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Abstract: The present analysis is conducted for the evaluation of contact pressures of axisymmetric
shells made of laminated composites or functionally graded materials. This class of problems
is usually called the Signorini–Fichera problem (unilateral constraints) and can be solved as the
lower-bound problem. The numerical solution of this problem is proposed both for symmetric
and unsymmetric shell configurations. The first-ply-failure of such structures is considered. It is
demonstrated that the failure occurs at the end of the contact area corresponding to the appearance
of stress concentration of radial concentrated forces.
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1. Introduction

The efficient modeling of 3D contact problems is still a challenge in non-linear implicit
structural analysis. The broader discussion and studies of possible contact problems
in mechanics is presented in [1]. In this area, a variety of problems can be formulated
and solved:

- 3D static and dynamic analysis [2,3].
- 2D static and dynamic problems [4].

However, it should be pointed out that the correct and accurate solution of the above
problems requires a different approach to the classical one due to the existence of unilateral
boundary conditions. The mathematical formulation of such problems is carried out with
the use of the variational inequalities—see Panagiotopoulos [5], Muc [6].

The importance and complexity of the numerical approach is underlined in different
papers [7–12], where various numerical methods have been studied characterisng the
application of dual methods, nonlinear programming methods, asymptotic methods and
the Ritz method.

The current investigations are carried out for different material properties of structures,
i.e., isotropic, orthotropic or laminates [13–18]. It should be mentioned that Lazarev
and Kovtunenko [19] considered the 2D Signorini problem for composites bodies with a
rigid inclusion.

The derivation of frictionless/friction reaction forces and contact areas is necessary
in various practical engineering problems such as, e.g., in isotropic or composite (fibre-
reinforced plastic, functionally graded materials) pressure vessels (tanks) having many
discontinuities (unilateral contact reactions) on the saddle supports of horizontal cylindrical
structures—Figure 1.

The fundamental key to understanding the behaviour of such problems lies in deriving
and examination for interface/contact forces that occur between the support and the vessel.
Wilson and Tooth [20] proved analytically and numerically that supports have a crucial
effect on the stress concentration in the vessel. Hoa [21] demonstrated the results of
experimental works in this area.
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Figure 1. Horizontal pressure vessels with two saddle supports. 

The fundamental key to understanding the behaviour of such problems lies in deriv-
ing and examination for interface/contact forces that occur between the support and the 
vessel. Wilson and Tooth [20] proved analytically and numerically that supports have a 
crucial effect on the stress concentration in the vessel. Hoa [21] demonstrated the results 
of experimental works in this area.  

To explain the problems arising in modeling the contact forces between composite 
pressure vessels and saddles, the present paper is devoted to the analysis of the interface 
reaction between axisymmetric composite cylindrical shells and a rigid housing. From the 
point of view of engineering applications, two fundamental subjects of interest may be 
distinguished—the contact of the shell: with a rigid or an elastic housing (waterway tun-
nels [22–26], hydraulic vessels [26]]) or with a rigid punch of an arbitrary shape [27,28]. 

The novelty and achievements of the herein presented problems and numerical re-
sults depend on the formulation of the governing relations and demonstration of results 
in the case of pressure vessels made of FGMs corresponding to an unsymmetric shell con-
figuration.  

2. Fundamental Relations Describing Deformations of the Axisymmetric Composite 
(Laminates and FGM) Cylindrical Shells 

Let us consider deformations of the axisymmetric cylindrical shell loaded by the in-
ternal uniform pressure p—Figure 2. For the first-order transverse shear deformation 
(FSDT), the general relations are presented by Pielekh, Sukhorolski [24] and Kzhys, Muc 
[25]. Pipes, tanks, boilers, and various other vessels subjected to internal pressure can be 
classified as axisymmetrically loaded cylindrical shells. For cylindrical shells of revolution 
under axisymmetrical loads, the strain displacement relations take the following form: 
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The symbol ε denotes the membrane strain and transverse shear strains, β is an angle 
of the rotation of the normal with respect to the shell mid-surface, κ means the change in 
curvature, and 1, 2 corresponds to thelongitudinal x and circumferential directions ϕ, re-
spectively. R is the radius of the cylinder. The constitutive equations are written in the 
following way: 
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Figure 1. Horizontal pressure vessels with two saddle supports.

