at 180 ◦C for 5 min closed the ring to form the acid
anhydride [35].

In the FTIR spectra of the heat-treated samples, the band derived from the acid anhy-
dride in MCC/MAPP20-120-E increased in wavenumber to 1778 cm−1 and broadened. This
indicates that the SA unit of MAPP20 forms a hydrogen bond with MCC by kneading or
heat treatment. However, for MCC/MAPP20-160-E, despite the heat treatment for ring clo-
sure of the dicarboxylic acid at 180 ◦C for 5 min before the FTIR measurement, the carbonyl
band of the carboxylic acid was detected at 1714 cm−1. From this, in MCC/MAPP20-160-E,
there was a pair of monoester and monocarboxylic acids (Figure 4, inset) that did not
ring-close even after heat treatment. This indicates the presence of ester bonds between
MCC and MAPP20.
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5.1.4. Swollen-state NMR Spectroscopy of Samples with Concentrated Binding Sites

Conventional liquid (solution-state) NMR spectroscopy provides structural informa-
tion on solubilized molecules. Over the last decade, Ralph et al. have developed a gel
(swollen-state) NMR method for ball-milled plant cell wall samples swollen in hydrophilic
deuterated solvents; they have acquired high-resolution spectra to give new insights to
lignin chemistry [45–47]. As per gel-state NMR spectroscopy, molecular mobility increases
because of sample swelling even if the samples are not dissolved, and one can obtain
high-resolution two-dimensional (2D) spectra. This method has been applied to evaluate
the interfaces of carbon nanotube composites [49,50] and recently measurement of the
substitution degree of surface-oxidized cellulose nanofibers (CNFs) [51]. Here, we applied
this method to MCC/MAPP20-E, which is a poorly soluble sample.

Prior to the swollen-state NMR measurement, each sample was ball-milled (600 rpm
for 1 h). Figure 5 shows 1H NMR spectra of MCC and MAPP20 immersed in DMSO-
d6/pyridine-d5 (4/1, v/v). Figure 5 also shows the visual appearance of the NMR sample
tubes used for the measurements. In both cases, one sees that the sample was not dissolved.
The spectra were broad. However, for MCC, the protons derived from cellulose were
observed. For MAPP20, even though the SA groups were present only at a concentration
of 2 wt% of MAPP20, the signals of the protons were appreciably detected in comparison
with those of the alkyl group of the PP chain. This is because the signal of the portion with
a high affinity with the solvent—that is, the hydrophilic SA group here—was emphasized.
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also shown.

On the basis of the expectation that information on the bonding state of the interface
of MCC/MAPP20 binary composites could be obtained by this method, we performed
heteronuclear single-quantum correlation spectroscopy (HSQC), which is a 2D heteronu-
clear NMR method. Figure 6 shows HSQC spectra obtained for MCC/MAPP20-120-E
and MCC/MAPP20-160-E. In each of the 2D spectra, signals that were not separated in
the one-dimensional spectra in Figure 5 were clearly detected as correlation signals. In
both samples, signals derived from cellulose (indicated by blue arrows) were observed.
However, the signal derived from the SA group in MAPP20 was confirmed for the 120 ◦C
kneaded product (MCC/MAPP20-120-E), but disappeared for the product (MCC/MAPP20-
160-E) kneaded at 160 ◦C. This is likely because the solvent (DMSO-d6/pyridine-d5 (4/1,
v/v)) was inaccessible in MCC/MAPP20-160-E, attributable to the close contact of the
SA group with MCC. Interestingly, when the signal from the C6 position of cellulose was
expanded, a new signal appeared near the signal from xylan (xylan, as a component of
hemicellulose, can be contained because MCC is made from wood pulp.) The hydroxyl
group at the C6 position of cellulose was esterified by MAPP20.
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5.1.5. Possibility of Developing Spectroscopy Specialized for the Interface of
Composite Materials

One can readily prove formation of a covalent (ester) bond between MAPP20 and the
cellulose component by thermal kneading, by means of combination of enzymatic treatment
and spectroscopic analysis of MCC/MAPP20 binary composites. The filler component can
be degraded with an enzyme and extracted, yet there is a restriction that ball-milling as a
pretreatment is probably indispensable for swollen-state NMR spectroscopy. A challenge
remains in quantifying the correlated signals. However, a combination of concentrating
interacting interfaces and swollen-state NMR spectroscopy, which provides information
specific to the interfaces, can be widely applied to composite materials containing fillers
other than cellulosics. Applicability to adhesive surfaces as well as the interface analysis of
laminated materials using acid-modified resins is also of interest.

