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Abstract: The depletion of natural resources due to the aggressive industrialization in the last decades
has brought considerable attention to research aimed at developing green and sustainable products
using eco-friendly materials. The purpose of the current study was to develop wood polymer
composites (WPCs) using recycled plastic waste (RPW) generated from university laboratories and
recycled wood waste (RWW) from construction and demolition (C&D) activities by melt-blending
technique. The WPCs were characterised for their mechanical and thermal properties, as well as
water uptake and morphology. The SEM micrograph indicated good interaction between RWW and
RPW matrix. The mechanical strength of the WPCs was found to increase from 26.59 to 34.30 MPa,
with an increase of the RWW content in the matrix. The thermal stability was higher in the composite
with a higher percentage of RWW in the matrix. The wettability results indicated that the composite
with a higher RWW (20%) had a higher water uptake. These results suggest that the produced WPCs
can be a promising environmental-friendly material, while maintaining good mechanical, thermal,
and wettability properties.

Keywords: recycled plastic waste; recycled wood waste; wood polymer composites; mechanical
properties; thermal properties; wettability properties

1. Introduction

In recent years, given the limits of natural resources, the materials and manufacturing
sectors have gradually shifted their focus to the development of biodegradable and sus-
tainable materials or products [1]. Wood is a renewable and low-carbon material [2,3]. It
has been widely used in different interior and exterior applications [4,5], such as decking
materials [6], fencing [7], landscaping timbers [8], furniture, and automobile products [9].
However, the main drawbacks of wood are their liability to distort with the absorption of
moisture and their vulnerability to degradation by microorganisms [10,11].

The formation of wood polymer composites (WPCs) has been considered a good way
to minimize these troublesome inherent properties of wood. WPCs consist of reinforcing
wood fibers incorporated into a continuous polymer matrix. The combination of wood and
polymers has been extensively studied due to their reduced environmental impact and low
cost owing to the wood fibers coming from industrial or agricultural waste. WPCs possess
superior efficiency such as high specific strength, stiffness, high sustainability, lower water
intake, high dimensional stability over their lifetime, and durability against environmental
impacts [12–14]. The WPCs cater a wide range of products, including as decking, fencing
and railing in building industries, and for manufacturing of interior and exterior parts in
automotive industries. There are a few major manufacturers of WPCs in Australia, such as
ModWood Technologies, Advanced Plastic Recycling (APR), and Tuff Deck—Composite
Decking Melbourne.
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Previously, other researchers had developed the WPCs by using virgin polymers,
such as polypropylene (PP), high-density polyethylene (HDPE), low-density polyethylene
(LDPE), polyethylene terephthalate (PET) etc. With the increased amount of plastic waste
generated and resulting in a significant proportion in municipal solid waste (MSW), at-
tempts have been made to recycle the post-consumer plastics in the production of WPCs in
order to offsets their ecological impacts [15–17].

There are a number of published studies on the WPCs made of recycled polymers.
Gulitah et al. [18] developed WPCs from different recycled polymers, such as polypropylene
(PP), high-density polyethylene (HDPE), and low-density polyethylene (LDPE), mixed at
different ratios with wood fibres (WF). The mechanical properties of PP:WF at 50:50 had the
highest value in tensile strength (7.87 MPa), modulus of elasticity (MOE, 520.81 MPa), and
modulus of rupture (MOR, 5.55 MPa) compared to HDPE-WF and LDPE-WF composites
at the same composition. Novak et al. [19] studied the mechanical and water absorption
properties of WPCs fabricated with recycled low-density polyethylene (rLDPE) and date
palm wood (DPW) powder with concentrations ranging from 10 wt·% to 70 wt·%. The
results showed that Young’s modulus, flexural strength, and water absorption increased
with the increase of the filler. Wicaksono et al. [20] studied the mechanical and physical
aspects of PP and LDPE polymer waste for the production of WPCs. Teak wood powder
was used as the filler material. The results showed that LDPE based composites resulted in
better mechanical and physical properties than PP based composites. The best composition
of WPC was 70% LDPE and 30% teak wood powder. Medupin et al. [21] investigated the
mechanical properties of WPCs produced from the used wood and rLDPE. The composites
were manufactured using compression moulding techniques. The results indicated that the
water absorption rate was high in the first few hours, and the highest water absorption was
observed at 60% reinforcement.

