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Abstract: In recent years researchers have worked to understand image contents in computer
vision. In particular, the bag of visual words (BoVW) model, which describes images in terms
of a frequency histogram of visual words, is the most adopted paradigm. The main drawback is
the lack of information about location and the relationships between features. For this purpose,
we propose a new paradigm called bag of ARSRG (attributed relational SIFT (scale-invariant feature
transform) regions graph) words (BoAW). A digital image is described as a vector in terms of a
frequency histogram of graphs. Adopting a set of steps, the images are mapped into a vector space
passing through a graph transformation. BoAW is evaluated in an image classification context on
standard datasets and its effectiveness is demonstrated through experimental results compared with
well-known competitors.
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1. Introduction

In the last few years the problem of image classification has benefited from analytical approaches
and data descriptors. The literature provides a wide range of methods in which the features are
extracted and then stored in a discriminative format easily and correctly accessible by multimedia tools.
Bag of visual words (BoVW) is one of the most commonly adopted approaches. It provides a dense
sampling of features which can, in some cases, lead to a performance degradation. The primary concern
for improvement is to reduce features, without losing the discrimination and important details of the
image to describe. Clearly, it is an interesting challenge, and there can be multiple solutions maintaining
the balance with performance. Our main motivations arise from two aspects of this particular research
field. First, finding a connection between local and global features during image representation
different from BoVW and, second, reducing considerably the number of features which encode the
representation in order to improve the calculation and matching time. In this context, our aim is
addressing two important aspects of the image classification problem. First, image representation:
We faced the problem of encoding both spatial and structural information adopting a graph based
representation termed ARSRG (attributed relational SIFT (scale-invariant feature transform) regions
graph) [1]. Differently to what happens in the dense sampling step (e.g., dense SIFT) in BoVW,
our approach selects only relevant candidates through the result of image segmentation. The second
aspect concerns the image classification problem. We adopt a hybrid approach based on a graph-based
method, to encode spatial information, and a local information method as in BoVW. Unlike BoVW,
a word is conceived as a graph structure which represents an image. A graph words vocabulary,
which contains prototypes also called medoids, using a graphs similarity measure and a clustering
algorithm, is created. Finally, a graph is represented in form of a vector and contains the similarities,
extracted through an appropriate metric, between the elements of vocabulary. Substantially, it is
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a mapping from a graph space to a vector space. The whole framework is tested within an object
recognition task where the main problems concern the best image representation and matching,
which greatly impacts performance.

The paper is organized as follows: In Section 2 BoVW approaches are analyzed. In Section 3 the
proposed framework is described. Section 4 provides a wide experimental phase. Finally Section 5
reports conclusions and future works.

2. Related Work

The BoVW model is generally adopted to tackle image classification, object recognition and
disparate computer vision problems. The main drawback concerns the features vector representation
of an image which lacks relational and spatial information. Specifically, the visual words spatial
arrangements describe the image and contain useful features for representation and classification.
Recent proposed works encode both local and structural information using graph based image
representation. Likewise BoVW, adopting different approaches, creates a graph-visual words
vocabulary, leading to represent and classify each graph like a vector in terms of similarities among
vocabulary elements. Unlike the proposed approach, the literature presents some interesting variants.
The main difference, with the approaches listed below, concerns the segmentation step that allows the
filtering of the features extracted from the original image. The removal of small segments, through a
threshold, allows the exclusion of less representative features falling into them. This step appears to be
very advantageous, especially during the matching phase.

In [2], the authors propose additional BoVW models: bag of graph words (BoGW), bag of singleton
graphs (BoSG) and bag of visual graphs (BoVG), for digital object representation compliant to different
applications. These models, which map images in graph space, are evaluated on IAM repository
datasets and report great accuracy and execution time.