5.2. Nanoscopic Analysis: Evaluation of the Wettability of Acid-modified Resin on the Filler
Surface and Localization in Composites
5.2.1. Nanoscopic Analysis Viewpoint

Researchers often consider cellulosic filler-reinforced plastic composites to be macro-
scopic, and nanoscopic phenomena may not be paid much attention. There have been many
studies on mechanical properties and modeling, such as those for determining the thickness
of a (possibly nanoscopic) interphase, where empirical formulas basically assuming simple
additivity were used [1,20,52].

However, the classic Nielsen masterpiece addressed filler-filled composites paired
with microscopic composite systems [53]. As such, the analogy with copolymers and
miscible blends at the molecular level can partly allow for a nanoscale discussion of the
filler–matrix interface for the composites of interest here. Microscopic cellulosic composite
systems such as miscible blends and graft copolymers have made remarkable progress
since the late 1980s in terms of design and analysis [54,55]. Those concepts can also
be incorporated.

However, cellulosic fillers are usually not thermoplastic. It is thus often inadequate to
attempt the discussion purely based on thermodynamic equilibrium as an average image
of cellulosic filler-reinforced composite systems; in many cases it is necessary to consider
morphological effects. The dimension of that morphology corresponds to the nanoscale.
Thermal analysis and microscopy, which have sufficiently high sensitivity and resolution,
allow one to systematically analyze the filler–matrix interface of this type of filler-reinforced
composites, if one is careful about interpreting the results.
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The author herein reviews nanoscale analysis of composite materials by (1) thermal
analysis of the crystallization behavior of components that can be melted and crystallized,
other than cellulosic fillers; and (2) intuitive microscopy.

5.2.2. Crystallization Studies by Thermal Analysis

Thermal analyses such as differential scanning calorimetry (DSC) are useful for linking
the formulation and mechanical properties of the final composite [56]. Addition of cellulosic
filler increases the crystallization temperature during cooling to be higher than that of neat
PP and increases the crystallinity of the PP matrix. Thus, researchers generally interpret
that the filler acts as a crystal nucleating agent. Researchers generally interpret data from
crystallization experiments by DSC in the same manner. However, compared with the
remarkable nucleating effect of talc [57,58] and layered silicate (montmorillonite) [41] on
PP, the cellulosic filler is a moderate nucleating agent.

In systems of cellulosic composites with an added compatibilizer, there have been
studies referring to the nucleating effect of cellulosic filler [29,30,39,59–61]. Some of these
studies pointed out that MAPP promotes crystallization of the PP matrix [30,39,61]. How-
ever, whereas the effect of the filler is easy to recognize, it is difficult to extract the effect of
the compatibilizer on the crystallization from an ordinary DSC thermogram because of the
sensitivity problem described in Section 4.2.

It is important to apply a suitable thermal program for crystallization experiments.
Recently, Huang et al. reported a study in which they clarified the effect of MAPP con-
centration by non-isothermal crystallization [62]. They prepared a WPC consisting of 60%
wood flour, 0% to 7% MAPP, and 33% to 40% PP. Adding 3 wt% MAPP optimally con-
tributed to the acceleration of crystal growth of the PP polymer matrix. However, excessive
MAPP loading prevented crystallization of the matrix PP chains. They carefully analyzed
the non-isothermal crystallization data using various equations (Avrami, Avrami–Ozawa,
Kissinger, and Friedman methods). They revealed that the mechanism, kinetics, and activa-
tion energy of the crystallization of PP matrix were affected by the MAPP content. These
results provide information on the conditions of the manufacturing process in order to
optimize the polymer morphology of the composite.

