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Abstract: In this article, we study the transfer learning model of action advice under a budget.
We focus on reinforcement learning teachers providing action advice to heterogeneous students
playing the game of Pac-Man under a limited advice budget. First, we examine several critical factors
affecting advice quality in this setting, such as the average performance of the teacher, its variance and
the importance of reward discounting in advising. The experiments show that the best performers
are not always the best teachers and reveal the non-trivial importance of the coefficient of variation
(CV) as a statistic for choosing policies that generate advice. The CV statistic relates variance to
the corresponding mean. Second, the article studies policy learning for distributing advice under
a budget. Whereas most methods in the relevant literature rely on heuristics for advice distribution,
we formulate the problem as a learning one and propose a novel reinforcement learning algorithm
capable of learning when to advise or not. The proposed algorithm is able to advise even when
it does not have knowledge of the student’s intended action and needs significantly less training
time compared to previous learning approaches. Finally, in this article, we argue that learning to
advise under a budget is an instance of a more generic learning problem: Constrained Exploitation
Reinforcement Learning.

Keywords: machine learning; reinforcement learning; transfer learning; action advice;
machine teaching

1. Introduction

In the reinforcement learning (RL) framework [1], data efficient approaches are especially
important for real world and commercial applications, such as robotics. In such domains, extensive
interaction with the environment needs time and can be costly.

One data efficient approach for RL is transfer learning (TL) [2]. Typically, when an RL agent
leverages TL, it uses knowledge acquired in one or more (source) tasks to speed up its learning
in a more complex (target) task. Most realistic TL settings require transfer of knowledge between
different tasks or heterogeneous agents that can be vastly different from each other (e.g., humans and
software agents).

Transferring between heterogeneous agents is often challenging since most methodologies involve
exploiting the agents” structural similarity to transfer knowledge between tasks. As an example, TL can
be applied between two similar RL agents, which both use the same function approximation method,
by transferring their learned parameters. In such a case, a Q-Value transfer solution could be used,
combined with an algorithm constructing mappings between the state variables of the two tasks.

Whereas solutions for extracting similarity between tasks have been extensively studied in the
past [2,3], the main problem of transferring between very dissimilar agents (e.g., humans and software
agents) remains.
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Consider, for example, a game hint system for human players. The game hint system can not
directly transfer its internal knowledge to the human player. Moreover, it should transfer knowledge
in a limited and prioritized way since the attention span of humans is limited.

The only prominent knowledge transfer unit between all agents (software, mechanical,
or biological) is action. Action suggestion (advice) can be understood by very different agents.
However, even when transferring using advice, four problems arise: (1) deciding what to advise
(production of advice); (2) deciding when to advise (distribution of advice), especially when using
a limited advice budget; (3) determining a common action language in order to appropriately express
the advice between heterogeneous agents; and (4) communicating the advice effectively, ensuring its
timely and noiseless reception.

This article focuses on the first two problems—those of deciding when and what to advise
under a budget. Moreover, we use the game of Pac-Man to test our methods’ effectiveness in
a complex domain.

Whereas works such as [4] provide a formal understanding of RL students receiving advice and
the implications on the student’s learning process (e.g., convergence properties) and papers like [5,6]
provide practical methods for a teacher to advise agents, this work attempts a new learning formulation
of the problem and proposes a novel learning algorithm based on it. We identify and exploit the
similarities of the advising under a budget (AuB) problem to the classic exploration-exploitation
problem in RL and identify a sub-class of reinforcement learning problems: Constrained Exploitation
Reinforcement Learning.

Most successful methodologies for AuB require students to inform their teacher of their intended
action. This is not a realistic requirement in many real-world TL problems, since it assumes one
more communication channel between the student and the teacher; thus, it requires some form
of structural compliance from the student. An example of how restrictive is this requirement for
real-world applications comes from the game hint example system. The system advises the human
player for his next action in real-time, but the human player could never be expected to announce its
intended action beforehand. Part of this work’s goal is also to alleviate such a prerequisite and propose
methods that can also work without such knowledge.

Specifically, the contributions of this article are (a) an empirical study on determining
an appropriate advising policy in the game of Pac-Man; (b) a novel application of average reward
reinforcement learning to produce advice; (c) a novel formulation of the learning to advise under
budget (AuB) problem as a problem of constrained exploitation RL; and (d) a novel RL algorithm for
learning a teaching policy to distribute advice, able to train faster (lower data complexity) than previous
learning approaches and advise even when not having knowledge of the student’s intended action.

The remainder of this article is organized as follows. Section 2 presents background information
on RL and TL, introduces some key concepts of the learning to teach problem and describes the game
of Pac-Man used for the experiments. Section 3 formally defines the teaching task and formulates it
as a learning problem. In Section 4, we study the critical factors for policies used to produce advice,
whereas, in Section 5, we discuss the problem of distributing advice and propose a novel learning
algorithm for it. Finally, in Sections 6 and 7, we describe related work, draw the conclusions of the
article and propose future directions.

2. Background

This section provides an introduction to reinforcement learning and transfer learning with
an emphasis in advising methodologies. In addition, Section 2.3 describes the experimental domain of
this work, which is the Pac-Man video game.

2.1. Reinforcement Learning

Reinforcement Learning considers an agent acting in a dynamic environment and learning
a behaviour through trial-and-error interactions with it [1]. At each time step, the RL agent observes
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the environment’s state, s € S, where S can simply be a finite set of possible states, and then selects
an action a € A(s) to execute, where A(s) is the set of possible actions in state s. The agent receives
areward, r € R from the environment, and observes its new state s’ € S, according to the transition
function, T, of the environment with T(s,a,s’) = P(s'|s,a). The goal of the agent is to learn an action
policy, 7 : S — A that will maximize its expected return, G, which is is a cumulative function of the
reward sequence given also a discounting parameter, y. The  parameter, where 0 < «y < 1, controls
the importance of short-term rewards over the most long-term ones, discounting the later by powers
of factor of +.

An RL policy can be expressed through an action-value function, Q" (s, a), which is the expected
return starting from s, taking action 4, and following after that policy 7r. A policy that maximizes
the value function in each state is called an optimal policy, 7* and the respective optimal value
function is Q*.

Probably the most well-known RL algorithm, Q-Learning [7], estimates Q* directly (off-policy) by
executing in each time step f the following update rule:

Q(st,at) < Q(st, ar) + afripq + 7 max Q(st41,4") — Q(st,ar)],

where « : 0 < & < 1is the learning rate parameter adjusting the extent of value correction in each time
step towards the new estimation.

The RL agent has to explore by trying different actions in different parts of the state space in
order to discover more rewarding policies. However, the agent should also exploit by applying greedy
action selection in order to harness the learned policy. The most simple exploration method is e-greedy
action selection where the agent takes its current best action with probability (1 — €) and a random
action with probability e. This simple strategy is often quite effective, especially in simple RL tasks.
For a more in-depth review of RL, we refer the reader to [1].

2.2. Transfer Learning and Advising under a Budget

Transfer Learning [2] refers to the process of using knowledge that has been acquired in
a previously learned task, the source task, in order to enhance the learning procedure in a new and
more complex task, the target task. The more similar these two tasks are, the easier it is to transfer
knowledge between them. By similarity, we mean the similarity of their underlying Markov Decision
Processes (MDP), that is, the transition and reward functions of the two tasks and also their state and
action spaces.