In [3], a new solution is presented for the graph classification problem by adopting two alternative
graph representations: the bag of vertices (BoV), which utilizes node features, extracted by learning
procedures, and the bag of partitions (BoP), which adopts standard features, extracted by metrics
applications. The experimental procedure is performed on 43 real-life graphs from seven different
domains and provides a significant improvement in graph classification performance.

In [4], the authors propose the bag of visual graphs (BoVG), a paradigm to describe the
spatial relations of visual words using a codebook of visual-word layouts, in the form of graphs.
This representation provides a vector for encoding imagse which includes both the frequency of the
occurrence of visual words and their spatial relationships.

In [5], the authors propose an attributed multi-scale graph-based approach in which the dictionary
label describes the geometric layout of the local information considering the different scales. They find
the optimal matching by computing the distances of any graph pairs described by image grids.
Then, a kernel for image classification is built measuring similarities of graphs at different scales.
Experimental results are performed on the Caltech 101, Caltech 256, Scene Categories, and Six Actions
datasets.

In [6], the authors propose an innovative bag of features (BoF) approach based on a graph structure
in hierarchical form. It leads to gathering structural and local features, with the purpose of creating a
selective structural model adapted for a particular object classification task.

In [7], the authors work on improvement of the discriminating power of BoVW. Using graph
sequence representation they build a model which includes the structural relations between the interest
points. The model provides competitive results for human action recognition and can be adopted to
address the graph sequences classification problem.

In [8], an algorithm to represent the geometric layout of the BoVW model is described. The relative
position of visual words is encoded by subdividing the image into a grid and detecting each point
as an origin. Indeed, it includes only the spatial information and not the frequency of occurrence of
visual words. The result is a features vector useful for image retrieval and classification.



Mach. Learn. Knowl. Extr. 2019, 1 873

In [9], the authors propose an approach, called Hybrid Geometric Spatial Image Representation
(HGSIR), which includes a mixture of histograms calculated on the rectangular, triangular and circular
regions of each image. The performance of the proposed approach is measured on five standard
image datasets.

In [10], the authors propose a spatial layout-based approach, called Region Similarity Arrangement
(RSA), with the purpose of enhancing the bag of words BoW model in image retrieval. This method
employs the geometric position of interest regions. For each image it builds a region property space
describing each regions pair as a point in a polar coordinate system (scale, angle) and includes this
information in the BoW array.

3. Bag of ARSRG Words

The BoVW [11] paradigm requires a dense sampling during features extraction to achieve high
performance. Our aim is to create a hybrid scheme with the purpose of joining BoVW and visual
oriented graph (VoG) paradigms. Particularly, we build an image description which includes both
global and spatial information of the feature points. In contrast to the dense sampling approach
(e.g., dense SIFT [12]), the descriptors are selected only among candidates, detected through image
segmentation results. In this way, images will be divided into regions of descriptors. Indeed,
regions too small, or not very discriminant, are discarded through a thresholding procedure. Finally,
we obtain a drastic reduction of the points that characterize the image, with the addition of spatial
information. This representation requires that each feature point must necessarily belong to a single
image region. For this purpose, images are represented by structures much more complex, such as
graphs. The proposed framework, described in pseudocode version of Algorithm 1, named bag of
ARSRG words(BoAW), is composed of the following steps:

1. Image to graph (lines 2–4). The image is represented using a graph structure named ARSRG [1].
From now, we will identify the ARSRG structure simply as a graph;

2. Similarity matrix (line 8). A matrix to store the distance of a fixed number of graphs for each
image class is created;

3. Graph words vocabulary (line 9). A clustering algorithm on the similarity matrix is applied.
The goal is the production of a vocabulary consisting of the graph prototypes of each cluster.