5.2.3. Intercomparison of Compatibilizer Wettability by Thermal Analysis

Whereas thermal analysis of the ternary system of cellulosic filler/MAPP/PP makes
it difficult to detect the effect of added MAPP, the binary system excluding the matrix may
be able to detect the behavior of MAPP with high sensitivity. In this subsection, the author
presents a study of the wettability of MCC by MAPP by DSC analysis of MCC/MAPP
binary composites using commercially available MCC (~50 µm granular) as cellulosic
filler [33].

To perform DSC thermal analysis with good reproducibility, one generally measures
the thermograms of the second heating scan. In DSC measurements of the MCC/MAPP
binary composites, the temperature in the sample was raised to 200 ◦C by first heating
to evaporate the water in the sample, and the MAPP crystals in the as-prepared state
were melted. Cellulose does not show a thermal transition and does not decompose at
temperatures up to 200 ◦C. If the thermal history is erased by the first heating scan and
then rapidly cooled, the PP-like crystallization of MAPP will proceed rapidly, such that
crystallization will occur to a considerable extent. The melting behavior of the MAPP
crystals formed during the quenching process was evaluated by the second heating.

Figure 7 shows the DSC thermograms (second heating) of MCC/MAPP20 binary
composites prepared by changing the kneading temperature. The melting point (Tm)
of the sample (MCC/MAPP20-120) kneaded at 120◦C was almost the same as that of
unadulterated MAPP20. However, in the 130◦C kneaded product (MCC/MAPP20–130),
the endotherm associated with melting became bimodal, and a new Tm appeared on the
low-temperature side while maintaining the Tm of plain MAPP20 on the high-temperature
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side. In MCC/MAPP20-160 kneaded at 160 ◦C, the endotherm became monomodal and
the Tm shifted to the low-temperature side.
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Figure 7. DSC thermogram (second heating scan) of MCC/MAPP20 binary composites prepared
at various kneading temperatures. The right panel is an enlarged view of thermograms for the
endothermic temperature range of the three MCC/MAPP20 composites.

Figure 8 shows scanning electron microscopy (SEM) images of MAPP, MCC/MAPP20–
120, and MCC/MAPP20–160. The as-provided MAPP20 (Figure 8a) was in the form of gran-
ules of several hundred microns, and the unmelted MAPP20 granules were also observed
in the as-prepared MCC/MAPP20–120 (Figure 8b). In the as-prepared MCC/MAPP20–160
(Figure 8c), we saw MCC particles adhered via MAPP20, and MAPP20 wetted the MCC
surface. Similarly to the DSC measurement, these samples were heated once to 200 ◦C to
melt MAPP20 and then cooled to room temperature. As a result, the original MAPP20
particles could not be seen in either MAPP20 or MCC/MAPP20–120, as seen in the SEM
image with the prime symbol (′) added to the letters (a, b, and c). The differences between
MCC/MAPP20–120 and MCC/MAPP20–160 became difficult to find at first glance.
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The aforementioned results show that when one applies shearing force above the
melting point of MAPP20 and kneading MAPP20 with MCC, MAPP20 wets the MCC
surface, and the melting point of MAPP20 decreases accordingly.

We also investigated the difference in wettability of MAPPs with different acid mod-
ification degrees wMA listed in Table 1. Similarly to Figure 8c, the MCC/MAPP binary
composite obtained by kneading with any of the MAPPs at 160 ◦C had the MCC surface
wet with MAPP; namely, the difference in wMA could not be distinguished. However, the
DSC data of Figure 9 show the data reflecting the difference in wMA of MAPP. First, for
unadulterated MAPP, Tm decreased in accordance with increasing wMA (Figure 9a). This is
attributable to the decrease in molecular weight associated with acid modification (Table 1).
However, in the MCC/MAPP binary composites, Tm decreased because of coexistence
with MCC; Tm decreased more substantially as wMA increased (Figure 9c).
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Figure 9. DSC thermograms (second heating scan): (a) plain MAPP samples with various wMA values, and (b) their binary
composites with MCC. Panel (c) plots Tm against the added wMA of MAPP. Reprinted from Ref. [33]. Copyright Elsevier
Ltd. (2019).