Eco-friendly and sustainable composites have been produced to save the ecosystem [9,22,23].
However, most of the research on WPCs focused on the use of either recycled plastic or
recycled wood [24,25]. Research on the development of fully recycled WPCs made of both
recycled plastic and recycled wood is still inadequate, which has inspired researchers to
further explore in this area. Therefore, in this study, recyclable polymer waste collected
from biological laboratories and wood waste collected from the construction and demoli-
tion (C&D) activities were used as the matrix and reinforcement to produce WPCs. The
morphology was evaluated to understand the interaction between filler and matrix. In
addition, mechanical, thermal, and wettability properties of the developed WPCs were
then analysed in detail.

2. Materials and Methods
2.1. Materials

Recycled plastic waste (RPW)—centrifuge tubes, plastic tubes, and small medical
containers—was collected from the Applied Sciences Laboratories (AS3.13 and AS3.14) at
La Trobe University, Bendigo, Australia. They mainly consisted of mixed thermoplastic
polymers, such as HDPE and LDPE. Recycled wood waste (RWW) was supplied by Hopley
Recycling Pty Ltd., Bendigo, Australia. Sodium stearate and sodium hydroxide (NaOH)
solutions were purchased from Bunnings, Bendigo, Australia. Hydrochloric acid (HCl) was
purchased from Sigma-Aldrich Pty Ltd., Melbourne, Australia.

2.2. Cleaning and Segregating Waste Materials
2.2.1. Cleaning of Recycled Polymer Waste

The polymer waste was initially crushed into small pieces of approximately 8 mm
using a polymer crusher (Dongguan Zhongli Instrument Technology Co., Ltd., Dongguan,
Guangdong, China). After crushing, the plastic pieces were washed with NaOH solution
(5%) for 90 min to remove excess dirt and other debris. Later, the polymer waste was
washed twice using sodium stearate, followed by water. Finally, the obtained polymer
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waste was dried in a vacuum oven at 45 ◦C for 48 h to remove excess moisture [26].
Hereafter, polymer waste is referred to as RPW.

2.2.2. Cleaning of Recycled Wood Waste

The wood waste was collected from C&D activities in various sizes, and it was sieved
and cleaned using the methodology reported by Medupin et al. [21]. The sieving was con-
ducted according to the ASTM E11 sieve method to obtain 0.05 mm particles. Afterwards,
the RWW was washed with 20% NaOH solution followed by 10 M HCl solution to remove
excess alkaline, dirt, and residues from the surface of RWW. Later, the RWW was washed
with deionised water three times and dried in an oven for 24 h at 60 ◦C [21]. Hereafter, the
wood waste is referred to as RWW.

2.2.3. Preparation of Wood Polymer Composites (WPCs)

The dried RPW and RWW were mixed into the various compositions, as shown in
Table 1 [27,28]. The illustration of RWW reinforced RPW composites was shown in Figure 1.
An internal batch mixer (model ZL-3011, Dongguan Zhongli Instrument Technology Co.,
Ltd., Guangdong, China) was used to compound the composites. The hopper temperature
was set at 155 ◦C, and the spindle speed was maintained at 8 rpm. The melt-mixing process
was performed for 25 min, with the spindle rotation direction changed every 15 min.
Later, the obtained RPW–RWW composites with varied compositions were crushed into
small pieces using a polymer crusher and processed in a microinjection moulder (Xplore
instruments BV., Sittards, The Netherlands) [20] to obtain dumbbell-shaped specimens
(ASTM D638 Type V) for further characterisation. The parameters used for injection
moulding are presented in Table 2. The illustration of injection moulding is presented
in Figure 2. The WPCs produced were referred to as RPW, RPW–RWW1, RPW–RWW2,
RPW–RWW3, and RPW–RRW4. The RWW was considered as neat wood waste particles
without any further treatment.

Table 1. Compositions of WPCs.