4. Graph to vector (lines 10–12). Similarities between graphs and graph prototypes of vocabulary
are calculated. The ith element of the BoAW vector represents a graph which will be equal to the
distance between the ith element of the vocabulary and the graph itself;

5. Image classification (line 13). An algorithm in the vector space for the classification phase is adopted;

In the following sections the different phases in detail are described. A graphical example of the
proposed framework in Figure 1 is shown. Mediods, representing the clusters obtained, encode the
image-classes and are adopted for the BoAW vector representation, step 4. The number of clusters is
closely related to classes which are included in the experimental datasets and is obtained empirically
with the aim of optimizing performance.
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Figure 1. Bag of ARSRG words (BoAW). ARSRG (attributed relational SIFT regions graph), SIFT
(scale-invariant feature transform).

Algorithm 1

1: procedure BOAW(Images)
2: for all img ∈ Images do
3: Graphsi = Compute_ARSRG()
4: end for
5: for all ARSRG ∈ Graph do
6: Gi = Selection_Training(Graphs, n, c)
7: end for
8: W = Build_Similarity_Matrix(G)
9: M = Find_Medoids(W)

10: for all ARSRG ∈ Graph do
11: Vector_BoAW = Compute_BoAW(M, Graphs)
12: end for
13: Classi f ication = Logistic_Label_Propagation(Vector_BoAW)
14:
15: end procedure

3.1. Image to Graph: ARSRG

We adopted the attributed relational SIFT-based regions graph (ARSRG) [1] as image
representation. The structure is composed of three layers: root node, region nodes and leaf nodes.
The root node represents the entire image and connects nodes to the second level, the region adjacent
graph (RAG) [13]. RAG nodes describe the spatial relations among areas. Regions of interest (ROIs)
of the image are extracted through a segmentation algorithm [14]. In this way, adjacent regions are
encoded by connected nodes. Finally, leaf nodes encode the set of scale-invariant feature transform
(SIFT) [15] descriptors extracted from the original image, with the purpose of creating a unique
association between the SIFT and the corresponding region. The ARSRG1st structure region based can
be formalized as the tuple

G = (Vregions, Eregions, VFSIFT , Eregions−SIFT) (1)

where:

• Vregions is a set of region nodes;
• Eregions ⊆ Vregions × Vregions is a set of unidirectional edge, where e ∈ Eregions and e = (vi, vi) is

an edge between two nodes (vi, vj) ∈ Vregions;
• VFSIFT is a set of SIFT nodes;
• Eregions−SIFT ⊆ Vregions ×VFSIFT is a set of directional edge, where e ∈ Eregions−SIFT e e = (vi, v f j)

is an edge from the source node vi ∈ Vregions to a destination node v f j ∈ VFSIFT ;

The computational complexity is related to the cardinality of the four sets: Vregions—number
of regions extracted through segmentation, Eregions—number of connections among regions,
VFSIFT—number of SIFT, Eregions−SIFT—number of SIFT belonging to regions.
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3.2. Similarity Matrix

A similarity matrix is built to describe the distance of a fixed number of graphs. The matrix
will be of nc × nc size, where n is the number of graphs belonging to the c classes. Each element
of the similarity matrix represents the distance between two graphs. To compare two graphs,
an additional matrix, called DISTMATRIX, is created. It is composed of a certain number of rows and
columns corresponding to the number of regions (nodes) of the first and second graph respectively.
Each element contains the difference of size (pixels) in absolute value between regions of compared
graphs. A comparison between the corresponding regions is performed when the minimum value
of each row in DISTMATRIX is found. Matching between regions is managed with an algorithm
based on graph matching and ratio testing [16]. A SIFT key PS

k from the source image is positively
SIFT matched to a SIFT key Pd

l to target image if the distance:
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where Ud
l2 is the descriptor of the target image with the second shortest distance from Us

