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Abstract: As sensor materials for structural health monitoring (SHM, a nondestructive test for the
continuous evaluation of the conditions of individual structural components and entire assemblies),
magnetostrictive materials, piezoelectric materials, and optical fibers have attracted significant
interest. In this study, the mode I interlaminar fracture load and crack self-detection potential of
glass fiber-reinforced polymer (GFRP)–embedded magnetostrictive Fe–Co fibers were investigated
via double cantilever beam testing. The results indicated that by controlling the amount of Fe–Co
fibers introduced into GFRP, the number of Fe–Co fibers could be reduced without compromising
the performance of GFRP. Furthermore, the magnetic flux density increased significantly with crack
propagation, indicating that the magnetic flux density change could determine crack propagation.
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1. Introduction

Composite materials comprising resin and continuous fibers, known as fiber-reinforced
polymer (FRP) materials, exhibit numerous advantages over conventional materials [1].
Among them, glass FRP (GFRP) is the most widely utilized, partly because of its relative
inexpensiveness. In addition to their strength and light weight, GFRP materials exhibit
high shape-freedom degrees, excellent radio wave permeability, thermal and electrical
insulation, and corrosion resistance [2–4]. Therefore, GFRPs have been employed in a
wide range of fields, including aerospace systems, car and ship manufacturing, building
construction, and sporting goods manufacturing [5–7]. It was recently anticipated that the
International Thermonuclear Experimental Reactor and other fusion reactors would use
GFRP as an insulating superconducting device [8–10]. Additionally, as a laminated material,
GFRP is susceptible to internal damage and fractures, such as interlaminar fractures [11,12].
Samborski [13] and Rzeczkowski et al. [14–16] experimentally and analytically studied
the interlaminar fractures in FRP under three classical loading types (Modes I, II, and III),
as well as the combinations of these loading types (the mixed-mode type). Rzeczkowski
et al. [16] conducted all of their tests in conjunction with the acoustic emission (AE) signal to
precisely detect delamination onset. Mixed-mode is the predominant type of interlaminar
fracture in ordinary composite materials. However, it represents a complex fracture that is
influenced by multiple parameters. Therefore, it is critical to understand the most basic
fracture phenomenon, i.e., Mode I. Compared with the other Modes (II, III, or various
mixed modes) that can be employed in the structural design of FRP, Mode I fracture data
empirically yield conservative values. In addition to understanding the mechanism of
interlaminar fracture, technology is required to clarify the damage state and predict the
service life of a material.
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Structural health monitoring (SHM) is a type of nondestructive testing (NDT) that
provides continuous diagnoses of the conditions of various structure components, as well
as entire assemblies [17,18]. Numerous researchers have studied SHM techniques, such
as AE [19], the damping ratio [20], and Lamb waves [21]. However, a technology that can
apply to all conditions, settings, and applications has not been determined owing to the
different advantages, limitations, and ranges of applications, as well as different levels of
suitability for each technology [22]. Currently, sensor–embedded composite materials are
among the SHM technologies used for imparting composite materials with self-sensing
functions. Siwowski et al. [23] evaluated strain-profile characteristics and values using
load-bearing tests and finite element analysis (FEA) by embedding glass optical fibers in
FRP and employing a Rayleigh dispersion-based dispersive optical fiber sensor technique.
Kousiatza et al. [24] applied fiber Bragg gratings to the real-time process monitoring of
continuous fiber-reinforced thermoplastic composites. Additionally, the electrical resistance
of carbon FRP (CFRP) composites and the damage therein were measured [25]. Wang
et al. [26] performed tensile tests on carbon nanofiber/flax FRP laminates and measured
their electrical resistance and AE signals to evaluate their strain and damage self-detection
properties. To evaluate the crack-sensing ability of CFRP-containing carbon nanotubes and
the fractures therein, Takeda and Narita [27] examined their crack propagation-induced
electrical resistance change in the polymer interlayer at low temperatures. Piezoelectric
material–embedded FRP composites have attracted attention as a real-time SHM technology
that does not impact mechanical properties [28].

Regarding self-detection technologies for GFRP, Rodríguez-González and Rubio-
González [29] investigated the effects of the weight concentration of graphene nanoplatelets
(GNPs) on the mechanical, electrical, thermomechanical, and piezoresistive behaviors of
unidirectional GFRP laminates. They observed the strain self-sensing capabilities and
internal damage detection during bending tests for beam-type specimens with higher GNP
contents. Hassan and Tallman [30] manufactured self-sensing carbon nanofiber–modified
GFRP laminates and presented a technique for accurately determining the size and shape
of the damage in the self-sensing composites using electrical impedance tomography. They
demonstrated that the multiple through-holes and delamination caused by low-velocity
impacts can be accurately reconstructed.