The type of knowledge that can be transferred between tasks varies among different TL methods,
including value functions [8], entire policies [9], actions (policy advice) [10], or a set of samples from
a source task that can be used by a model-based RL algorithm in a target task [11].

Focusing specifically on policy advice under an advice budget constraint, we identify two aspects
of the problem, (a) learning a policy to produce advice and (b) distributing the advice in the most
appropriate way, while respecting the advice budget constraint. Most methods in the literature produce
advice by greedily using a learned policy for the task in hand [4-6]. For advice distribution, most
methods rely on some form of heuristic function (and not learning) based on which the teacher decides
when to give advice. Examples of such methods are Importance Advice and Mistake Correcting [6].

The Importance Advice method produces advice by repeatedly querying a learned policy’s
value function, on each state the student faces, to obtain the best action for that state. Distribution
of advice, that is deciding when to advise or not, is determined by a heuristic logical expression of
the form Quax(s,a) — Quin(s,a) > t where t is a threshold parameter determining the state-action
value gap between the best and the worst action for that state. If this value gap exceeds the threshold
value, t, the state is considered critical and advice is given. The algorithm continues until the advice
budget finishes.
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Mistake correcting (MC) [6] differs from Importance Advising only in presuming knowledge of
the student’s intended action. Consequently, it validates the Importance Advising criterion only if the
student action is wrong, not wasting advice when the student does not need it.

The method presented in [5] (Zimmer’s method) formulates the teaching problem as an RL one
in order to learn an advice distribution policy. The teacher agent has an action set with two actions,
A = {advice, no advice}. The teacher’s state space is an augmented version of the student’s one and
is of the form: Sypacner = (Sstudents Astudent, U, He ), Where Sgp40n¢ 18 the current state vector of the student,
Agsydent 18 the intended action of the student (this method assumes that the student announces the
intended action on every step), b the remaining advice budget and 7, the student’s training episode
number. Moreover, the teacher’s reward signal is a transformed version of the student’s reward with
an extra positive reward in case the student reaches its goal in a small number of steps. We note that
this method is tested only on the Mountain Car domain and the reward signal proposed for the teacher
is domain-dependent.

The policy advice methods [4-6] presented in this section will also be used for comparisons in the
experiments presented later in this article.

2.3. Pac-Man

Pac-Man is a famous 1980s arcade game in which the player navigates a maze like the one in
Figure 1, trying to earn points by touching edible items while also trying to avoid being caught by
four different types of ghosts. In our setting, ghosts will chase the player 80% of the time and choose
actions randomly 20%.

SeQRe 70 LiVveS 99

Figure 1. The Pac-Man arcade game.

The small dots on the grid represent food pellets and are worth 10 points each. The larger ones
are power pellets, which are worth 50 points each and getting those makes the ghosts edible for
a short time, during which they slow down and flee the player. Eating a ghost is worth 200 points and
respawns it in the lair at the center of the maze. An episode ends if any ghost catches Pac-Man, or after
2000 steps.

The player’s action space has four actions—move up, down, left, and right—but some of the
actions can occasionally be unavailable (e.g., due to maze walls). Although discrete, this domain has
a very large state space with 1293 distinct locations in the maze, with a complete state consisting of
the locations of Pac-Man, the ghosts, the food pellets, and the power pills, along with the trajectory
and the state of each ghost (i.e., edible or not). The combinatorial explosion of possible states makes it
essential to construct high-level state features and use Q-function approximation.

In this article, we follow previous work [6] that used a high-level feature set (high-asymptote
feature set) consisting of seven action-specific features that count objects at a range of distances
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from Pac-Man. For a detailed description of these features, we refer the reader to [6]. When using
action-specific features, a feature set is really a set of functions { fi(s,a), f2(s,a), ...}. All actions share
one Q-function, which associates a weight with each feature. A Q-value is Q(s,a) = wo + Y_; w; fi(s, a).
To achieve gradient-descent convergence, it is important to have the extra bias weight wg and also to
normalize the features to the range [0, 1].

A perfect score in an episode is 5600 points, which is quite difficult to achieve for both human and
agent players. An agent executing random actions earns an average of 250 points. The 7-feature set
allows an agent to learn to catch some edible ghosts and achieve a per-episode average of 3800 points.

The experiments of this article use a JAVA implementation of the game provided by the Ms.
Pac-Man vs. Ghosts League [12], which conducts annual competitions.

3. The Teaching Task

In this section, we attempt a more formal understanding of teaching tasks that are based on action
advice. The necessary notation is presented in Table 1.

Table 1. The notation used in this article.

Notion T Agent Student (Acting) Teacher (Acting) Teacher (Advising)

Index used NONE z T
MDP M My * Mr
Action Set A As, Ar
State Space S Sy St
Reward R Ry*® Rt
Value Function Q Qs Qr
Policy T Ty, T
Agent Goal L Ly*® Lt

T A teacher agent may not have a teaching value function Qr, relying in a hand-coded or heuristic
teaching policy; * If the teacher has learned to act in the same Markov Decision Process (MDP) as
the student, My, = M; ® In this work, we assume Ry, = R and Ly, = L. All agents acting in the
task have the same rewards and goals.

3.1. Definitions

Definition 1 (Student). A student agent is an agent acting in an environment and capable of accepting advice
from another agent.

Definition 2 (Teacher). A teacher agent is an agent capable of executing and informing a teaching policy
(see Definition 7) to provide action advice to a student agent acting for a specific task.

Definition 3 (Acting Task). The acting task is the task for which the teacher gives advice and can be defined
as an MDP of the form M = (S, A, T, R, 7y) on an environment E.

Definition 4 (Teaching Task). The teaching task is the task of providing action advice to a student agent to
assist him in learning faster or learning better the acting task. Any teaching task is accompanied by a finite
advice budget, B.

Definition 5 (Teaching Action Space). Given the action space A of the acting task, the action space of the
teacher in timestep t is:

A — {H,J_} , bt > 0,
= {J—} ’ bt S O/
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where a € A an action of the acting task given as advice and the no advice action, 1, meaning that the teacher
will not give advice in this step, allowing the student to act on its own. by is the advice budget left in time-step t.

Definition 6 (Teaching State Space). The teacher agent state space in timestep t has the following form:

St = (®¢,bt, Qx), 1)

where, on timestep t, by is the remaining advice budget, Qs is the teacher’s acting value function or any structure
representing its policy, and © is a tuple containing any knowledge we can have for the student and its MDP.

For example, if the student’s MDP is My = (S, A, T, R, 7) and the teacher observes the current
state of the student, s; € S, reward, r; € R, and action a; € A, then @y = (s, 1, ay).

Definition 7 (Teaching Policy). A teaching policy, rtr, is a deterministic policy of the form:
it 2 St — AT, 2)
where St and AT are the teaching state and action spaces respectively (see Definitions 5 and 6).

The teaching policy, 777, actually transforms the acting policy, 7ts, of an actor agent (expressed
through its respective state-action value function, Qs), to a policy producing advice under budget.
Such a teaching policy will usually [4-6] set a = arg max,(Qx(s,a)), which means that the teaching
policy is greedy with respect to the acting value function, Qs.

As a minimal example of the proposed formulation, the Importance Advising method [6]
which uses the state importance criterion (see Section 2.2) can be said to use a teaching state space,
St = (® = s4, b, Qx) as it requires knowledge only about the current state, s;, of the student, the
remaining advice budget, b;, and an acting value function, Qs, from which it produces advice.