To explain the problems arising in modeling the contact forces between composite
pressure vessels and saddles, the present paper is devoted to the analysis of the interface
reaction between axisymmetric composite cylindrical shells and a rigid housing. From
the point of view of engineering applications, two fundamental subjects of interest may
be distinguished—the contact of the shell: with a rigid or an elastic housing (waterway
tunnels [22–26], hydraulic vessels [26]) or with a rigid punch of an arbitrary shape [27,28].

The novelty and achievements of the herein presented problems and numerical results
depend on the formulation of the governing relations and demonstration of results in the case
of pressure vessels made of FGMs corresponding to an unsymmetric shell configuration.

2. Fundamental Relations Describing Deformations of the Axisymmetric Composite
(Laminates and FGM) Cylindrical Shells

Let us consider deformations of the axisymmetric cylindrical shell loaded by the inter-
nal uniform pressure p—Figure 2. For the first-order transverse shear deformation (FSDT),
the general relations are presented by Pielekh, Sukhorolski [24] and Kzhys, Muc [25]. Pipes,
tanks, boilers, and various other vessels subjected to internal pressure can be classified
as axisymmetrically loaded cylindrical shells. For cylindrical shells of revolution under
axisymmetrical loads, the strain displacement relations take the following form:

εx =
du
dx

, εφ =
w
R

, εxφ = 0, εxz = β− dw
dx

, εxφ = 0 (1)

κx =
dβ

dx
, κφ = 0, κxφ = 0, (2)
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Figure 2. Axisymmetric cylindrical shell in the rigid housing. 

For axisymmetric composite structures, the stress–strain relations can be expressed 
in the following way: 
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Using the above relations and the Tsai–Pagano formulation the explicit form of the 
stiffnesses Ars, A55, Brs, Drs (Eqautions (4) and (5)) can be derived in the classical way both 
for laminated multilayered structures (Vinson [29]) and porous materials (Kim, Żur, 
Reddy [30]). The analysis of specially orthotropic specially orthotropic, mid-plane sym-
metric laminated cylindrical shells subjected to axially symmetric loads all terms {B] = 0 
and all other terms ( )16 = (.)26 = 0—see [29]. For the analysed laminated structures C11 = 

E1/(1-νxθνθx), C12 = νxθC11, C22 = E2/(1-νxθνθx), C55 = G23, C66 = G12., where the symbols E1, E2, G23, 
G12, νxθ denote Young’s modulus along fibres, Young’s modulus in the direction perpen-
dicular to fibres, Kirchhoff’s moduli and the Poisson’s ratio, respectively. For functionally 
graded materials 
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where the symbols t and b refer to the material properties on top and bottom surfaces, n 
is power index. ν is the Poissons ratio. 

Writing the equilibrium equations [29]: 

Figure 2. Axisymmetric cylindrical shell in the rigid housing.

The symbol ε denotes the membrane strain and transverse shear strains, β is an angle
of the rotation of the normal with respect to the shell mid-surface, κ means the change
in curvature, and 1, 2 corresponds to thelongitudinal x and circumferential directions φ,
respectively. R is the radius of the cylinder. The constitutive equations are written in the
following way:

Nr = Arsεs + Brsκs, Mr = Brsεs + Drsκs, r, s = 1, 2 (3)
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where

Ars =

t/2∫
−t/2

Qrsdz, Brs =

t/2∫
−t/2

Qrszdz, Drs =

t/2∫
−t/2

Qrsz2dz, r, s = 1, 2 (4)

Similarly, the transverse shear force vector {Q̃} is related to transverse shear strains
through the constitutive relation as:

Q̃ = xzA55εxz A55 =
5
4

N

∑
k=1

(Q55)k

[
tk − tk−1 −

4
3t2

(
t3
k − t3

k

)]
(5)

For axisymmetric composite structures, the stress–strain relations can be expressed in
the following way: 

σx
σφ

σxz
σxφ

 =


C11 C12 0 0
C12 C22 0 0
0 0 C55 0
0 0 0 C66




εx
εφ

εxz
εxφ

 (6)