Magnetostrictive materials have also attracted attention as SHM technologies [31].
These materials exhibit the Villari effect, in which the surrounding magnetic field changes
in response to deformation due to a load; noncontact SHM can be achieved by measuring
the magnetic flux density change using a coil or Hall probe [32]. Regarding their advan-
tages, magnetostrictive materials can be used in environments where conductors cannot
be directly connected to the structure. Terfenol-D (Tb1−xDyxFe2) is a well-known giant
magnetostrictive material. Haile et al. [33] conducted fatigue tests on composite materials
with Terfenol-D particles embedded between their graphite–epoxy prepreg layers and
evaluated their damage-sensing capability by measuring the magnetic flux density change
using a pickup coil. Additionally, other researchers have studied this SHM technology
using magnetostrictive FRP composites [34–37]. Furthermore, Fe–Co alloys exhibit ductility
and good workability, and new magnetostrictive epoxy composites have been developed
by embedding Fe–Co fibers in epoxy resin [38–40]. The magnetostrictive properties of the
developed materials were mainly evaluated via compression tests.

However, evaluating the magnetic field distribution around magnetostrictive FRP
composites is critical to noncontact measurement, as the magnetostrictive properties and
structures of the composite materials must be considered. However, this issue has not
been extensively studied, and no conclusions have been drawn. Moreover, the interfacial
strength of GFRP–embedded Fe–Co fibers must be determined. The most basic Mode I
delamination fracture strength of Fe–Co fibers and FRP must be investigated.

Therefore, in this study, we embedded Fe–Co fibers in GFRP composites and assessed
the delamination behavior between Fe–Co fibers and GFRP by changing the number of
embedded Fe–Co fibers. We conducted a double cantilever beam (DCB) test to evaluate
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the fracture load, and the crack self-detection capability of the fabricated composites was
discussed. In the DCB test, four Hall probes were placed on the specimen to evaluate the
changes in the magnetic field distribution.

Application of Magnetostrictive Composite Materials in Structural Health Monitoring

To safely operate GFRP laminates, the stress applied to the composite structure, as
well as its health, must be investigated [41]. Notably, NDT and evaluation (NDT&E) and
SHM are well-known evaluation methods. NDT&E allows for the detection, identification,
and location of flaws despite being performed over a scheduled interval [41]. Consequently,
NDT&E cannot provide detailed information on damage initiation or growth between the
inspection intervals. Conversely, the SHM process is aimed at facilitating the continuous
detection, location, and quantification of damage in structures [22]. Therefore, the early
identification of damage is desirable to ensure the implementation of suitable maintenance
procedures to avoid unexpected failures [42]. However, a versatile technique that satisfies
all conditions, settings, and applications has not been developed as the existing techniques
have their advantages, limitations, and application scopes [22].

Typically, a specific area of the surface of the material is observed using a camera, after
which the change in temperature or speckle pattern is evaluated. The methods include an
infrared thermography test [43,44], shearography [45,46], and a digital-image correlation
test [47]. The advantages include contactless inspection, a simple experimental setup,
and high resolution. However, these technologies only apply to surface defects, as their
sensitivity decreases with deep defects. Another SHM approach involves attaching a sensor
to the surface of the material. A sensor, such as a strain gauge, an acceleration sensor,
or an AE sensor, is mounted to the surface, after which the signals obtained from it are
measured and evaluated. Although their attachment, maintenance, and replacement are
convenient, they require heavy-duty wiring, which can break or cause electromagnetic
interference [48]. The material properties are used for SHM, i.e., the variations in the electric
resistance and electrostatic capacity of the material comprising the object are measured to
evaluate damage or crack propagation [27]. However, the limitation is that the application
is restricted to the material of the object, as conductivity is necessary for the measurement
of electric resistance. Finally, the modification of the material also represents an SHM
approach. Put differently, a novel composite can be fabricated by adding and embedding
sensor materials. The sensor materials include optical fibers [49], carbon materials [27],
piezoelectric materials [50], and magnetostrictive materials [38]. The sensor embedment
chosen for the composite design depends on its application.

Magnetostrictive material–embedded composites have been investigated for the devel-
opment of novel sensors or energy-harvesting materials utilizing the Villari effect. Yang
et al. [39] demonstrated the specific structural design of Fe–Co wire/AlSi composites and
their energy-harvesting performance. Kubicka et al. [38,51] reported the preparation and
characterization of CFRP embedded with Terfenol-D particles. Furthermore, other researchers
have studied magnetostrictive polymer composites for SHM applications [33,52,53].