Finally, and concerning Definitions 1 and 3, in this work we assume that a student agent always
follows the given advice and that vy is part of the agent since it can be chosen and is used only for the
agent’s value estimation and not for its performance evaluation, which is based only on externally
provided game scores.

3.2. Learning to Teach

The definitions presented in Subsection 3.1 apply to any teacher agent even if it advises based
on a heuristic function. In the following, we focus on teachers that use RL to learn a teaching policy
(i.e., advice distribution policy).

In its most simplified version, the learning to teach task employs two agents: the teacher and the
student. In the first learning phase, a teacher agent has the role of the actor: it learns the acting task
alone. It observes a state space Sy and has an action set Ay. Based on a reward signal Ry received
from the environment, it learns a policy 7ty to achieve the acting task goal Ly. In our context, this first
learning phase can be seen as the advice production phase since the teacher learns the policy that will be
used to advise a student later on.

At any time-step f, the teacher agent may have to stop acting and a new agent, the student, enters
the acting task and the corresponding environment.

Consequently, the teacher agent has to now learn and use a teaching policy for the specific task to
achieve the teaching goal, LT. Additionally to the definitions given in Section 3, this second learning
phase (learning a teaching policy) requires the identification and formulation of the following:

e  Return horizon. Even if the teaching task is formulated as an episodic one, the teaching
episode, also referred to as a session, is not necessarily matching the student’s learning episode.
The teacher’s episode scope is greater and could track several learning episodes of the student.
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e Reward signal. A different return horizon implies a different task goal and consecutively the
teacher’s reward signal can be different from the student’s (e.g., encouraging more the learning
progress of the student over its absolute learning performance).

Moreover, considering the teacher’s state space as a superset of the student’s state space
(see Definition 6) reveals one more difficulty of the learning to teach task. From the teacher’s point of
view, the student can be considered a time-inhomogeneous Markov-Chain (MC) [13], X = (X; : t > 0).
This is because the transition matrix P of the student’s MC is dependent on time, since the student
agent is learning and constantly changing its policy over time. The time inhomogeneity of this MC
poses significant difficulties in handling the problem theoretically. Homogenizing this MC by defining
it as a space-time MC, (X}, t) can make practical solutions, such as those presented in this article,
feasible but still theoretical treatment is difficult (e.g., no stationary distributions exist in this case) and
is beyond the scope of this article.

In general, every learning task can have its corresponding teaching task, which could be thought as
its dual. As learning to act in a specific task and teaching that task can be considered different tasks,
they have their own goals and, consequently, are “described” by different reward signals.

As an example, in [5], a teacher agent for the mountain car domain has a different reward signal
to that of the student, encouraging teaching policies that help the student reach its goal sooner.

Learning a teaching policy, as this is described above, could be modelled by many different
types of Markov Processes. However, none of the classic MDP formulations completely models the
specific learning problem as a whole either by not handling the non-stationarity of the problem or
by not handling the specific budget constraint imposed on the advising action. This fact is the main
motivation of Section 5, where we present our proposed method for learning teaching policies.

4. Learning to Produce Advice

In this section, we focus on the advice itself and its production (not its distribution). The main
challenge in producing advice based on the Q-Values of an RL value function is that these values are
valid only if the policy they represent is fully followed, not when this policy is sparingly sampled to
produce advice.

Based on previous methods in the literature (see Section 6), the most common teacher’s criterion
for selecting which action to advise is 7ty (s) = argmax,Qx (s, a), that is, greedy selection of the best
action based on the teacher’s acting value function. However, the value of Qy (s, a) is not correct under
the advising scenario since it is accurate only if the student will continue following teacher’s acting policy,
mts, thereafter. Unfortunately, this is usually not the case in our context since the student, after receiving
advice, will often continue for a long period using its own policy exclusively. Even worse, in the early
training phases—when advice is needed the most—the student’s policy will be vastly different from
the teacher’s.

This realization is even more important if we consider how different the teacher and the student
agents are allowed to be in our context. Consider a human student receiving advice in the game of
Pac-Man. Human players often play fast-paced action games in a myopic and reactive manner, seeking
short-term survival and not a long-term strategic advantage.

In that case, a human student infrequently advised by a policy learned using a high -y value close
to 1 will often be mislead to locally sub-optimal actions because these actions may be highly valued for
the teacher’s far-sighted policy. The human player will probably not follow such a policy thereafter
and he has therefore been misled to an action that would be useful only if he would also follow the
rest of the teacher’s acting policy too.

Ideally, we would like to use a teacher’s acting policy that would be mostly invariant to the
student’s particularities. Such a teacher’s policy would advise actions that are good on average,
whatever policy is followed thereafter by the student and whatever the student’s internal architecture,
processes and parameters are (e.g., v).
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In this article, we propose that the above considerations should affect the way we learn policies
intended for teachers. Selecting a specific policy for advising, the RL algorithm producing it and its
parameters, form a model selection problem for RL teachers.

4.1. Model Selection for Teachers

In this section, we want to investigate how factors such as the teacher’s y value (see Section 2.1)
influence advice quality for students that can possibly have very different characteristics (e.g, a myopic
student and far-sighted teacher). This is important in order to understand which teacher-agent
differences affect the teaching performance the most.

To assess the influence of the y value in the teaching process, we experiment using an RL algorithm
like R-Learning [1,14], which does not use a -y value for the calculation of state-action values and relies
on estimating the average reward received by the agent, using its policy from any state and thereafter.

Specifically, R-Learning is an infinite-horizon RL algorithm where a different optimality criterion
is used such that the value Q(s, a) given action 2 and state s under policy 77 is defined as the expectation:

Q(s,a) = ) Ex{risk—p"} ®)
k=1

where p” is the average expected reward per time step under policy 7. The intuition behind
R-Learning is that, in the long run, the average reward obtained by a specific policy is the same,
but some state-action pairs receive better-than-average rewards for a while, while others may receive
worse-than-average rewards. This transient, the difference to the average reward received, p”,
is what defines the state-action value. The R-Learning algorithm makes the following two updates at
every step:

Q(s,a)  Q(s,a) + afr — p + maxyQ(s',a') — Q(s, a)] @
and if Q(s,a) = max,Q(s,a), then:

p o+ Blr—p+ max,Q(s',a") — max,Q(s, a)], (5)

where the second update, Equation (5), keeps a running estimate of the average reward, p, and f is the
learning rate of that update. Using R-Learning to learn a teacher’s acting policy along with the rest of
the experiments presented in Section 4.2, we can assess the importance of the -y value and the y value
mismatch between student and teacher. Moreover, we assess other factors that possibly influence the
quality of advice, such as the performance of the teacher in the acting task, its performance variance,
and a possible relation of its average TD error [1], with the quality of advising.

As defined in [1], the TD error, J;, represents the value estimation error of a value function for
a specific state s and action a in time f. For the Q-Learning [7] algorithm, this is:

or=r+ y max Q(st+1,a) — Q(st, ar). (6)

This is also part of the Q-Learning update rule. Furthermore, by dividing Equation (6) with the
previous value estimation, Q(s, a), we get the percentage of error in relation with it, which we can call
TD error percentage:

6/ = 0/ Qst, 1), @

where Q(s¢,a;) # 0. In our context, when the teacher uses an acting policy to produce advice it can still
compute, for each student’s experience, its own TD error just as it would do if it was actually making
a learning update. In the same context, we can intuitively say that 6;° represents the teacher’s surprise on
its new estimation of a state-action value. Please note that this definition of surprise, although similar,
is different to that presented in [15], which normalizes for different learners and not for different
state-action pairs.
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Consequently, a candidate teacher with high average TD error percentage, 6%, is a teacher with
more unreliable value estimation, and, therefore, it can be less suitable to become one since its action
suggestions are probably based on a non-converged value function.