k and 0 ≤
ρ ≤ 1, called the ratio value, is a threshold that controls the false positive. A support matrix S is
adopted to compare SIFTs belonging to regions. The dimension of S is equal to the number of SIFTs of
the first region, rows, and second region, columns. Two SIFTs will have a match if they validate the
criteria of the ratio test [16]. A match between SIFTi and SIFTj is identified as value 1 at position i, j in
the matrix S. If two regions have a number of SIFT less than or equal to a given threshold, they will
not contribute to the accumulation of matches found. The procedure is performed K times and at each
step excludes minimum values calculated at previous iterations. The minimum of DISTMATRIX is
extracted due to regions having a very small pixel difference. Also similar in terms of content, are
those with a higher probability of match. The total number of SIFT matches found between the two
graphs is divided by the total number of SIFTs belonging to the second graph. The similarity matrix
creation is the most expensive term of the framework. The computational complexity can be estimated
in the order of N2(K)N , where N is the number of maximum regions adopted during the comparison
between two structures and K represents the number of iterations during the procedure.

3.3. Graph Words Vocabulary

Inspired by BoVW [17], we proceed with a clustering algorithm application on the similarity
matrix in order to produce a vocabulary consisting of graphs representing prototypes for each cluster.
K-medoids [18], after examining different methods operating on graphs, is adopted. It allows the
obtainment of medoids (ARSRG prototypes) from the similarity matrix, indeed medoids are structures
with a minimum distance within a cluster. Similarity matrix values are adopted as the distance between
ARSRG structures. In this way the clustering algorithm adopts the same distance measures of the
similarity matrix. K-medoids takes as input parameters, the number of clusters to achieve, and as
output returns the medoids which will be part of the dictionary, similar to what happens in BoVW.
In contrast to BoVW, where the words are extracted with only local information, K-medoids considers
the words represented by ARSRG structures. If we mistakenly opted to consider ARSRG regions as
vocabulary words, a number of unbalanced regions, due to the result of image segmentation, would
have a consequent loss of spatial information. Local information, in conjunction with the spatial
information, will then be adopted to perform creation and comparison of BoAW. Given the medoid mi
at step t belonging to the range {1, . . . , k} and given the element xj of dataset belonging to the range
{1, . . . , n}, where xj 6= mi for each (i, j). Given d(·) the distance obtained from the input similarity
matrix, the steps of the algorithm can be summarized as:
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1. k points are randomly chosen from the n data and are considered as initial medoids;
2. Each point is associated with the nearest medoid, using the input similarity matrix;
3. For each medoid m and for each non-medial point x, m with x is exchanged and the total cost

configuration is calculated;
4. The minimum cost configuration is chosen and the procedure is repeated from step 2. The cost is

defined as

cost =
k

∑
i=1

n

∑
j=1

d(xj, mi). (4)

5. The procedure is repeated until the configuration within each cluster remains practically
unchanged.

The computational complexity is related to n dataset elements and k mediods. The cost can be
estimated in the order of k(n− k)2, that can be reduced to n2.

3.4. Graph to Vector

The BoAW consists of a vector in which elements describe similarities among graphs and
prototypes of vocabulary. The algorithm adopted to calculate the distances is the same as described
in Section 3.2. As previously discussed, the algorithm detects the number of SIFT matched regions,
belonging to images, between two graphs. Unlike the BoVW, in which the number of SIFT images
having the minimum distance from each vocabulary words are found, we count the number of SIFT
matched images between the graph and each prototypes of the vocabulary. Unlike the BoVW, in which
a word represents a part, a named patch of image that includes only local features, in the proposed
approach a word represents an entire image, a graph structure that includes local and global features.
Formally, given a labeled set of sample graphs

S = {G1, G2, G3, . . . , Gn} (5)

a graph similarity measure s(Gi, Gj) is considered. We can define a set of prototypes as

P = {P1, P2, P3, . . . , Pm} (6)

taken appropriately from the set S, using a clustering algorithm. Computing the similarities measure s
of a given input graph Gj with each prototype Pk ∈ P, leads to m similarities

s1(Gj, P1), . . . , sm(Gj, Pm). (7)

A graph can be expressed in an m-dimensional array (s1, . . . , sm). Now, we can define the BoAW
vector as

ΦP
j (Gj) = (s(Gj, P1), . . . , sm(Gj, Pm)) (8)

where s(Gj, Pi) is a graph similarity distance between graph Gj and the ith prototype.
The computational complexity is linked to three factors: number of graphs n belonging to set S,
number of prototypes m belonging to set P, and the type of graph similarity s.