A pickup coil and a Hall probe were used to measure the Villari effect–induced
magnetic field. Regarding a pickup coil, the voltage, Vout, in the coil with an average
magnetic flux density vector, B, through the cross-section of the coil can be derived from
Faraday’s law as follows:

Vout = −Nc A
dB
dt

(1)

where Nc is the number of turns, A is the cross-sectional area of the pickup coil, and t
is the time. Therefore, a pickup coil is suitable for measuring the magnetic flux density
induced by impact and vibration when the magnetostrictive material is placed inside or
near the pickup coil. When a Hall probe is used, the magnetic flux density is measured as
the voltage, VHall, and can be obtained using the Lorentz force as follows:

VHall = − J × B
neeh

(2)
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where J is the current density vector, ne is the number of electrons per cubic meter, e is the
electron, and h is the thickness of the Hall probe. Thereafter, the magnetic field measurement
becomes useful for static and dynamic conditions. Magnetic flux density measurements
performed using a pickup coil and a Hall probe are not required for direct connection with
a magnetostrictive material, as the induced magnetic flux density is distributed in space.
In practice, using multiple pickup coils or Hall probes and placing them at appropriate
positions, the stress distribution, defects, damage, etc., can be determined based on the
difference in the measured values at each point. For example, consider a simply supported
GFRP embedded with Fe–Co fibers. The bending load induces magnetic flux density in the
air. The bending stress is distributed along the thickness direction, ensuring that normal
stress is applied to the Fe–Co fibers according to the laminated position. Thereafter, the
Fe–Co fibers are magnetized by the Villari effect. Finally, a magnetic field is induced in the
air owing to the magnetized fibers.

2. Materials and Methods
2.1. Material and Specimen Preparation

Prepregs of plain-weave GFRP (EGP-87 LA18BR, SPIC Corporation, Yokohama, Japan),
magnetostrictive Fe–Co fibers (K-MP70; diameter, 50 µm; Tohoku Steel Co., Ltd., Miyagi,
Japan), and a polytetrafluoroethylene (PTFE) film (965213; thickness, 20 µm; the Nilaco
Corporation, Tokyo, Japan) were used to fabricate the specimen. Figure 1 shows a schematic
of the specimen. The 10-layer prepregs were stacked on the top and bottom of the layer
comprising the Fe–Co fibers. The length direction of the Fe–Co fibers was made parallel
to the warp direction of the GFRP prepregs. Four types of specimens were prepared with
the following numbers of Fe–Co fibers, n: 0, 40, 60, and 80. Although we had intended
to increase the number of fibers by 20, we observed that 20 fibers would be extremely
few. Furthermore, it was challenging to fabricate a test specimen with 100 fibers. We
placed a PTFE film between the Fe–Co and GFRP layers to allow for a 30 mm precrack,
and the length of this precrack was determined by considering the ease of observing crack
propagation as well as the effect of jig movement on the magnetic field. After lamination,
the specimens were cured in a vacuum (Figure 2a) at 130 ◦C for 2 h so that no air bubbles
were observed in the specimens. After curing, the specimens were cut (length, 70 mm;
width, 20; and thickness, 3.4 mm) and polished. The specimen had to be sufficiently small
because of the space limitations of the existing electromagnets, as well as the cost of the test.
As the specimen enlarged, the magnetic field did not act uniformly on it. Furthermore, two
aluminum end blocks (length, 10 mm) were bonded to the precracked end of the specimen
(Figure 2b shows an image of the completed specimen).
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2.2. Mode I Interlaminar Fracture Tests

Round-robin tests of the composite materials for Mode I interlaminar fracture tough-
ness, GIC, have been summarized in [54]. DCB tests were conducted by the participants of
the American Society for Testing and Materials (ASTM) Committee D-30 (High Modulus
Fibers and their Composites) and representatives of the European Group on Fracture and
Japanese Industrial Standards Group. The rate dependence of Mode I interlaminar fracture
in the CFRP composite materials was studied over a wide range of loading rates, from
quasistatic to impact, at 25 ◦C [55].

For testing in extreme environments, the interlaminar Mode I fracture behavior of
the composite laminates was investigated via DCB testing at high temperatures of 232 ◦C,
288 ◦C, and 343 ◦C [56]. The corrected beam theory and FEA coupled with damage were
used at liquid-nitrogen temperature (77 K) and liquid-helium temperature (4 K), and the
GIC of the GFRP woven laminates was discussed [57].