4.2. Experiments and Results

Based on the discussion in the previous section (Section 4.1), the main goal of the following
experiments is to discover how the teacher’s policy parameters (such as ) affect the quality of advice
and how different student parameters affect teaching performance. The experimental design is as
follows. In the first phase, we created y-specific teachers by training five Q-Learning agents and
one R-Learning agent for 1000 episodes. The Q-Learning agents had all the same parameters, except
7, which took values in {0.05,0.2,0.6,0.9,0.999}. The rest of their parameters were the same and
fixed—specifically, € = 0.05 and & = 0.001 (consistent with previous work [6]). The A parameter
accounting for the decay of the eligibility traces was set to zero (i.e., no eligibility traces) so that the
effect of experimentally controlling the v parameter is isolated. Finally, the parameter  of R-Learning
(see Equation (5)) was set to 0.0001 (preliminary results found it produced good results in Pac-Man).

After training for 1000 episodes, the y-specific Q-Learning teachers and the R-Learning teacher
were evaluated on 500 episodes of acting alone in the environment. We calculated their average episode
score and the coefficient of variation of these scores as both being possible determining factors of
advice quality. The coefficient of variation (CV) was used as a measure of score discrepancy as it shows
the extent of variability in relation to the mean of the score (y), allowing a more clear comparison of
variance between methods with different average performance. Itis a unit-less measure calculated as
Cv =32

In Table 2, we can see their average episode score on 500 episodes along with the coefficient
of variation of that score. R-Learning had significantly worse average acting performance than all
versions of Q-Learning. Interestingly, episodic Q-Learning (with < close to 1) did not perform as well
as expected. Moreover, a very low 7 value (0.05) came up second, showing that a myopic RL agent can
perform well in Pac-Man. This result indicates the highly stochastic nature of the game where reactive
short-sighted strategies, based more on survival, can perform better than far-sighted strategies.

Table 2. Average Score, Coefficient of Variation (CV) and Standard Deviation (SD) of y-specific
Q-Learning agents and R-Learning, acting alone in 500 episodes, ordered by score (denoted with the

symbol V).
Gamma Average Episode Score ¥  Coefficient of Variation Standard Deviation
0.9 3633.78 0.33 1189.89
0.05 2754.48 0.44 1132.77
Q-Learning 0.2 2668.36 0.47 1254.13
0.999 2608.04 0.28 730.25
0.6 2585.26 0.48 1240.92
R-Learning - 2493.17 0.28 698.09

After the initial training and the evaluation of the acting policies they learned, these agents could
be used as teachers for tabula-rasa student agents. In these experiments, we used a simple fixed
teaching-advising policy called Every-4-Steps for all teachers since we focus only on the quality of the
advice itself and not on the quality of its distribution to the student (teaching policy).

In the Every-4-Steps teaching policy, the teacher gives one piece of advice to the student every
four steps. Using this fixed advising policy, we can test and compare the efficacy of the advice when
this is not given consecutively, thus testing how useful the advice is when the student does not take
a complete policy trajectory from the teacher, but has to use its own policy in between.

Using the teaching policy Every-4-Steps and a budget of B = 1000 advice, we ran 30 trials of
advising learning students for each <y-specific teacher—student pair. Specifically, the 7y parameters
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of these teacher-student pairs come from the Cartesian product {0.05,0.2,0.6,0.9,0.999, —} x
{0.05,0.2,0.6,0.9,0.999} (30 pairs), where the R-Learning teacher in the first set is denoted with
a “-” since it does not have a < value.

In Figure 2, we can see the average performance of each teacher-student pair compared to
the same student not receiving advice at all. Combining these results with Table 2 of the teachers’
performance when they were acting alone, we can see that the best performer is not the best teacher,
with best defined as the best average score when acting alone in the task. The best example of this is
R-Learning whose average score was worse than any y-specific Q-Learning agent; however, as we
can see in Figure 2, it is almost as good of a teacher as the ¢y = 0.999 Q-Learning teacher. R-Learning
advising improved all students’ scores whatever their -y value, while not resulting in a negative transfer
for any of them.

Teacher Agent
Q-Learning, y=0.05 Q-Learning, y=0.2 Q-Learning, y=0.6 Q-Learning, y=0.9 | Q-Learning, y=0.999 R-Learning

N
=3
S

o

n
=1
=3

. Avg. Score improvement from advising

A
=)
=3

005 02 06 090999 005 02 06 090999 005 02 06 090999 005 02 06 090999 005 0.2 0.6 090999 005 0.2 06 09 0999

Student Agent Gamma (y) =~ 0.05 0.2/0.60.91M0.999

Figure 2. Average score improvement from 30 trials of each teacher-student pair compared
to no-transfer (no advising). Negative bars indicate negative transfer (average score decrease).
Error bars indicate 95% confidence intervals (CI) of the means. Non-overlapping Cls indicate
statistically significant differences of the means, whereas overlapping CIs are inconclusive (for the
non-conclusiveness of overlapping confidence intervals, a simple and intuitive explanation can be
found in [16]).

Moreover, we can see a pattern where the lower the coefficient of variation (CV) for the acting
performance is, the better the teacher, indicating that CV can be an important criteria in model
selection for teachers. This is non-trivial since average agent performance (and not its variance) is
the dominant model selection criteria adopted in most of the relevant literature in RL. Performance
variance expressed by CV seems especially important in our context, that of sparse advising, where
the advice should be good whatever the next actions of the student will be.

Based on the results presented here, we can not observe any particular pattern relating teaching
performance with the 7y values of a teacher-student pair. Interestingly though a y = 0.999 teacher is
not the most helpful for a 7y = 0.999 student. Even more, a v = 0.2 for a v = 0.2 student results in
significant negative transfer. The teacher with the episodic y value, ¥ = 0.999 and the no discounting
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R-Learning one were the most helpful to all students showing that R-Learning can perform well in
settings where the student’s v is unknown or varying, such as in the case of human students.

Having identified the possible use of R-Learning for producing acting policies suitable for advising
and the importance of performance CV to model selection, we conducted one more experiment between
identical teachers.

Specifically, we independently trained 30 Q-Learning teachers with the same parameters, feature
sets and characteristics for 1000 episodes. Due to their different experiences and the stochasticity
of the game, they naturally learned different policies (i.e., final feature weights in their function
approximators). Then, the trained teachers played alone for 500 episodes and we recorded their
average performance, average performance variance as also their average TD error percentage, 6%,
as this was defined in Section 4.1. We then used the Every-4-step teaching policy with each one of
them advising a standard Sarsa [17] student who would learn the task for 1000 episodes. Finally,
we recorded the student’s average score.

In Figure 3, we can see a correlation plot of the factors mentioned above using a one-tailed
non-parametric Spearman correlation test at p < 0.05. Confirming the previous results, we can see
the negative and statistically significant relation of CV to teaching performance with a correlation
coefficient, r. = —0.3. Acting performance also has a medium and positive correlation of . = 0.3 with
teaching performance (student’s score) but it is statistically insignificant on the limit. By weighing
average performance in its calculation, CV has a stronger relation to teaching performance than
standard statistic variance. Moreover, we see that teacher’s surprise, 6% relates strongly (r. = —0.66)

and negatively to the acting performance of the teacher and not to its teaching performance
(re < —0.05).