Sample RPW (wt·%) RWW (wt·%)

RPW 100 0
RPW-RWW1 90 10
RPW-RWW2 80 20
RPW-RWW3 70 30
RPW-RWW4 60 40

RWW 0 100
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Table 2. Parameters used for injection moulding.

Parameter Value

Mould temperature 45 ◦C
Melt temperature 155 ◦C

Pressure 8 Bar
Time step 1 2 min
Time step 2 3 min
Time step 3 3 min
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2.3. Morphological Analysis

The morphology of the RPW–RWW composites was observed using a scanning elec-
tron microscope (SEM, Hitachi 3030, Tokyo, Japan). The micrographs were taken at variable
pressures under voltage ranging from 10 kV to 15 kV.

2.4. Thermal Properties

The thermal properties of the samples were analysed using a thermogravimetric
analyser (TGA 4000, Perkin Elmer, Waltham, MI, USA). The thermographs were ob-
tained at thermal scan temperatures ranging from 30 ◦C to 800 ◦C at 30 ◦C/min under
nitrogen atmosphere.

2.5. Mechanical Properties

The mechanical properties of the produced WPCs were investigated using an Instron
5980 universal testing machine (Norwood, MI, USA). Tensile tests were performed using
specimens in dumbbell shapes (ASTM D638 Type IV) with a dimension of 10 × 15 mm2.
The tests were conducted under a 10 mm/min crosshead speed with a load of 10 kN. The
stress-strain analysis was recorded from the tensile testing.

Each sample was performed in triplicate and the mean values as well as standard
deviation (SD) were reported.

2.6. Hardness

The hardness of the composites was tested using a Vickers microhardness tester
(Durascan 32 series G5, Kuchl, Austria). The size of the sample was according to ASTM
standards (ASTM E 384) at 20 × 20 × 3 mm3. An HV 0.2 intender was used as the force on
the sample for 10 s. After the indentation, the sample was analysed using a 10× camera,
and the HV value was presented graphically. The test method was carried out according to
the literature [29,30]. Each sample was performed in triplicate and the mean values as well
as standard deviation (SD) were reported.

2.7. Water Absorption

The water absorption tests were conducted according to the ASTM D570 method.
The specimens were initially weighed and immersed in water at ambient conditions. The
samples were weighed at regular intervals (2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 days). The
percentage of absorbed water (W) in the composite was calculated according to Equation (1):
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W = [(W2 − W1)/W1]× 100 (1)

where W1 and W2 are the sample weights before and after immersion.

2.8. Water Contact Angle

The wettability of the WPCs was measured by the contact angle measurement using
the sessile drop technique. A droplet was placed on the surface of each RPW–RWW
composite using a micrometre syringe. The contact angle was measured by scanning
the droplet profile for 20 s using an Attension Theta Flex instrument (Biolin Scientific,
Gothenburg, Sweden). The size of the water droplets was maintained at about 2–2.5 µL to
avoid the effect of weight [31].

2.9. Statistical analysis

Statistical analyses were performed using the ANOVA method in GraphPad Prism
9.0 (GraphPad Software, Inc., San Diego, CA, USA). The investigation was carried out
for three replicates (n = 3) for each data set in mechanical properties and presented as
mean ± standard deviation (SD) unless otherwise stated. A significance level of the p-value
of ≤0.05 was determined to be significant (*). Error bars in all figures represent the standard
error of the mean. The analysis was performed based on the following literature [32,33].

3. Results and Discussion
3.1. Morphology

Micrographs of RWW, RPW, and RPW–RWW composites are shown in Figure 3.
Figure 3a shows the cross-sectional view of the pure polymer, which was smooth and
layered with even dispersion. Figure 3b shows the micrograph of 0.05 mm sieved RWW
particles, which were randomly spaced with irregular sizes. In addition, the RWW can
be seen in the RPW–RWW composite, indicating well dispersion in RPW. The fractured
cross-sectional surfaces of the lowest and highest magnification of RPW–RWW4 composites
are shown in Figure 3c,d. Figure 3c shows that part of the RWW (highlighted in a red circle)
is filled with RPW, which is expected to help in increasing the strength of the composites
due to the mechanical interlocking [34]. The Figure 3e–h micrographs indicate that there
was no clear gap between the RWW and RPW matrix, showing a good interfacial bonding
and indicating the stress transfer from the weaker matrix to the strong wood fibre, as
reported by Adhikary et al. [34]. The strength and interfacial interactions determined
the composite failure mode and micromechanical deformation [35]. It was evident from
the micrograph that there was even dispersion of RPW with RWW, as the RWW was
highlighted in Figure 3c,d. Furthermore, the good interfacial bonding between filler and
matrix tended to display good physical and mechanical properties [10].