Figure 10 shows a schematic of MCC coated with MAPP. The melting point decrease
behavior can be explained as follows. First, one presumes that MA was basically introduced
into the PP chain not as an oligomer but as a monomer [38]. As aforementioned, for MAPP,
the wMA and the molecular weight are in a trade-off relationship. Accordingly, the number
of SA groups introduced per PP chain was 2.4–3.7 in all the MAPPs used, which was not
appreciably different (calculation from the data in Table 1). This means that the average
molecular weights between the introduced SA groups were different. That is, MAPP with
a high wMA had a relatively low molecular weight, and the average molecular weight
between the SA groups capable of reacting with MCC was low. For this reason, MAPP
with a high wMA easily wetted the MCC and the mobility of the PP chain part decreased
accordingly. As a result, the MAPP component became difficult to grow into large crystals
and Tm decreased further. One can thus conclude that the Tm decrease observed by DSC
was useful as a measure of the degree of wetting of MAPP to the cellulosic filler.

5.2.4. Nanoscopic Localization of Compatibilizer

On the basis of the schematic shown in Figure 1, the author assumed that MAPP
compatibilizers tend to be localized at the interface between the cellulosic filler and matrix.
With such a model, the author will present some interesting projects with ingenuity in
terms of parameter setting and experimental methods.

Felix and Gatenholm dipped α-cellulose fibers in hot toluene solutions of MAPP with
various molecular weights, further extracted unbound MAPP with a solvent, and kneaded
the coated fiber with PP in a Brabender mixer [1]. Figure 11 shows the tensile yield stress
of these composites. “Mn = 350” means alkenylsuccinic anhydride, Mn = 4500 and 39,000
means MAPP with 6% wMA, and the number shows the number average molecular weight.
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The higher the molecular weight of MAPP, the higher the yield stress; the thicker interphase
between the filler and matrix increased the stress transfer. Using the empirical formula
proposed by Pukánszky et al. for PP composites reinforced with CaCO3 [52,63–66], they
estimated that the MAPP interphase thicknesses of Mn = 4500 and 39,000 were 2.89 and
3.93 µm, respectively (1.19 µm without MAPP and 1.40 µm with Mn = 350).
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Figure 11. Effect of the interdiffusion of the functionalized polymer with the matrix on the mechanical
properties of PP/cellulose composites. Reprinted from Ref. [20] (© 2008 The Korean Society of
Industrial and Engineering Chemistry. Published by Elsevier B.V.).

Lee et al. quantified the interphase thickness of cellulosic filler and PP resin using
nanoindentation [67]. In nanoindentation, an ultra-small indenter tip penetrates the ma-
terial surface with a small force and measures the indentation depth and load. They
silane-coupled the surface of the regenerated cellulose fiber (Lyocell), spread it on a press
film of a composite obtained by kneading PP and MAPP, and pressed at 200 ◦C for 10 min.
The surface containing regenerated cellulose (surface roughness 20–30 nm smoothness) was
cut out with a microtome and subjected to nanoindentation. The indenter was operated
from above the regenerated cellulose fiber to the matrix resin side, and hardness values
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were obtained every 200 nm. The hardness was high in the regenerated cellulose and low
in the PP matrix, but gradually decreased at the regenerated cellulose/PP interface rather
than discontinuously. As a result, the interface thickness was estimated to be within 1 µm.

Figure 12 shows a set of transmission electron microscopy (TEM) images, samples
stained with osmium tetroxide, of a cross section of injection-molded specimens of the
MCC/MAPP/PP ternary composites by the author’s group [33]. MAPP with various wMA
values was added to these. In the TEM images, one can see MCC as white, the PP matrix as
gray, and MAPP as dark gray. In the TEM images of the systems containing any MAPP,
MAPP was localized at a thickness of approximately 50 nm around MCC. A similar image
showing that MAPP is localized around the cellulosic filler was also reported in 1991 [68].
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With respect to the TEM images of Figure 12, we were interested in how much of the
compounded MAPP was reflected by the localization of the MAPP layer around 50 nm
around the MCC (the weight ratio of MCC/MAPP/PP was 22.5/2.5/75). We thus tried to
simplify the system and evaluate it [33]. Assuming MCC to be a sphere with a diameter of
50 µm, if all the compounded MAPP gathered around the MCC, we estimated the thickness
of the MAPP layer to be 1.39 µm. This value was much larger than the ~50-nm thickness of
the MAPP layer actually observed. Therefore, in the samples shown in Figure 12, probably
not all of the MAPP was localized around the MCC.