Acting.performance
Acting.Surprise
Acting.Variance
Acting.CV

Teaching.performance 0.05 0.43 0.12

Acting.performance . . .

0.14 0
0.2

Acting.Variance .‘ 0.4

0.6

Acting.CV . 0.8

Figure 3. Correlation plot of critical factors influencing teaching performance for 30 Q-Learning

. Teaching.performance

v A

Acting.Surprise

teachers. The circle size indicates correlation strength and the color its sign (direction). Statistically
significant correlations are at p < 0.05. Insignificant correlations are marked with their p-value.

5. Learning to Distribute Advice

In this section, we change focus from advice production to advice distribution: learning a teaching
policy in order to most effectively distribute the advice budget.

5.1. Constrained Exploitation Reinforcement Learning

We attempt a more natural formulation of the AuB learning problem described in Section 3.2 by
identifying it as an instance of a more generic reinforcement learning problem. This RL problem can be
simply described as learning control with constraints imposed on the exploitation ability of the learning
agent. These constraints can either be a finite number of times the agent can exploit using its policy,
possibly states where it is only allowed to explore, or even perhaps a task where it is costly to have
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access to an optimal policy and we are allowed to use it only for a limited number of times. How does
this RL problem relate to the learning to teach problem? The first insight is that the advise/not advise
decision problem has a striking resemblance to the core exploration—-exploitation problem of RL agents.
Consider the learning to teach problem. We can view the problem as follows: when the teacher agent is
advising, it is actually acting on the environment; this is because an obedient student agent will always
apply its advice, thus becoming a deterministic actuator for the teacher. In the case of a non-obedient
student, the teacher could be said to be using a stochastic actuator.

Consequently, we can view the teacher agent as an acting agent using a student agent as its
actuator for the environment. Moreover, the teacher is acting greedily by advising his/her best action;
thus, he/she exploits. Under this perspective, with advice seen as action, how could we view the no
advice action of a teacher? The no advice action can be seen as “trusting” the student to control the
environment autonomously. Thus, choosing not to advise in a specific state can be seen as denoting that
state to be non-critical with respect to the remaining advice budget and the student’s learning progress,
or denoting a lack of teacher’s knowledge for that state. From the teacher’s point of view, not advising
can be seen as an exploration action. Thus, controlling when not to advise can be seen as a directed
exploration problem in MDPs. Imposing a budget constraint, which is a constraint on the number of
times a teacher agent can advise (i.e., exploit) is a problem of constrained and directed exploitation.

We will consider a simple and motivating example of such a domain. In a grid world 10 x 10,
a robot learns an optimal path towards a rewarding goal state while it should keep away from a specific
damaging state. The robot is semi-autonomous; it can either control itself using its own policy or it can
be teleoperated for a specific limited number of times. For the robot’s operator, what is an optimal use
of this finite number of control interventions? What are the states that it would be best to control the
robot directly, leaving control of the rest to the robot?

Similarly to the previous example, learning and executing advising policies in a game can be
another example of the constrained exploitation problem, which is also the main focus of this article.
For example, in a video game like Pac-Man, a game hints system plays the role of the external optimal
controller with a limited intervention budget. Such a hint system could suggest actions to human
players—when these are most necessary—depending also on the player’s policy.

In the rest of this section, we use the term exploitation where one can think of advising and the
term exploration when not-advising, focusing on the broader learning problem.

5.2. Learning Constrained Exploitation Policies

Formulating the constrained exploitation task as a reinforcement learning problem itself first
requires defining a horizon for the returns. This horizon should be different from that of the actual
underlying task (e.g., Pac-Man) because (a) if the underlying task is episodic, then the scope of
an exploration—exploitation policy is naturally greater than that and spans across many episodes of
the learning agent; (b) if the underlying task is continuing or requires several training episodes for
the student, the exploration—exploitation policy may have to be evaluated in a shorter (finite) horizon
(e.g., for the first x training episodes). The importance of exploration is usually limited in the late
episode(s) where the student may have already converged to a policy. A teaching policy should be
primarily evaluated for a training period where advice still matters.

Concerning the return horizon of a constrained exploitation task (and similarly to [4] but
in a different perspective), we propose algorithmic convergence [4] as a suitable stopping criterion
when learning an exploration-exploitation policy. This defines a meaningful horizon for
exploration—exploitation tasks since their goal is completed exactly then, not in the end of an episode
and not in the continuous execution of an RL algorithm—after convergence—where exploration may
not affect the underlying policy any more. We proceed by defining the Convergence Horizon Return.
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Definition 8 (Convergence Horizon Return). Let G be the return of the rewards ry received by
an exploration—exploitation policy, Q the value function of the underlying MDP and € € R a small constant then:

T
G= Z rt, (8)
=0

which, for the time step T, applies:
|Qr+1 — Qr[ —€e <0. )

Given a small constant € and the algorithmic convergence of the RL algorithm learning in the
underlying MDP, the quantity |Q;+1 — Q¢| — € P 0. The algorithmic convergence will be realized
—00

either if the learning rate « is discounted or if some temporal difference A; of the underlying algorithm
tends to e.

Using the convergence horizon for the return of a teaching task too, the next question can be what
are the rewards r; constituting the return of a teaching task.

One possible goal for any teacher advising with a finite amount of advice would be to help
minimize student’s regret with respect to the reward obtained by an optimal policy. However, since
we do not assume such knowledge, and because there is a finite amount of advice, a better goal
could be to advise based on the state-action value of the advised action and not its immediate reward.
If the student was able to follow the rest of the teacher’s policy after receiving advice, then the action
a = argmax,(Qx(s,a)) for the current state s would be the best possible. Consequently, we define the
notion of value regret.

Definition 9 (Value Regret). In a convergence horizon T, the value regret, RV of an exploration—exploitation
policy (i.e., teaching policy) with respect to both an acting policy 7v* obtained after the T period and an acting
policy (i.e., student’s policy), 7', in time step t is:

RV = Z[maxﬂQ*(st,a) — Q*(st, 7t (s1))], (10)

teT

where Q* denotes the corresponding value function of 7t*.

The intuition behind this definition of regret in our context (where the acting agent is the student)
is that the best teacher for any specific student would ideally be the student himself, when it would
have reached convergence or its near-optimal policy.

The important thing to note here is that because a student agent receives a finite amount of advice,
he/she cannot improve their asymptotic performance [4]; consequently, the evaluation of a teaching
policy should ideally be based on the student’s optimal policy and not to that of some probably very
different teacher because that is its sustainable optimality.

For example, consider two states in a teacher’s acting MDP, A and B. A student agent learning
with a very simplistic state representation may observe these states as just one, C, and not differentiate
between them. Then, the student’s optimal action in state C will have a different expected return than
that obtained by the teacher from either A or B. Its sustainable optimality is defined as to what is
optimal given its simplistic internal representation. Any advice based on a finer representation may
not be supported with consistency by the student in the long run. A teaching policy should be ideally
evaluated on how much it speeds up the student converging to its own optimal policy.

In the next section, we propose a reward signal for teachers based on Value Regret.