3.2. Thermal Properties

The thermographs of RPW, RWW, and RPW–RWW with different weight fractions
are shown in Figure 4. The weight loss of RPW occurred in a single-step degradation
process over the temperature range of 300 ◦C to 500 ◦C. The RWW decomposed between
200 ◦C and 600 ◦C, with the highest degradation rate at 350 ◦C [36]. According to literature
reports [37–39], the degradation of wood at 220 ◦C to 325 ◦C was due to the decomposition
of the hemicellulose. The weight reduction in the range of 300 ◦C to 400 ◦C was due
to cellulose degradation, and lignin decomposition occurred in the wide temperature
range from 200 ◦C to 600 ◦C. It was clearly observed that there were two stages of weight
loss occurred for the RPW and its composites. The first stage of weight loss occurred,
corresponding to the charring of the hemicellulose, cellulose, and lignin contents of the
wood particles [40]. The second stage of weight reduction happened due to the breakdown
of polymers [41]. From the thermographs, it can be seen that RPW showed the highest
thermal stability, while the thermal stability for composites decreased with the addition
of wood particles due to the low thermal stability of wood [42,43]. The degradation rate
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that occurred for the composites is shown in Table 3. The obtained char residues at the
end show that higher char resulted in RWW than in RPW. The char residue also acted as
a thermal barrier for the composites, which helped in improving the thermal stability, as
reported in the literature [44,45]. Hence, the composites with higher RWW content tended
to show lower mass loss in comparison with pure polymer [36,46,47]. Similar observations
were made with other types of WPCs [36,44,45,47,48].
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Table 3. Thermal properties of RPW-RWW composites by TGA.

Composites Onset
Temperature (◦C)

End Set
Temperature (◦C)

Maximum
Decomposition

Temperature (◦C)
Char Residue at

the End of 800 (%)

RPW 305 495 475 0
RPW-RWW1 300 505 480 1.0
RPW-RWW2 298 510 485 1.2
RPW-RWW3 295 515 490 1.5
RPW-RWW4 290 520 493 1.6

RWW 250 450 430 2.5

3.3. Mechanical Properties

The stress–strain behaviour of the RPW–RWW composites under tensile loading is
shown in Figures 5 and 6 shows the ultimate tensile strength of the moulded composites.
The tensile strength was expanded with an increase in RWW content in the composites.
This was due to the excellent dispersion of wood particles within the polymer matrix and
the efficient stress transfer from the RWW to the RPW [49]. The tensile strength of pure
RPW was observed at 26.5 MPa. The tensile strength of the RPW–RWW1, RPW–RWW2,
RPW–RWW3, and RPW–RWW4 was 27.81 MPa, 30.45 MPa, 32.48 MPa, and 34.30 MPa,
respectively. Furthermore, Young’s modulus was calculated based on the linear slope of
the stress–strain curve, as shown in Table 4. RPW showed the lower Young’s modulus
(2.82 MPa), while RPW–RWW4 showed the highest Young’s modulus (3.43 MPa). Najafi
et al. [50] reported similar results with WPCs made of recycled plastics, where the stress
concentration increased with an increase in the wood content.
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Figure 6. Ultimate tensile strength of RPW-RWW composites (n = 3, * p ≤ 0.05, ** p ≤ 0.01,
*** p ≤ 0.001).

Table 4. Mechanical properties of the RPW-RWW composites.