The thickness (~50 nm) of the MAPP layer as per TEM did not clearly reflect the
difference in wMA of MAPP (Figure 12). However, the storage shear modulus (G′) observed
by rheology indicated that the larger wMA, the more remarkable the network structure
formation in the ternary composite [33]. This corresponds to an improvement of the
interfacial adhesion in accordance with increasing wMA. The SEM images of the frozen
fractured surface of the injection-molded MCC/MAPP/PP specimens also suggest that the
increase in wMA increased the interfacial adhesion between MCC/PP [33]. The literature
reports many similar SEM images showing interfacial adhesion [56,59,61,69,70]. It is
reasonable to consider that these positive effects of the addition of MAPP with a large
wMA value were because MAPP coated MCC well and reduced the interfacial tension of
MCC/PP.

5.2.5. Achievement and Applicability of Nanoscopic Evaluation

This section introduces studies that have obtained data regarding structure at the
nanometer scale. This scale is larger than the molecular level, such as the covalent bonds
between MCC and MAPP mentioned in the previous section. Crystallization experiments
with appropriate analyses can clarify not only the effects of added filler in the composites
(frequently reported), but also the effects of compatibilizers. Ordinary DSC measurements
made it possible to compare the wettability of MAPP with MCC by the degree of acid mod-
ification (wMA) of MAPP. A higher wMA of the added MAPP corresponds with improved
coating of the cellulosic filler. Correlations with the physical properties of the composite
are noted.
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Information obtained by nanoscopic evaluation will affect not only the mechanical
properties but also the design properties (appearances) of the final composite material. The
author therefore proposes the importance of standard criteria for interpretation of data on
the degree of interaction between the filler and matrix via the compatibilizer. Some of the
nanoscopic evaluation methods shown here are not unique to cellulosic fillers; those could
be applied to various composite material systems.

5.3. Filler Dispersibility Evaluation by Micron-Scale Imaging Analysis
5.3.1. Extraction of Fillers from Images and Utilization of Fluorescent Staining

For filler-filled plastic composites, the physical properties of the final bulk materials
are affected not only by the interfacial effects (molecular and nanometer scale) mentioned
so far, but also by the semi-macroscopic spatial structure; namely, filler dispersibility on the
micron scale [71,72]. Researchers often assume compatibilizers controlling the interfacial
behavior to be involved in the dispersibility of the filler. In this section, the author presents
examples of evaluating the dispersibility of the filler by image analysis.

Image analysis of filler-filled plastic composites requires three steps: image acquisition,
filler identification, and statistical processing. Although it is easy to take pictures with
a digital camera and obtain optical and SEM images, it is generally difficult to clearly
distinguish the contrast between the cellulosic filler and matrix resin.

Recently, researchers have automated filler identification for composites containing
carbon material as a filler [73,74]. X-ray computed tomography is also useful for visualizing
cellulosic fillers in a polyolefin matrix [6]. There have been studies on Raman [75,76] and
infrared [77] microscopy to visualize the distribution of fillers (including nanocrystals)
in cellulosic composites and the behavior of compatibilizers. These microspectroscopy
methods can be incorporated into composite material manufacturing lines, such as near-
infrared spectroscopy, which is actively under study for application to wood analysis [78].

If the filler particles can be fluorescently labeled, meanwhile, they will be very easy
to identify. Such efforts have been recently reported for composite material systems filled
with organically modified clay [79], silica [80], or calcium carbonate [81].