4. Results

In this section we describe the results obtained on public datasets. In order to correctly assess
performance, the setup as described in well-known object recognition methods is adopted, in which the
crucial point concerns the selection of graph prototypes with purpose to best represent objects-classes.

4.1. Datasets

We test our approach on a dataset containing object images. Datasets adopted are:
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• Amsterdam Library of Object Images (ALOI) [19]. It is a color image selection of 1000 small
objects. Objects was recorded varying viewing angle, illumination angle and illumination color in
order to capture the sensory variation. In addition was captured wide-baseline stereo image.

• Caltech 101 [20]. It is an objects image collection belonging to 101 categories, with about 40 to
800 images per category. Most categories have about 50 images.

• Columbia Object Image Library (COIL-100) [21]. It is a image collection of 100 objects. The images
were taken at pose internals of 5 degrees.

• The ETH-80 [22]. It is a image collection of 80 objects from 8 categories. Each object is described
by 41 different views, thus obtaining a total of 3280 images.

ALOI, COIL-100 and ETH-80 datasets are represented on a simple background then the
classification is less difficult than the dataset Caltech 101 where images have a not uniform background.
Figure 2 shows some examples of datasets.

(a) (b)

(c) (d)

Figure 2. Dataset images: (a) ALOI, (b) Caltech 101, (c) COIL-100, (d) ETH-80.

4.2. Experimental Setup

The classification stage is managed with logistic label propagation (LLP) [23]. Tests are performed
using a one-versus-all (OvA) paradigm for 30 executions. A shuffling operation is applied to ensure
the training and test set are always different. Images, before performing the procedure of Section 3.1,
are scaled to 150× 150 pixels size, to avoid performance degradation. Image segmentation is performed
using the algorithm in [14] and the default parameters are: the threshold for color quantization is in the
range 0− 600, the threshold for the region merging is fixed to 0.4, then the scale factor is automatically
calculated from the image size. The SIFT dimensional vector is fixed to 128. Settings for graph
matching are: ρ = 0.6 threshold value for false positives, and the parameter for the minimum number
of SIFTs matched, for which two regions can be considered similar, is fixed at 3. For DISTMATRIX
the threshold value, which excludes too small regions is fixed to 100. The number of iterations
K about the minimum on the rows in the matrix DISTMATRIX is fixed to 35. Finally, similarity
matrix is built through an appropriate procedure that takes the graph of each classes and produces
the expected output vector. BoAW is computed through a special procedure which takes, as input,
the vector containing the portion of the graphs of the similarity matrix, the vector of all graphs of
a given class, and finally the medoids. The framework was completely developed in Matlab code.
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Moreover, we adopted the related code, in C language, of the JSEG algorithm [14], and the related code,
a combination of Matlab and C language, of the SIFT [15] algorithm, to perform image segmentation.
Finally, the performances are measured in terms of accuracy, based on the OvA paradigm, according
to the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN
. (9)

1. TP. Positive classified image belonging to the positive class;
2. TN. Negative classified image belonging to the negative class;
3. FP. Positive classified image belonging to the negative class;
4. FN. Negative classified image belonging to the positive class;