Sample Name Young’s Modulus (MPa) Ultimate Tensile Strength (MPa)

RPW 2.82 26.59
RPW-RWW1 2.87 27.81
RPW-RWW2 3.06 30.45
RPW-RWW3 3.32 32.48
RPW-RWW4 3.43 34.30

3.4. Hardness

Figure 7 shows the optical micrographs of Vickers microhardness indentation on
composites and their hardness values. The RPW had a hardness of 9.21 HV. Whereas the
composites had a hardness of 12.08 HV (RPW-RWW1), 14.73 HV (RPW-RWW2), 16.64 HV
(RPW-RWW3), and 19.72 HV (RPW-RWW4), respectively. In general, the Vickers hardness
values of the RPW–RWW composites increased with the increasing RWW content. There
was a significant influence of RWW content on hardness values. The obtained results
were similar to reports that demonstrated the hardness behaviour of typical thermoplastic
composites containing lignocellulosic fillers [51,52] where the hardness value of WPCs
generally increased with an increase in filler.
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3.5. Water Absorption

The water absorption curves of RPW–RWW composites are shown in Figure 8a.
Figure 8b shows the images of WPCs immersed in water. It can be observed that the
water absorption rate increased rapidly in the first few days and it slowed down after
8 days [52–54]. The water absorption process continued with the prolonged immersion
until the specimen reached saturation after 20 days. The percentages of water absorption
of RPW, RPW–RWW1, RPW–RWW2, RPW–RWW3, and RPW–RWW4 were 1.2%, 4.4%,
8.5%, 15.1%, and 19.9%, respectively, when the specimen was in an equilibrium state of
water absorption (allowing the water absorption to change in time range and period of
immersion). RPW showed the lowest water absorption percentage, as it is hydrophobic and
thus absorbed less water [55]. The incorporation of RWW into RPW displayed that RPW
played a significant role in the water absorption due to wood is lignocellulose material and
can absorb more water due to the polar group hydroxyl. Furthermore, the obtained results
was associated with the findings from the literature [10,56,57].
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Figure 8. (a) Water absorption curves of RPW-RWW composites; (b) immersed RPW-RWW composites.

3.6. Water Contact Angle

Water contact angles of the RPW–RWW composites were measured to investigate the
wetting properties of the composites. The water contact angle measurement was carried
out according to Sdrobiş et al. [58] and Wang et al. [59]. Figure 9 shows the sessile drop
photographs and the contact angle’s mean value. According to the literature, a contact angle
below 90◦ indicates a good wetting surface for any liquid [33,60–62]. RPW had a higher
water contact angle of about 80.94◦, followed by the composites with RWW. In general,
with the addition of RWW, the water contact angle decreased due to the hydrophilic nature
of wood, as shown in Figure 6. As a result, the average contact angle of the composites
with RWW decreased from 79.35◦ to 39.22◦. Lazrak et al. [43] reported the drastic decrease
in the contact angle was associated with the composites surface roughness.
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Figure 9. Contact angle and sessile drop images of (a) RPW; (b) RPW-RWW1; (c) RPW-RWW2;
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4. Conclusions

In this study, the WPCs were successfully fabricated via a melt-mixing process. The
RPW–RWW composites were characterised for morphology, mechanical and thermal prop-
erties, water absorption, and water contact angle. The SEM micrographs showed homoge-
nous dispersion of RWW in the RPW matrix. The results from mechanical testing revealed
that RPW–RWW4 exhibited the highest tensile strength of 34.30 MPa, while RPW showed
the lowest (26.59 MPa). RPW–RWW4 showed the highest hardness value of about 19.72 HV
and RPW had the lowest hardness value of 7.21 HV. The thermal properties increased,
and the degradation rate decreased with the increase of wood waste content, and a very
minimal amount of residual char remained. The water absorption (%) increased with
increasing wood waste content, as wood is hydrophilic and can absorb more water. The
RPW–RWW4 absorbed water up to 20%, while RPW absorbed little water (about 2% dur-
ing the immersion time). A further study on the recycled WPCs is necessary to analyse
the immiscibility, crystallinity, and rheological properties, which would help to evaluate
interfacial adhesion between plastic waste and wood waste for different products such as
fencing, railing, and decking.
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