Using the above relations and the Tsai–Pagano formulation the explicit form of the
stiffnesses Ars, A55, Brs, Drs (Eqautions (4) and (5)) can be derived in the classical way
both for laminated multilayered structures (Vinson [29]) and porous materials (Kim, Żur,
Reddy [30]). The analysis of specially orthotropic specially orthotropic, mid-plane sym-
metric laminated cylindrical shells subjected to axially symmetric loads all terms {B] = 0
and all other terms ( )16 = (.)26 = 0—see [29]. For the analysed laminated structures
C11 = E1/(1 − νxθνθx), C12 = νxθC11, C22 = E2/(1 − νxθνθx), C55 = G23, C66 = G12, where the
symbols E1, E2, G23, G12, νxθ denote Young’s modulus along fibres, Young’s modulus in the
direction perpendicular to fibres, Kirchhoff’s moduli and the Poisson’s ratio, respectively.
For functionally graded materials

C11 =C22 =E(z)/(1− ν2), Q12 = Q21 = νQ11 (7)

The elastic modulus E variation characterises the distribution of porosity along the
thickness direction z and is defined in the following way:

E(z)/Eb = [(Et/Eb − 1) f (z) + 1] f (z) =
(

z
t
+

1
2

)n
(8)

where the symbols t and b refer to the material properties on top and bottom surfaces, n is
power index. ν is the Poissons ratio.

Writing the equilibrium equations [29]:

dNx

dx
= 0 (9)

dQx

dx
− Nx

R
+ p = 0 (10)

dMx

dx
−Qx = 0 (11)

Assuming that Nx = 0 at the shell edges (boundary conditions) and using the
relations (1)–(8) one obtains:

A55

(
dβ

dx
− d2w

dx2

)
+

R dβ
dx (A12B11 − A11B12) +

(
A2

12 − A11 A22
)
w

A11R2 + p = 0 (12)

− A55β +
d2β

dx2

(
A11D11 − B2

11
)

A11
+
−A12B11 + A11B12 + A11 A55R

A11R
dw
dx

= 0 (13)
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Eliminating transverse shear effects, i.e., inserting Qx = dMx
dx and β = dw

dx ,
Equation (12) is reduced to the classical Love–Kirchhoff formulation of axisymmetric
cylindrical shell deformations:

R d2w
dx2 (A12B11−A11B12)+(A2

12−A11 A22)w

A11R2 + B12
R

d2w
dx2 − B11

A11

A12
R

d2w
dx2

+

[
D11 −

B2
11

A11

]
d4w
dx4 − p = 0

(14)

Galimov [31] and Essenburg, Gulati [32] proved that a shell theory which relaxes the
Love–Kirchhoff hypothesis should be used in contact problems. Such an approach allows
for the introduction of shearing stress resultants as independent quantities which have
essential influence on distribution of contact pressure (see for instance [33]).

3. Signorini–Fichera Unilateral Constraint Problem

In our case, the total boundary of the axisymmetric shell is made up of two parts
~∂Ω and S (a contact area). On ∂Q the bilateral boundary conditions (classical, i.e., in an
equality form) are prescribed. This type of condition will be determined further during the
analysis of a particular numerical problem. The second type of boundary condition—the
unilateral one, is formulated on the contact domain S (unknown in advance) and it takes
the following form:

radial displacement w < 0 then SN = 0 for x/∈S (15)

radial displacement w ≥ 0 then SN + g(w) = 0 for x∈S (16)

SN is the normal (radial) reaction of the foundation and x is the longitudinal coordinate.
The graphs of functions g(w) considered in this work are plotted in Figure 3. The first
diagram (Figure 3a) represents the case of a rigid foundation whereas the second to an
elastic foundation of the Winkler type. More possible definitions of the contact normal
reactions of the housing g(w) are discussed by Kerr [34].
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The units in Figure 3 are determined by the formulation of Equations (15) and (16).
The function g(w) defines the body forces and has the appropriate units, i.e., Pa, kPa, MPa,
etc. The units of the displacement w are classical, i.e., mm, cm, m, etc. The units can
be found directly from the relations of the total potential energy functional discussed in
Panagiotopoulos [5], Muc [26].

The solution of the contact problem determined consists of finding the stationary
points of the total energy on the space of kinematically admissible displacements (i.e., sat-
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isfying the strain–displacements relations (1)–(8), the unilateral boundary conditions on
S (15) and (16) and some bilateral/boundary conditions). Strictly speaking, the proof of
the existence and uniqueness of solutions of the problem described by the functional base
on the notions of convexity (for linearly elastic bodies) or poly convexity (for non-linearly
elastic bodies). The detailed presentation of those problems is demonstrated in [5,6,26,35].