5.3. The Q-Teaching Algorithm

The Q-Teaching algorithm described and proposed in this section is an RL advising (teaching)
algorithm learning a teaching policy. For this, we propose a novel reward scheme for the teacher based
on the value regret (see Definition 9).
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The key insight of the method is that of rewarding a teaching policy with quantities of the
form max,Q*(s¢,a) — Q* (s, 7' (s¢)), where 7' (s¢) is an estimation of the student’s action in s; and
max,Q*(st,a) is the teacher’s greedy action in s; (i.e., the action used for advice). This reward has
a high value when the value of the greedy action is significantly higher than the value of the action
that the student would take. This means that the teacher is encouraged to advise when the advised
action is significantly better than the action the student would take.

For terms of efficiency and to emphasize the value impact of the advising action, Q-Teaching
rewards all no-advice actions with zero. The advantages of such a scheme is that the teacher’s
cumulative reward is based only on the value gain produced when advising and a teaching episode can
finish when the budget finishes, not having to observe all the student’s episodes after its budget finishes.
From preliminary experiments, rewarding no advice actions too (which occur significantly more than
the maximum B advice actions) was overpowering the advice actions, resulting in an imbalanced
expression of the two actions in the teaching value function.

Still, when advising, the teacher should estimate Q* (s, 7t'(s;)) in order to compute its reward.
The simplest solution is that, since we do not have access to the value function of the student or its
internals, we use the acting value function Qy. of the teacher as an approximation for the optimal value
function of the student, Q*. To estimate 7t/ (s;), the teacher has several options. If the teacher is notified
of the intended action of the student beforehand, it can use that to compute the reward. If we assume
no knowledge of the student’s intended action, then some other estimation method for the student’s
intended action should be used. An example of such an estimation method is used in the Predictive
Advice method [6].

While predicting the actual student’s action (71! (s¢)) is possible, there are other—simpler—choices
for this estimation too. For example, the Importance Advising (see Section 2.2) uses a very similar
quantity for the advising threshold, of the form max,Q* (s, a) — min,Q*(s¢,a). For Importance
Advising, we can say that 7t (st) = min,Q*(s¢, a)—it pessimistically assumes the student will take the
worst action, representing the risk of the state. The advantage of such an assignment is that it is based
on a well-tested criterion [6] and that it does not need knowledge of the student’s intended action
(desirable for most realistic settings). The disadvantage is that we have a less detailed reward, which is
also not adapting to the student’s specific necessities but mostly to the domain’s characteristics.

Based on this dichotomy, we propose two versions of Q-Teaching (see Algorithm 1),
the off-student’s policy Q-Teaching and the on-student’s policy Q-Teaching. The on-student’s policy
Q-Teaching uses the value of the actual student’s action to compute the reward (thus, it is directly
influenced by its policy). We can intuitively say that on-student’s policy Q-Teaching will advise when
the student is mostly expected to act sub-optimally with respect to the acting value function of the
teacher, Qy. On the other hand, the off-student’s policy Q-Teaching uses the criterion discussed
above and the teaching policy is not directly influenced by the policy of the student. Specifically,
it is rewarding its teaching policy, 7rt, at time-step t 4 1 with the Q-value difference of the best action
a* to the worst action, as these were found at time ¢.

The Q-Teaching algorithm proceeds as follows (see Algorithm 1). A teacher agent enters an RL
acting task to learn an acting policy. It initializes two action-value functions, Qy and Qr, the acting
value function and the teaching value function, respectively (lines 1-2). Of course, it can also use
an existing acting value function.

Being in time step t and state s, the teacher queries its acting value function for the greedy action
in that state (line 6). Depending on whether we use the off-student’s policy or the on-student’s policy
Q-Teaching, the teacher sets a baseline action, 4, to either the worst possible action for that state or to
the action just announced by the student (lines 7-11).

Then, the teacher chooses an action from At = {advice,no_advice} based on Qr and its
exploration strategy. If the teacher chooses to advise (line 13), it gives the action a* as an advice
to the student agent. If the teacher chooses not to advise, the student will proceed with its own policy.
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Algorithm 1 Q-Teaching

1: Initialize Q7 (s, a) arbitrarily > teaching value function
2: Use existing Qy (s, a) or initialize it > acting value function
3: repeat (for each teaching episode) > teacher—student session

4 Initialize s

5 repeat (for each step)
6: a* < max, Qx (s, a)
7 if (Off-Student’s é:)olicy Q-Teaching) then
8

9

4 + min, Qy (s, a)
else
10: A+a > where 7 is the action announced by the student
11: end if
12: Choose aT from st using policy derived from Qr (e.g. e-greedy)
13: if ar = {advice} then
14: Advice the student with the action a*
15: b+b-1 > update remaining budget
16: else if ap = {no_advice} then
17: Send a L (no advice message) to the student
18: end if
19: Observe student’s actual action a and its new state and reward, s, r
20: Qx(s,a) < Qs(s,a) +alr + ymaxy Qx(s’,a’) — Qs(s,a)] > possibly continue learning an acting
policy
21: if ar = {advice} then
22: rr < Qz(s,a*) — Qx(s, )
23: else if ap = {no_advice} then
24: rr <0
25: end if
26: Qr(s,ar) < Qr(s,ar) + afrr +ymaxy Qr(s’,a") — Qr(s,ar)]
27: s+ s
28: until b = 0 OR teacher reached the estimated convergence horizon episode of the student

29: until end of teaching episodes

On line 19, the teacher observes the student’s actual action a and its new state and reward, s’, r.
Once again, the student may be the teacher himself; in this case, it observes its own action that was
taken based on Qy and its exploration strategy.

On line 20, the first Q-Learning update takes place for the acting value function Qy, based
on the environment’s reward. For the teaching value function update, the teacher’s reward, rr is
calculated first, based on the freshly updated values of the best and baseline actions, a* and 4, respectively
(lines 21-25).

Finally, a Q-Learning update for the teaching value function takes place based on the reward
rr (line 26) and the algorithm continues in the same way until whatever of the following two events
comes first: either the advice budget finishes or the student reaches a learning episode that we
have predetermined as its convergence horizon. These complete one learning episode or session for
the teacher.

In this version, the Q-Teaching algorithm is based on the Q-Learning algorithm, although, in
principle, any RL algorithm could be used for the underlying learning updates of Q-Teaching. However,
if an off-policy RL algorithm such as Q-Learning is chosen for the updates of both the acting and the
teaching value function, then the point of transition from acting to teaching is irrelevant to the learning
progress of the two policies. Reducing the impact of the exploration policy to the learning updates
allows for smoother interaction between the two policies and ensures us that we continue to learn the
same policies. In principle, a Q-Teaching agent is able to update both its acting and teaching value
functions continually and refine not only when it should advise but also what it should advise.

Since our goal is to introduce Q-Teaching as a flexible and generic enough method to be applied
to multiple domains, we propose a series of state features for the teaching task state space that we
think are necessary. From our experiments, Q-Teaching works best with an augmented version of the
acting task state space (see Table 3) similar to that of [5] (Zimmer’s method). Also in Table 3, note the
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role of the student’s progress feature (f3): it homogenises the student’s Markov chain by inducing
a state feature for time (see Section 3.2).