We recently found that the filler in cellulosic filler-filled composites can be easily
stained by immersing the composites in a solution of a fluorescent reagent calcofluor white
(CW, 4,4′-bis({4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl}amino) stilbene-
2,2′-disulfonic acid). Whereas CW was originally used as a fluorescent bleach for laundry,
it has also been widely used in plant and microbial research. As it forms hydrogen
bonds with β-1,3 and β-1,4 bonds of polysaccharides, it is possible to stain the structural
polysaccharides that make up the cell wall [82]. Most recently, it has also been used for
analysis of nanocellulose [75,76]. The filler in WPC can be stained with another fluorescent
reagent (1% aniline safranin) [83], but detailed image analysis using fluorescent labeling
was not been performed.

The author herein introduces an example of fluorescent labeling of the cut surface
of MCC/MAPP/PP injection-molded specimens and image analysis [42]. Using MAPPs
with various acid modification degrees (wMA listed Table 1), we investigated the effect
on the dispersibility of the MCC filler as well as how the image analysis data correlated
with the physical properties of the composites. We also confirmed the applicability of this
fluorescent method to composite materials using CNFs—specifically, citric acid-modified
cellulose nanofibers (CACNFs [84])—as fillers.

5.3.2. Acquisition of Fluorescence Images and Analysis

Figure 13a shows a digital camera image of a cross section of an MCC/MAPP20/PP
(weight ratio, 22.5/2.5/75) injection molded specimen cut out with a diamond wire saw.
Figure 13b shows a fluorescence microscope image (binary image) after staining with CW.
The filler/matrix contrast was unclear in the digital camera image (Figure 13a). However,
as can be seen in Figure 13b, the cellulose component in the composite material can be
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visualized simply by immersing the cross section in a commercially available 0.05 wt%
aqueous CW solution for 10 min at room temperature.
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Figure 13. Concept of image analysis by fluorescence staining of a cross section of an injection molding test piece of
MCC/MAPP/PP: (a) digital camera image, (b) fluorescence microscope image (binarized) obtained by staining with CW,
and (c) viewpoints of filler dispersibility evaluation. Reprinted with some modifications from Ref. [42]. Copyright Elsevier
Ltd. (2020).

To evaluate the degree of aggregation of the MCC filler in the composites, we mea-
sured the average cross-sectional area (A) of approximately 30,000 fluorescent particles
(Figure 13b). Figure 14 plots A for the acid-modification degree wMA of the added MAPP.
The A values decreased in accordance with decreasing wMA and became almost constant
at wMA ≥ 1.5 wt%. This is attributable to the effect of coating MCC with MAPP, reducing
interfacial tension, suppressing aggregation, and improving dispersibility. Thus, A is an
index showing how the cross-range aggregation of MCC in MCC/MAPP/PP is suppressed.
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Figure 14. Plot of characteristic values obtained by image analysis of the cut surface for the wMA

value of MAPP added to the MCC/MAPP/PP ternary composites (weight ratio, 22.5/2.5/75). For
convenience, the data for the MCC/PP composite without MAPP are shown at wMA = 0. Reprinted
with some modifications from Ref. [42]. Copyright Elsevier Ltd. (2020).
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To characterize the placement of the MCC filler in the PP matrix, we first focused
on the average distance (xave) between the centers of gravity of the adjacent fluorescent
particles (corresponding to MCC). The xave can be measured by image analysis as the
length of the green line segment shown in Figure 15. Figure 14 plots xave as well; xave also
decreased in accordance with increasing wMA and converged to ~30 µm. However, we
were interested in evaluating the spatial arrangement pattern of the filler not only from
such an average value but also from its distribution.
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Figure 15. Measurement of the distance between the center of gravity points, to evaluate the dispersibility of the filler.

One can approximately classify the spatial arrangement patterns of points and regions
into Poisson (random), cluster, and regular patterns (Figure 16). Assuming that these
patterns are governed by the interactions between the particles, the Poisson type appears
when there are no interactions between the particles. The cluster and regular types mean
that attractive and repulsive interactions occur between the particles, respectively. In the
MCC/MAPP/PP system, the regular pattern is not applied, and thus we evaluated the
Poisson and cluster properties of the obtained pattern.
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Figure 16. Three typical point placement patterns: (a) Poisson, (b) cluster, and (c) regular types. Reprinted from Ref. [71]
(© 1989 AIP Publishing).