4. Deformations of Axisymmetric Composite Cylindrical Shells Subjected to
Simply-Supported Conditions

Let us note that in 2D approach the structural deformations are functions of the
geometry (the thickness to radii ratio, the length to radii ratio), composite configurations,
material properties and boundary conditions. Assuming the simply supported edges of
the axisymmetric shell, i.e.:

w = 0, Mx = 0 at the edges (17)

one can obtain the analytical solutions of Equations (12)–(14)—see [29]. The mentioned
relations are derived under the additional boundary condition Nx = 0 at the edges.

Considering the deformations, two special cases can be analysed:

- Specially orthotropic mid-plane laminated symmetric structures [29]—symmetric shell
geometry, laminate configuration and external loads.

- Functionally graded materials—symmetric shell geometry and external loads but
unsymmetric configuration of layered porous materials [36].

The detailed discussion of the influence of symmetric and unsymmetric configuratioms
of composites on structural deformations and optimal design is presented by Muc, Flis [37].

In the first case for simply supported shells and using the Love–Kirchhoff hypothe-
sis [29] the radial displacement w(x) have the following form:

w(x) =
p(1− νxθ)

4ε4D11
[1− exp(−εx) cos(εx)], ε4 =

3(1− νxθνθx)

R2t2
D22

D11
(18)

Figure 4 demonstrates the distribution of the displacement function in Equation (16).
The simple parametric studies show the influence of geometric and material properties but
they present that the function is convex and increasing with the growth of the x/L ratio.
The similar behaviour exists for different laminate configuration and for shells made of
FG materials. The explicit derivation of linear differential Equations (10)–(12) can be done
easily with the use of Mathematica package—the procedure DSolve.

J. Compos. Sci. 2022, 6, x FOR PEER REVIEW 6 of 10 
 

 

Figure 4 demonstrates the distribution of the displacement function in Equation (16). 
The simple parametric studies show the influence of geometric and material properties 
but they present that the function is convex and increasing with the growth of the x/L 
ratio. The similar behaviour exists for different laminate configuration and for shells made 
of FG materials. The explicit derivation of linear differential Equations (10)–(12) can be 
done easily with the use of Mathematica package—the procedure DSolve. 

 

Figure 4. Form of the displacement function ( ) ( )xx εε cosexp1 −− —isotropic shell t/R = 0.1. 

5. Modeling of Contact Reactions and Failure Analysis 
As it is proved in [5,6,26,33], the unknown in advance normal reactions (16) can be 

represented in the following way: 

)()exp()exp()( 54321 slxaxaaxaawg −++= δ  (19)

where a1, …, a5 are unknown coefficients and are unknown real constants determined nu-
merically with the aid of the Newton–Raphson procedure. ls means the point of the sepa-
ration of the shell from the rigid housing and δ(..) is the Dirac delta distribution. The ne-
cessity of the use of the Dirac functions (circular concentrated forces) is introduced in 
[26,33]. The problem of the application and description of Dirac’s delta distributions is 
presented by Muc, Zieliński [38]. 

The verification of the correctness of the approximations of contact reactions and of 
contact area was made with the use of three methods: 
1. Comparison of the numerical and experimental predictions presented in the litera-

ture [20,21,25,26,33]; 
2. Evaluation of unilateral contact problems for isotropic structures having the analysed 

loading and boundary conditions; 
3. Iterative analysis of the influence of the increasing stiffness parameter k in Equation 

(3) (Figure 3b) in order to observe the possible extension of the contact area and the 
change of contact reactions. 
Now, the classical approach to the contact frictionless or friction problems is based 

on the finite element analysis. However, for unilateral contact problems, the approxima-
tions of contact forces and areas are very sensitive to mesh definitions and, in our opinion, 
it is better to apply other than FE methods. 

Numerical examples are carried out for angle-ply symmetric glass (GFRP) and car-
bon (CFRP) laminated shells. The material constants of laminates are given in [39] and 
shown in Table 1. Figure 5 represents the variations of the contact pressures with fibre 
orientations. For the analysed case, the number of contact area is reduced to one. 

0 0.4 0.8 1.2 1.6 2
x/L

0

0.4

0.8

1.2

D
is

pl
ac

em
en

t f
un

ct
io

n 
[d

im
en

si
on

le
ss

]

Figure 4. Form of the displacement function 1− exp(−εx) cos(εx)—isotropic shell t/R = 0.1.