4.2.1. ALOI

Table 1 reports experiments performed on the ALOI dataset. Results are listed in order of average
accuracy and the approach that provided the best performance is highlighted. In order to validate the
robustness of the proposed framework, experiments are performed thorough a considerable increase
in the number of images. In addition, we adopted the same settings reported in [24] to perform
a correct comparison. Therefore, only 100 objects are considered, images are converted to grayscale,
and the second image of each class is used for training and the others for testing. Two images are
taken into account for each class, with a total of 200 images. At each iteration, for each class, an
additional training image is added. In Table 1 we present only the results considering a batch of
400 images, since intermediate results do not provide particular improvements. We show the results
achieved by BoVW and those obtained in [24] using some variants of linear discriminant analysis
(ILDAaPCA, batchLDA, ILDAonK and ILDAonL) and in [25] (ARSRGemb). ILDAaPCA creates a
PCA subspace using the k dimensional reconstructive subspace and c− 1 additional vectors having
discriminative features. Those additional vectors are created by vectors that would be removed when
the subspace to k-dimensions is deleted. Using this approach, those descriptive features are adopted.
Afterwards, the final LDA output from the resulting obtained subspace is built. BatchLDA creates
a new model for each step through the same number of images in order of incremental approach.
ILDAonK increases a PCA truncated to the size k̂ = k + c− 1. The parameter k includes 80% of the
information as a total variance ratio and of the constant reference model during the test. ILDAonL
increases the (c− 1)-dimensional LDA basis and exclusively descriptive information is adopted.

Table 1. Results on the ALOI dataset.

Method 200 400 800 1200 1600 2000 2400 2800 3200 3600

BoAW 98.29% 92.83% 98.80% 96.80% 96.76% 98.15% 89.52% 82.65% 79.96% 79.88%

ARSRGemb 86.00% 90.00% 93.00% 96.00% 95.62% 96.00% 88.00% 81.89% 79.17% 79.78%

BoVW 49.60% 55.00% 50.42% 50.13% 49.81% 48.88% 49.52% 49.65% 48.96% 49.10%

batchLDA 51.00% 52.00% 62.00% 62.00% 70.00% 71.00% 74.00% 75.00% 75.00% 77.00%

ILDAaPCA 51.00% 42.00% 53.00% 48.00% 45.00% 50.00% 51.00% 49.00% 49.00% 50.00%

ILDAonK 42.00% 45.00% 53.00% 48.00% 45.00% 51.00% 51.00% 49.00% 49.00% 50.00%

ILDAonL 51.00% 52.00% 61.00% 61.00% 65.00% 69.00% 71.00% 70.00% 71.00% 72.00%

As can be seen, BoAW is able to provide best performance for the object recognition task. Indeed,
the combination of local and spatial information provides clear benefits in image representation
and matching.
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4.2.2. Caltech 101

Table 2 summarizes the results obtained on the Caltech 101 dataset. Experimental results
are performed comparing the BoAW with BoVW based on pyramidal representation [11].
Experimental comparisons are performed using the following image categories: bowling, cake,
calculator, cannon, cd, chess-board, joy-stick, skateboard, spoon and umbrella. The best performances
are obtained with a training set, and the test set at 60% and 40% of the dataset respectively. Results are
listed in form of average accuracy and the approach that provided the best performance is highlighted.

Table 2. Results on the Caltech 101 dataset.

Method Accuracy

BoAW 74.00%

BoVW 83.00%

As can be seen the performance differs when images are composed of non-uniform backgrounds.
BoVW is more efficient and does not suffer this detail, and is otherwise decisive for the proposed
approach which incorporates structural information. This aspect considerably distorts image
representation and consequently the classification phase. This problem could be solved with a
segmentation phase, during the preprocessing, to remove the uninformative background or with
a filtering application, thus going to work exclusively on the object to be represented. This loophole
does not always work because removing the background is not easy.

4.2.3. COIL-100

Table 3 shows results on the COIL-100 dataset. In order to obtain a valid comparison with the
methods in [26,27] we adopted the same settings: 25 objects are randomly selected and 11% are used
as the training set and 89% are used as the testing set. Therefore, results obtained by BoVW are shown
and those obtained in [26,27] by applying their solution (VFSR) and the approaches proposed in [28]
(gdFil), in [29] (APGM), in [30] (VEAM), in [31] (DTROD-AdaBoost), in [32] (RSW+Boosting), in [33]
(Sequential Patterns), in [34] (LAF) and in [25] (ARSRGemb). Results are listed in form of average
accuracy and the approach that provided the best performance is highlighted. Also in this case our
approach confirms its qualities obtaining the best performance.