To evaluate the patterns quantitatively, a normalized value was taken by dividing
the distance between the centers of gravity x by their maximum x0, and a histogram
(Figure 17) was created for each composite sample. The histogram was monomodal, and
the peak moved to a large x/x0 as the wMA value of the added MAPP increased. For each
histogram, the skewness s was calculated: s is an index showing the deviation from the
normal distribution. In the normal distribution, s = 0. For a distribution with a tail on the
right side, s is positive. Conversely, if the tail is on the left side, s is negative. When the
absolute value of s is larger than 1, the distribution is very distorted; when the absolute
value of s is between 0.5 and 1, the distribution is distorted to some extent.
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Figure 17. Histogram of the (distance between the centroids)/(maximum distance between the
centroids) (= x/x0) for the filler particles of the MCC/MAPP/PP composite (weight ratio, 22.5/2.5/75).
Reprinted from Ref. [42]. Copyright Elsevier Ltd. (2020).

Figure 14 plots the obtained s values. As the degree of aggregation of the MCC filler
increases, the proportion of the extremely large distance between the centers of gravity
increases. One can thus assume that the distribution becomes a right-tail shape and s
becomes positive and large. When wMA of the MAPP was 1.2 wt% or greater, s was less
than 1, indicating that the spatial arrangement of MCC fillers in these complexes was
highly random (dispersive).

The trend of the change of s with respect to wMA was similar to that of the average
area A of the fluorescent particles (Figure 14). However, because s and A were obtained
by different image analyses, it is meaningful to consider the dispersibility of the filler
particles using both values. For example, when one adds an appropriate compatibilizer
that can sufficiently prevent filler aggregation, one can estimate that the kneading force
was insufficient if the spatial arrangement was a cluster type.

5.3.3. Correlation between Image Analysis Data and Physical Properties

The correlation between the image analysis data and physical properties was investi-
gated [42]. As A and s increased—that is, as the filler aggregated—the tensile and bending
strengths tended to decrease. The strain at break and modulus did not clearly correlate
with the image analysis data. This is reasonable because in general, in filler-filled plastic
composite materials, the strain is considerably reduced by adding the filler and the elastic
modulus largely depends on the filler content [53].

Water absorption is also an important physical property for WPCs used as exterior
materials. When a water absorption test was conducted with warm water at 60 ◦C, the
water absorption rate decreased until the wMA value of the added MAPP reached 0.8 wt%,
and there was almost no change even if the wMA increased further. For A and s, which
changed systematically with respect to wMA, the smaller those values, the lower the water
absorption rate. The wMA values seemed to be directly related to the effect of coating
the surface of the MCC filler to suppress water absorption, as shown in the previous
section. One can interpret these results to mean that the large A and s reflected the
state in which the conduction of water was promoted by the contact between the MCC
fillers. In addition to the nanoscopic interfacial effects discussed in the previous sections,
micron-scale (relatively macroscopic) image analysis data also correlates with mechanical
properties and water absorption.
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5.3.4. Application of the Fluorescence Method to CNF Composites

Composite materials filled with CNFs have attracting recent attention [3–5]. Recently,
CACNF [84] has been proposed as a cost-competitive CNF. For the injection molded speci-
men of CACNF/MAPP/PP composite material (weight ratio, 10/5/85), the dispersibility
of the filler was evaluated using CW. One can visualize the filler as in the case of MCC
(Figure 18). The surface of CACNF was chemically modified, but the fluorescent staining
worked. As a next challenge, the author is interested in applying this fluorescence method
to various types of CNFs.
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5.3.5. Prospects for Image Analysis by Fluorescent Staining

Simple fluorescent staining of cellulosic fillers with CW has made it possible to easily
perform image analysis on the aggregation and spatial arrangement of fillers in composite
materials. The image analysis data correlate with physical properties such as strength and
water absorption. This method can also be applied to CNF. The fluorescent staining/image
analysis method can provide useful information for determining appropriate kneading
conditions, interpreting mechanical properties, and determining an appropriate level of
surface modification. The method can play an important role in quality control of cellulosic
filler-filled plastic composites such as WPCs. It will also be useful for collecting digital data
that is necessary for materials/process informatics.