The standard method [58–60] for measuring GIC was based on the linear elastic fracture
mechanics theory, requiring visual measurements of the crack length, thus making data
acquisition and analysis challenging. An alternative method for testing the interlaminar
fracture toughness was proposed [61] using the elastic–plastic fracture mechanics theory
and closed-form analytical solution of the J-integral related to the fracture toughness, JIC.

2.3. Damage Test and Magnetic Flux Density Measurement

We conducted DCB tests using the GFRP composite laminates containing the Fe–Co
fibers via an autograph (AG-Xplus, Shimadzu Corporation, Kyoto, Japan). Figure 3a shows
a schematic of the DCB test. Next, we considered the cartesian coordinate system, O-xyz,
where the x-, y-, and z-axes corresponded to the width, thickness, and length directions of the
specimen. Four Hall probes (HG-302C; Asahi Kasei Microdevices Corporation, Tokyo, Japan)
were placed above the specimen to measure the z-direction change, ∆Be

z , in the magnetic flux
density. Here, the superscript e denotes the quantity outside the composite. The Hall probe
was pre-adjusted to exhibit 0.8 V when the measured magnetic field was 1 mT. The distance
between the specimen surface and the center of the Hall probes was 5 mm. Additionally, the
distance between the centers of the Hall probes was fixed at 2 mm. Hall probes 1 to 4 were
placed starting from the position closest to the precrack tip, with Hall probe 1 placed 2 mm
away from the precrack tip. Figure 3b shows the setup for the DCB test. An electromagnet
(MAGNIX, Toyo Jiki Industry Co., Ltd., Hyogo, Japan) was used to apply a biased magnetic
field of 10 mT. The specifications of the electromagnetic system are as follows: tip ball diameter,
40 mm; pole gap, 90 mm; generated magnetic field, 30 mmT (applied voltage, 3.7 V; current,
5.05 A), and the electromagnet was naturally air-cooled.

A digital microscope (AM4515ZT, AnMo Electronics Corporation, Tokyo, Japan) was
used to film the crack propagation. Figure 4a shows a cross-section of the experiment, as
captured by the digital microscope. Lines were drawn at 5 mm intervals from the precrack
tip to facilitate the measurement of the crack growth. The test was conducted at a speed
of 0.5 mm/min, and the test was conducted until the crack propagated more than 20 mm.
Analog signals of the load, P, and load-point displacement, u, from the autograph and
magnetic flux density change, Be

z , from the Hall probe were captured simultaneously by
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a data logger (NR-500 series, Keyence Corporation, Osaka, Japan). The definition of the
initial critical load, Pc, is shown in Figure 4b. The intersection of the P–u curve and the
straight line with a 5% less angled slope than the initial slope of the P–u curve was taken as
P5. The maximum or peak value before P5 was defined as Pc.
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3. Results and Discussion
3.1. Fracture Behavior

Figure 5 shows the relationship between the load and load-point displacement of
the Fe–Co fibers–embedded GFRP composites. The specimens embedded with 0, 40, 60,
and 80 Fe–Co fibers are depicted by black, red, blue, and green lines, respectively. Crack
propagation and corresponding load reduction were observed in all the specimens.
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Figure 6 shows the load, P, and amount of crack extension, ∆a, versus the load-
point displacement, u, of each specimen. The solid line represents the load, whereas the
dashed line and dots represent the amount of crack extension. Regarding the interface
fracture between the Fe–Co fibers and polymer, the load increased almost linearly with the
displacement, reaching a peak (Figure 6a). Thereafter, the load decreased rapidly after the
crack propagated significantly. After the crack growth stopped, the load increased again,
after which it decreased as the crack propagated. This is a specific phenomenon observed
in DCB specimens; it is called stick–slip crack propagation. The amount of crack extension
was small, and the decrease in the load was small for the interface fracture between the
glass fiber and polymer (Figure 6b). In this study, the difference in the interface crack-
propagation behavior was mainly attributed to the surface roughness of the fibers. The
fiber-drawing process was employed to fabricate the Fe–Co fibers in this study, and their
surfaces were covered with numerous scratches. Therefore, when a crack propagates across
the interface between the Fe–Co fiber and epoxy resin matrix, it is trapped at a certain
point, after which it is released at once, resulting in a staircase-like load–displacement curve
(see Figure 6a). Conversely, the surface of glass fibers is smooth as they are melt-spun.
Therefore, when the crack propagates at the interface between the glass fiber and epoxy
matrix, no trapping is observed at a certain point. The crack propagates continuously after
reaching the stress-intensity factor required for crack propagation due to loading, resulting
in a linear load–displacement curve (see Figure 6b). Fracture mechanics parameters, such
as the stress-intensity factor and energy-release rate, depend on the elastic modulus of
the materials on both sides of the interface [62]. At the Fe–Co fiber–polymer interface, the
Fe–Co fibers are aligned in parallel. The elastic modulus around the crack tip is almost
constant, even after crack propagation. Contrarily, the glass fibers contain warp and weft
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threads at the glass fiber–polymer interface, and the elastic modulus is locally different in
the crack-propagation direction. This difference results in different behavior, as shown in
Figure 6.
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3.2. Sensor Characterization