Table 3. Results on the COIL-100 dataset.

Method Accuracy

BoAW 99.77%

ARSRGemb 99.55%

BoVW 51.71%

gdFil 32.61%

VFSR 91.60%

APGM 99.11%

VEAM 99.44%

DTROD-AdaBoost 84.50%

RSW+Boosting 89.20%

Sequential Patterns 89.80%

LAF 99.40%
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4.2.4. ETH-80

Table 4 shows results on the ETH-80 dataset. We adopted the same setup in [26] to perform a direct
comparison. The setting consists of six categories (apples, cars, cows, cups, horses, and tomatoes).
The training set is composed of four objects for each class and 10 different views for each object with
an amount of 240 images. The testing set is composed of 60 per category (15 views per object). We
present tests performed by BoVW and those achieved in [26] by employing the solution proposed in
[25] (ARSRGemb), [28] (gdFil), in [29] (APGM), and in [30] (VEAM). Also in this case the results are
listed highlighting the accuracy of the best approach. As can be seen BoAW provides better results
than competitors also when view points changes occur.

Table 4. Results on the ETH-80 dataset.

Method Accuracy

BoAW 89.29%

ARSRGemb 89.26%

BoW 58.83%

gdFil 47.59%

APGM 84.39%

VEAM 82.68%

5. Conclusions

In this work, the object recognition problem is addressed through a new paradigm. We propose
an image classification approach oriented to more complex structures that incorporate spatial
information and local feature points. The goal is providing adequate performance with a certain
number of reduced image feature points compared to the BoVW approach that makes a dense sampling
during image description. Indeed, BoAW adopts, on average, 95% less feature points than BoVW.
The ARSRG building process takes an average 0.1 ms due to massive filtering on features and the
successively clustering algorithm creates a dictionary reducing the number of mediods. It has been
shown, through a large experimental phase, that BoAW is robust in the case of images with uniform
backgrounds while partially failing in the case of non uniform backgrounds. This aspect is linked to
the image representation, which is not able to capture enough structure to be considered important
in the matching phase. Future works concern the possibility of improving the image description and
adapting the framework to any type of image classification/retrieval application.

Author Contributions: Both authors conceived the study and contributed to the writing of the manuscript and
approved the final version.

Acknowledgments: This work is dedicated to Alfredo Petrosino. With him we took our first steps in the field of
Computer Science. During these years spent together, we learned the firmness in achieving the goals and the love
and passion for the work. We will be forever grateful. Thank you to our great master.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Manzo, M.; Petrosino, A. Attributed relational sift-based regions graph for art painting retrieval.
In Proceedings of the International Conference on Image Analysis and Processing, Naples, Italy,
9–13 September 2013; Springer: Berlin, Germany, 2013; pp. 833–842.

2. Silva, F.B.; Werneck, R.d.O.; Goldenstein, S.; Tabbone, S.; Torres, R.d.S. Graph-based bag-of-words for
classification. Pattern Recognit. 2018, 74, 266–285. [CrossRef]

3. Bhuiyan, M.; Al Hasan, M. Representing Graphs as Bag of Vertices and Partitions for Graph Classification.
Data Sci. Eng. 2018, 3, 150–165. [CrossRef]

http://dx.doi.org/10.1016/j.patcog.2017.09.018
http://dx.doi.org/10.1007/s41019-018-0065-5


Mach. Learn. Knowl. Extr. 2019, 1 881

4. Da Silva, F.B.; Goldenstein, S.; Tabbone, S.; Torres, R.D.S. Image classification based on bag of visual graphs.
In Proceedings of the IEEE International Conference on Image Processing (ICIP), Melbourne, VIC, Australia,
15–18 September 2013; pp. 4312–4316.