6. Challenges and Perspectives

The concept of multi-scale analysis for compatibilizer-incorporated cellulosic compos-
ites is not limited to addressing the issues of practical WPC, but also provides opportunities
of further innovations for methodology as well as its expanding to other materials.

• Issues for WPC: In order to further promote the use of WPC for automotive com-
ponents, improved impact resistance is required. Currently, there are no realistic
measures to enhance the impact resistance of common WPC based on PP, but the frac-
ture phenomenon should be clarified. For this purpose, analysis of the morphology
by the fluorescent labeling of impact fracture surfaces would provide intuitive data.
The behavior can also be discussed with the data showing the degree of interfacial adhesion.

• Simulation of mechanical properties: It is desirable to consider how to theoretically
create materials with higher performance. In this way, we can break through the
limitations of empirical and experimental approaches. Therefore, it is expected that
the parameters of interfacial adhesion and filler dispersibility will be incorporated
into the structural analysis such as the finite element method (FEM). These parameters
are not limited to dummy variables but can be continuous explanatory ones.

• Providing explanatory variables for process informatics: The concept can also be used
for so-called process informatics [85], which is an effort in data science. Some of the
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explanatory variables can be shared with FEM. Objective variables include formability,
weatherability, and product life.

• Extension to other materials: The primary experimental point for the multiscale
analysis discussed in this review paper was the enrichment of binding sites between
the filler and MAPP by removing cellulose by enzymatic hydrolysis. On the other
hand, components can be selectively extracted from non-cellulosic composites as long
as a solvent is available. In addition, the swollen-state NMR has a wide range of
applications and the ordinary DSC can classify the performance of the acid-modified
resin compatibilizers. By applying organic or physicochemical techniques to the
multiscale analysis, useful information may thus be obtained for plastic composites
reinforced with glass or carbon fibers, and for material systems such as adhesion,
lamination, and surface modification.

Mutual entry of different research fields is important. However, for composite ma-
terials, there seem to be gaps in the methods the researchers are good at, for example, in
the fields of mechanical engineering and polymer chemistry, respectively. We can con-
sider that there is a compatibilizer as a common item that connects them. Multi-scale
analysis, which has been centered on evaluating compatibilizers, is expected to make
the wide-ranging researchers compatible and to lead the development of next-generation
composite materials.

7. Concluding Remarks

In this review, the author summarized pertinent issues on elucidating the role of
compatibilizers in cellulosic filler-filled composites and introduced recent developments
of multiscale analytical methodologies. At the molecular scale, FTIR and swollen-state
NMR proved that the cellulosic filler and MAPP were covalently bonded, in composites
obtained by thermal kneading. At the nanometer scale, the melting point drop behavior of
MAPP—which can be easily traced by DSC—can be applied as a measure of the wettability
of MAPP to fillers and it correlates with physical properties of the final bulk composite
materials. At the micron scale, the cellulosic filler in the composites was easily fluorescently
labeled, and the short-distance aggregation and spatial arrangement of the filler was
handled quantitatively.

Regarding the components of cellulosic filler-reinforced plastic composites, acid-
modified resin compatibilizers are by far the most expensive. To make the best use of the
compatibilizer, the method presented here can be used to judge whether it is actually effective.

The importance of cellulose-containing composites will continue for decades to meet
the social demand for low carbonization. Although accumulation of empirical know-how
for quality control in the WPC industry is remarkable, development of theoretical methods
for producing high-performance cellulose compositions are required. The findings pre-
sented in this review can be used to reduce computational effort in mechanical engineering
simulation methods such as FEM. Furthermore, materials informatics such as physical
properties of materials (in a narrow sense) as well as processing are attracting worldwide
attention [85]. The experimental facts on multiscale interfacial adhesion and dispersibility
may contribute appropriate explanatory variables. The author looks forward to future
cross-disciplinary collaborations.
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