In Figure 7, the critical loads of the specimens containing 0, 40, 60, and 80 Fe–Co fibers
are compared. We demonstrated that the average value of the critical load decreased as the
number of Fe–Co fibers increased, indicating that the specimens tended to fracture more
easily. However, as shown by the error bars, the critical load of the specimen containing 40
Fe–Co fibers was sometimes higher than that of the specimen containing 0 Fe–Co fibers.
This result indicates the possibility of using the composites containing 40 Fe–Co fibers
while maintaining their strength.
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Regarding the GFRP composites containing 40 Fe–Co fibers, Figure 8 shows the load
and magnetic flux density variation versus the load-point displacement. The load, P, is
represented by a solid black line, and the solid red, blue, orange, and green lines represent
the magnetic flux density changes, Be

z , in Hall probes 1, 2, 3, and 4, respectively. The
magnetic flux density decreased or increased as the load decreased with crack propagation.
The amounts of crack extension were 1.7, 6.2, and 13.0 mm for load-point displacements
of 2.2, 3.0, and 4.1 mm, respectively. The magnetic flux density change decreased during
crack propagation before the crack tip passed through the Hall probe; however, it increased
as the crack tip passed through or after the Hall probe (see the red line in Hall probe 1).
Magnetostrictive materials exhibit a unique phenomenon in which the internal magnetic
flux density changes as the load or deformation increases. As the crack propagates, the
Fe–Co fibers become more susceptible to deformation, resulting in changes in the magnetic
flux density inside the fibers and in the magnetic field around GFRP.
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Figure 9 shows the relationship between the amount of magnetic flux density change
during crack propagation and the z-direction distance between the crack tip after crack
propagation and the positioning of the Hall probe. The red, blue, orange, and green dots
represent Hall probes 1, 2, 3, and 4, respectively. A negative horizontal axis indicates
the condition before the crack tip passed through the Hall probe, whereas a positive one
indicates that the crack tip passed through the Hall probe. The results display a sine
curve. Hence, Hall probes can be used to determine the approximate location when a crack
initiates and propagates. Put differently, the magnetic flux density change measurement
may provide insight into the crack state inside GFRP. To quantitatively understand the state
of cracks using the change in magnetic flux density, further experiments and numerical
analyses are required, and studies are currently underway.
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GFRP is often used at cryogenic temperatures [11], and Fe–Co fibers do not lose their
magnetostrictive properties, even at cryogenic temperatures [63], making them a good
match for cryogenic applications. In previous studies, fibers with diameters of 1 [39]
and 0.2 mm [38] were used, although fibers with a 0.05 mm diameter were used in this
study, and they were useful as they did not reduce the GFRP strength. We are currently
conducting studies to detect the delamination of GFRP in cryogenic environments.

4. Conclusions

In this study, we fabricated GFRP composites embedded with Fe–Co fibers between
the layers of the GFRP laminates and subjected them to DCB tests to verify their interfa-
cial strength and evaluate their crack self-sensing capability. We observed that the load
decreased as the crack propagated in all the specimens. The analysis of the fracture surface
indicates that some specimens were fractured at the polymer and Fe–Co fiber. Contrarily,
others were fractured at the glass fiber–polymer interface. The difference in the fracture
was also affected by the crack-propagation method and load change. The critical load
decreased as the number of Fe–Co fibers increased. However, when 40 Fe–Co fibers were
used, the limit load was sometimes higher than when only GFRP was used, indicating that
the Fe–Co fibers could be introduced into GFRP without reducing its strength by reducing
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the number of introduced Fe–Co fibers. Certainly, the diameter and stiffness of the fibers
are also critical, although the focus here is on the number of fibers. Four Hall probes
were placed on the specimens containing 40 Fe–Co fibers to monitor the magnetic flux
density outside the specimen and evaluate its crack self-detection capability. The magnetic
flux density increased or decreased significantly as the crack propagated. We observed a
relationship between the change in magnetic flux density when a crack propagated and
both the distance between the crack tip and the position of the Hall probe. Hence, it was
possible to determine the crack propagation and approximate location of the crack tip from
the magnetic flux density change. Accurate crack-state measurement can be achieved with
further tests and analyses.
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