Table 3. The augmented state feature set for the Teaching Task.

ala Feature Description

fi Advice Binary feature indicating if the
current state is the result of advice

f2 Budget Remaining advice budget

f3 Student’s progress At least one informative feature for

the student’s learning progress (e.g.,
current episode)

fa  Student’s intended action = The action announced by the student
(optional)

fi Acting task original state features

5.4. Experiments and Results

In this section, we present results from using Q-Teaching in the Pac-Man Domain. We evaluate
both on-student’s policy Q-Teaching and off-student’s policy Q-Teaching, in two variations each:
known or unknown student’s intended action. Note that methods like Zimmer’s and Mistake
Correcting require knowledge of the student’s intended action.

We use two versions of students for the experiments. A low-asymptote and a high-asymptote
Sarsa students. Referring to [6] and Section 2.3, the low asymptote students receive a state vector
of 16 primitive features related to the current game state while the high asymptote students receive
a state vector of seven highly engineered features providing more information [6]. The low-asymptote
students have significantly worse performance than the high-asymptote ones.

Additionally, we choose to bootstrap all compared teaching methods with the same acting policy
in order to equally compare their advice distribution performance and not their quality of the advice.
The acting policy used for producing advice comes from a high-asymptote Q-Teaching agent after
1000 episodes of learning. Moreover, we use Sarsa students in order to emphasize the ability to advise
students that are different to the teacher. All learning methods (Zimmer’s and Q-Teaching) were
trained for 500 teaching episodes (sessions) to be equally compared for their learning efficiency too.

The Q-Teaching learning parameters for the teaching policy were & = 0.002, decaying € = 0.5
and A = 0.9, whereas all Sarsa students had &« = 0.001, ¢ = 0.05 and A = 0.9. The evaluation was
based on the student performance (game score) and using the Total Reward TL metric [2] divided by the
fixed number of training episodes. The student performance is evaluated every 10 advising episodes
(while learning) for 30 episodes of acting alone (and not learning). For the comparisons between
average score performances, we used pairwise t-tests with Bonferroni correction [18]. Statistically
significant results are denoted with their significance level and they always refer to paired comparisons.

In Figure 4a, teacher agents advise a low-asymptote Sarsa student who always announces its
intended action. We can see Zimmer’s method performs best and off-student’s policy Q-Teaching
comes second with a statistically significant difference (p < 0.05). The heuristic based-method Mistake
Correcting with a tuned threshold value of = 100 comes third. On-student’s policy Q-Teaching
performed worse than the previous three methods by a small margin, having not found an as good
advice distribution policy (non-significant difference to Mistake Correcting). Finally, all methods
performed statistically significantly better (p < 0.05) than not advising, effectively speeding up the
learning progress of the student.



Mach. Learn. Knowl. Extr. 2019, 1 37

2500

4000 T
S 3800 £ i
R
0
2000 - 4 3600
. 3400 F *
o ; © 3200 F <
S 1500 / 1 S
[} ! v 3000
3 / g
s / 8 2800 L E
¢ 1000 ; B g -
2 / Z 2600 - E
/
7/ Zimmer Method - - - - 2400 Mistake Correcting ------- E
500 e Off-Student policy Q-Teaching - - - - 2200 /. Off-Student policy Q-Teaching - - - - 3
/,/' Mistake Correcting -~ ; Zimmer Method - - - -
T On-Student policy Q-Teaching 2000 f No Advice —--—--- 4
-~ :
Ry No Advice —-—--
0 I I I 1 1800 L L L L L I I I
0 200 400 600 800 1000 100 200 300 400 500 600 700 800 900 1000
Training Episodes Training Episodes
(a (b)

Figure 4. Average student score in 1000 training episodes with teachers knowing the student’s intended
actions. The curves are averaged over 30 trials and the legend is ordered by score. The error bars
represent the 95% confidence intervals (CI) of the means. Non-overlapping Cls indicate statistically
significant differences of the means whereas overlapping CIs are inconclusive. (a) low-asymptote Sarsa
student; (b) high-asymptote Sarsa student.

In Figure 4b, the teachers advise a high-asymptote Sarsa student. Here, the tuned version of
Mistake Correcting (f = 200) performed statistically significantly better (p < 0.05) than all methods,
with Q-Teaching methods coming second and third (respectively) and Zimmer’s method coming next
(having non-significant differences between them).

For the case when the teacher agent is not aware of the student’s intended action (see Figure 5),
in Figure 5a the off-student-policy Q-Teaching performs best while Importance Advising (¢t = 200)
follows with a small performance difference (non significant). Early Advising (giving all B advice
in the first B steps) performs statistically significantly worse (at p < 0.05) than both Q-Teaching and
Importance Advising. In these experiments, we did not use on-student’s policy Q-Teaching since that
requires knowing the student’s intended action to compute the reward.
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Figure 5. Average student score in 1000 training episodes with teachers not knowing the student’s
intended actions. The curves are averaged over 30 trials and the legend is ordered by total reward.
The error bars represent the 95% confidence intervals (CI) of the means. Non-overlapping Cls
indicate statistically significant differences of the means whereas overlapping CIs are inconclusive.
(a) Low-asymptote Sarsa student; (b) High-asymptote Sarsa student.

In Figure 5b, advising a high asymptote Sarsa student, Q-Teaching had the second best
performance with the heuristic-based method importance advising (t = 200) performing better
(non significant). For high performing students, a poorly distributed advice budget can be much
less effective. For example, if the teacher knows the student’s intended action, it does not spend
advice in states where the student would anyway choose the correct action. This fact is emphasized
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in this specific case, since no advising did not perform significantly worse compared to the rest of
the methods.

Finally, in Tables 4 and 5, we can see the average total reward in 1000 training episodes for all of
the teaching methods. All methods knowing the student’s intention performed better than those that
did not, taking advantage of that knowledge.

Table 4. Average student score and session time for 1000 training episodes of Low-asymptote Sarsa
students. The scores are averaged over 30 trials and ordered (V) by total reward. Best performance and
smallest session time (faster training) are denoted in bold letters.

Student AverageV Avg. Avg.

Intention  Student Session Budget

Score Time Finish

Zimmer method Known 2145.35 1000 ep. 17 ep.
Off-Student Q-Teaching Known 2103.28 42 ep. 31ep.
Mistake Correcting Known 2086.03 - 20 ep.
On-Student Q-Teaching Known 2062.3 25 ep. 4ep.
Off-Student Q-Teaching  Not Known  2048.47 18 ep. 4ep.
Importance Advising Not Known  2026.62 - 10 ep.
Early Advising Not Known  1910.16 - 2 ep.

No Advice - 1485.01 - -

Table 5. Average student score and session time for 1000 training episodes of High-asymptote Sarsa
students. The scores are averaged over 30 trials and ordered (V) by total reward. Best performance and
smallest session time (faster training) are denoted in bold letters.

Student AverageV Avg. Avg.

Intention  Student Session Budget

Score Time Finish

Mistake Correcting Known 3429.97 - 240 ep.
Off-Student Q-Teaching Known 3235.12 28 ep. 13 ep.
On-Student Q-Teaching Known 3221.75 22 ep. 11 ep.
Zimmer method Known 3218.05 1000 ep. 8 ep.
Importance Advising Not Known  3162.28 - 30 ep.
Off-Student Q-Teaching  Not Known  3116.09 23 ep. 12 ep.
Early Advising Not Known  3112.84 - 2 ep.

No Advice - 3079.66 - -

Q-Teaching, the only learning AuB method allowing students to not announce their intended
action, performed relatively well compared to methods that know the student’s intended action, which
is an advantage of the proposed method.