J. Compos. Sci. 2022, 6, 143 6 of 10

5. Modeling of Contact Reactions and Failure Analysis

As it is proved in [5,6,26,33], the unknown in advance normal reactions (16) can be
represented in the following way:

g(w) = a1 exp(a2x) + a3 exp(a4x) + a5δ(x− ls) (19)

where a1, . . . , a5 are unknown coefficients and are unknown real constants determined
numerically with the aid of the Newton–Raphson procedure. ls means the point of the
separation of the shell from the rigid housing and δ(..) is the Dirac delta distribution.
The necessity of the use of the Dirac functions (circular concentrated forces) is introduced
in [26,33]. The problem of the application and description of Dirac’s delta distributions is
presented by Muc, Zieliński [38].

The verification of the correctness of the approximations of contact reactions and of
contact area was made with the use of three methods:

1. Comparison of the numerical and experimental predictions presented in the litera-
ture [20,21,25,26,33];

2. Evaluation of unilateral contact problems for isotropic structures having the analysed
loading and boundary conditions;

3. Iterative analysis of the influence of the increasing stiffness parameter κ in Equation (3)
(Figure 3b) in order to observe the possible extension of the contact area and the change
of contact reactions.

Now, the classical approach to the contact frictionless or friction problems is based on
the finite element analysis. However, for unilateral contact problems, the approximations
of contact forces and areas are very sensitive to mesh definitions and, in our opinion, it is
better to apply other than FE methods.

Numerical examples are carried out for angle-ply symmetric glass (GFRP) and carbon
(CFRP) laminated shells. The material constants of laminates are given in [39] and shown
in Table 1. Figure 5 represents the variations of the contact pressures with fibre orientations.
For the analysed case, the number of contact area is reduced to one. Comparing these
results with the normal radial displacements (Equation (16) and Figure 4), it is seen that the
higher stiffness D11 results in the increase of the contact pressures.

Table 1. Mechanical properties of laminates.

E1 E2 G12 ν12
Xt Xc Yt Yc S

In MPa In MPa

GFRP 203,000 72,000 8400 0.32 3500 1540 56 150 60

CFRP 38,600 8270 4140 0.25 1062 610 31 118 72

Computing the stress distributions along the thickness direction z:

σx(θ) =
Nx(θ)

t
±

6Mx(θ)

t2 (20)

one can find immediately that the maximal stress concentration occurs at the bottom layer
of the laminate due the distributions plotted in Figure 5. For the first-ply-failure analysis
the Hoffmann criterion is a dominant failure modes for structures made of CFRP, and the
Tsai-Wu criterion for structures made of GFRP (see e.g., [40]) due to the stress concentration
at the end of contact region—Figure 5.
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Damage of structures made of FG materials is studied numerically—see, e.g., [41]. The
material gradation results in the difficulty in analyzing failure modes and criteria. The com-
position of the constituents varies with physical dimension. Figure 6 represents the change

of the multiplier M =
[

D11 −
B2

11
A11

]
—Equation (12) for different location of constituents and

the power index n. It is assumed that the analyzed FG material is composed of the metal Ti
(E = 100 [GPa]) and the ceramic TiB (E = 300 [GPa]). The composite material is unsymmetric
since Brs terms Equation (4) are not equal to zero.
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FGMs are plotted in Figure 7. The form of the reactions depends on the stiffness parame-
ters characterised by the multiplier M. The increase of the M value results in the shift of
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the maximal contact concentrated forces to the middle of the shell. The results demon-
strate the possibility of the reduction of the stress concentration due to variation of the
FGMs constituents.
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6. Conclusions

1. The conducted analysis of axisymmetric contact problem is the extension of my
previous analysis in this area. The presented results lead to the following conclusions:

2. The considered shell wall configuration has a significant influence on the form of
normal contact reactions as well as on the contact length.

3. For laminated symmetric configuration fibre orientations and mechanical material
properties change the form/description of unilateral contact problems.

4. For shells made of functionally graded material, the unsymmetric shell wall configura-
tion variations of the introduced multiplier can represent changes of contact reactions
and contact area.

For the proposed semi-analytical methods of computations implemented in the anal-
ysis of frictionless unilateral contact problems, the accuracy is higher than for the finite
element method, since the results are not dependent on the introduced mesh division.
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