Most importantly, while Zimmer and Q-Teaching methods were both trained for 500 episodes
(sessions), Q-Teaching training was completed significantly faster since the Zimmer method has to
observe all 1000 episodes of each student session to complete just one of its own, whereas Q-Teaching
has an upper bound for its episode completion. This upper bound is the algorithmic convergence
of the student (e.g, the low-asymptote student requires only 500 episodes to converge) and, in most
cases, it will be completed much faster, when the budget finishes (around the 30th episode for
the low-asymptote student). More specifically, in Tables 4 and 5, we can see the average training
time needed for each teacher (in terms of the average observed student episodes) in each of the
500 teacher episodes. In general, our proposed methods need at least x25 less training time than
the Zimmer’s method. We should also note here that, although non-learning methods do not need
training time, they require a significant and variable amount of manual parameter tuning to achieve
the reported performance.

Another advantage of off-student’s policy Q-Teaching is that it can use the same teaching policy
for very different students since it is not directly influenced from the student’s policy and the rewards
received by the student when not advising (such as in the Zimmer method). This is a significant
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advantage in terms of learning speed and versatility since heuristic methods have to be manually
tuned for each student separately to find the optimum threshold, ¢.

On-student policy Q-Teaching did not perform as well as expected, the main problem being the
non-stationary reward depending on the student’s changing policy. We believe that this method needs
significantly more training time than the off-student’s policy Q-Teaching because of its non-stationary
reward and it probably needs more informative features for the student’s current status. In our
case, this was only its training episode, which is the most basic information available for the
student. Moreover, the training episode feature is student-dependent since its meaning varies among
students—some students learn faster than others.

6. Related Work

There are several types of related work in the area of helping to learn. Some of this work focuses
on teaching in non-RL settings [19,20].

In the field of transfer learning in RL [2], an agent uses knowledge from a source task to aid its
learning in a target task. However, agents perform transfer knowledge from one task to another and
in an offline manner. Other differences of this typical TL setting to Agent Advising are described in
Section 2.2 of this article.

More closely related work has one RL agent teach another without a direct knowledge transfer.
Examples of such works include imitation learning [21] and apprentice learning [22]. In these approaches,
an expert provides demonstrations of the task to a student; then, the student has to extract a policy by
either learning directly from them or building a model to generate mental experience. In our setting,
the teacher does not provide a full-policy trajectory and has a limitation on the number of interventions
(advice budget). Moreover, we do not require a student with special processing abilities except that of
being able to receive advice.

In [23], a joint framework for advising is presented that allows advising to be controlled from
both the teacher and the student agent. Although similar to our setting, this work employs a different
interaction model from ours by assuming the student can actively ask for advice. Besides this,
the advise distribution process in this work is based on heuristic functions and not learning.

A multi-agent advising framework is presented in [24]. This work assumes a significantly different
setting with multiple agents learning simultaneously and advising each other using a common advising
strategy. This is a promising approach for its multi-agent setting and could possibly be extended in
the future to involve learning in its advice distribution phase, which is now based on probabilistic
confidence functions.

We emphasize the setting differences since the characteristics of each setting also determine what
kind of knowledge is available to the teacher and/or the student. This in turn (dis)allows different
learning approaches.

For the same setting as ours (i.e., an active advisor and a passive advisee), a non-learning teaching
framework for RL tasks is presented in [6] based on action advice. The methods presented there are
described in more detail in Section 2.2. One drawback of these methods is that, since they are based
solely on the teacher’s Q-values, they are not able to handle non-stationarity in the student’s learning
task, and also have to be given a threshold of Q-value differences, above which a state is considered
important. This parameter needs to be manually tuned for each student in contrast to off-student’s
policy Q-Teaching, which can learn a more generic teaching policy focusing on the criticalities of the
state space.

In addition, since the methods presented in [6] are heuristic-based and not based on learning,
the agent may spend all of its advising budget on early learning steps of the student that satisfy the
importance threshold, while it may later experience even more important states that further exceed the
given threshold.

The only other learning method for advising in our context is Zimmer’s method [5]. The method
proposed there is described in more detail in Section 2.2. One significant difference is that the method
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is based on the same reward received by the student, needing ad hoc modifications for each task to
encourage teachers towards a better advising policy. Our method uses a domain-independent reward
signal based on the acting task Q-values and can be directly used in any task. Moreover, their method
has greater data complexity since a complete batch of student training episodes is required for just
one training episode of the teacher. As discussed in the previous section, our method may finish one
teaching episode as early as the budget finishes; that is multiple times faster completion of one episode.
Finally, but most important, Q-Teaching can be used in the more realistic setting where there is no
knowledge of the student’s intended action.

Concerning the model selection criteria proposed in Section 4.1 for the teacher’s acting policy,
to the best of the author’s knowledge, there is no other work in the relevant literature examining
these criteria and furthermore proposing performance variance, and, specifically CV, as an important
one. Most relevant works choose models based on their average performance, which as discussed
previously, is not enough to evaluate the teaching effectiveness of a policy that will be sparsely and/or
infrequently sampled to produce advice.

7. Conclusions

In this article, we discussed and proposed criteria, considerations and methods for the problem of
learning teaching policies to produce and distribute advice.

Concerning advice production, we identify a model selection problem for the teacher, selecting
the appropriate acting policy from which to advise. The experiments showed the significant relation of
CV to the teaching performance, promoting CV as an important criterion—among others tested—for
selecting acting policies for advising. Moreover, average-reward RL was found to produce effective
policies for sparse advising under budget, although these policies may under-perform when used as
acting ones.

Concerning advice distribution (i.e., teaching policy), we proposed a novel representation of the
learning to teach problem as a constrained exploitation reinforcement learning problem. Based on this
representation, we proposed a novel RL algorithm for learning a teaching policy, Q-Teaching, able
to advise even when not having knowledge of the student’s intended action. Compared to the other
methods, Q-Teaching needs significantly less training time, while it performs equally well or better.

Advice distribution under budget is a challenging problem, both theoretically and practically,
posing a series of problems such as the non-stationarity of the teaching task, as a result of having
a learning student as part of the environment. Efficient and principled handling of the budget constraint
is another challenge.

From our experiments, Q-Teaching can be considered a promising method based on a more
formal understanding of the problem. It is significantly more efficient in terms of data complexity than
Zimmer’s method, and it can learn teaching policies without the assumption of having knowledge for
the student’s intended action.

There are several future directions. Q-Teaching could be adapted to student agents with specific
“disabilities” and could also be tested under different budget constraints to examine how budget affects
its teaching policies. In addition, off-student Q-Teaching could be tested on multi-student scenarios
since not fitting to a particular student could be proven effective when teaching multiple different
students. Moreover, the theoretical properties of the algorithms should be studied, especially the case
of learning a teaching and an acting policy at the same time, e.g., under which specific assumptions
a teaching policy converges.

The general usefulness of CV as a criteria for selecting teachers should be studied. Specifically,
how teacher selection criteria such as CV are capturing the robustness of a policy when that policy is
used sparingly for advising.

Some recent approaches such as the one presented in [25] propose novel interaction processes for
learning agents allowing a transparent and interpretable model learning process while also enabling
the natural integration of external information (such as advice) in the learning progress. In our specific
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context, such a novel teaching architecture could possibly allow a teacher to use only one value
function for both advising under a budget and acting. Such a hybrid agent transitions smoothly from
its actor role to the teacher’s one. A unified architecture and knowledge representation would further
reveal the deep connection between acting and teaching, one we strongly believe exists.
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