5. Hu, D.; Xu, Q.; Tang, J.; Luo, B. Multi-scale Attributed Graph Kernel for Image Categorization. In Proceedings
of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Guangzhou, China,
23–26 November 2018; Springer: Berlin, Germany, 2018; pp. 610–621.

6. Clément, M.; Kurtz, C.; Wendling, L. Learning spatial relations and shapes for structural object description
and scene recognition. Pattern Recognit. 2018, 84, 197–210. [CrossRef]

7. Cortés, X.; Conte, D.; Cardot, H. Bags of Graphs for Human Action Recognition. In Proceedings of the Joint
IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and
Syntactic Pattern Recognition (SSPR), Beijing, China, 17–19 August 2018; Springer: Berlin, Germany, 2018;
pp. 429–438.

8. Penatti, O.A.; Silva, F.B.; Valle, E.; Gouet-Brunet, V.; Torres, R.D.S. Visual word spatial arrangement for
image retrieval and classification. Pattern Recognit. 2014, 47, 705–720. [CrossRef]

9. Ali, N.; Zafar, B.; Riaz, F.; Dar, S.H.; Ratyal, N.I.; Bajwa, K.B.; Iqbal, M.K.; Sajid, M. A hybrid geometric
spatial image representation for scene classification. PLoS ONE 2018, 13, e0203339. [CrossRef] [PubMed]

10. Zhang, D.; Tang, J.; Jin, G.; Zhang, Y.; Tian, Q. Region similarity arrangement for large-scale image retrieval.
Neurocomputing 2018, 272, 461–470. [CrossRef]

11. Lazebnik, S.; Schmid, C.; Ponce, J.Beyond bags of features: Spatial pyramid matching for recognizing natural
scene categories. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), New York, NY, USA, 17–22 June 2006; Volume 2, pp. 2169–2178.

12. Liu, Y.; Liu, S.; Wang, Z. Multi-focus image fusion with dense SIFT. Inform. Fus. 2015, 23, 139–155. [CrossRef]
13. Trémeau, A.; Colantoni, P. Regions adjacency graph applied to color image segmentation. IEEE Trans.

Image Process. 2000, 9, 735–744. [CrossRef] [PubMed]
14. Deng, Y.; Manjunath, B. Unsupervised segmentation of color-texture regions in images and video. IEEE Trans.

Pattern Anal. Mach. Intell. 2001, 23, 800–810. [CrossRef]
15. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh

IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 99,
pp. 1150–1157.

16. Sanromà Güell, G.; Alquézar Mancho, R.; Serratosa Casanelles, F. Graph matching using sift descriptors:
an application to pose recovery of a mobile robot. In Proceedings of the 5th International Conference on
Computer Vision Theory and Applications, Angers, France, 17–21 May 2010; pp. 249–254.

17. Szeliski, R. Computer Vision Algorithms and Application; Springer: Berlin, Germany, 2003.
18. Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction To Cluster Analysis; John Wiley & Sons:

Hoboken, NJ, USA, 2009, Volume 344.
19. Geusebroek, J.M.; Burghouts, G.J.; Smeulders, A.W. The Amsterdam library of object images. Int. J.

Comput. Vis. 2005, 61, 103–112. [CrossRef]
20. Fei-Fei, L.; Fergus, R.; Perona, P. Learning generative visual models from few training examples:

An incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 2007,
106, 59–70. [CrossRef]

21. Nene, S.A.; Nayar, S.K.; Murase, H. Object Image Library (Coil-100). Available online: http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.360.6420 (accessed on 1 August 2019).

22. Leibe, B.; Schiele, B. Analyzing appearance and contour based methods for object categorization.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Madison, WI, USA, 18–20 June 2003; Volume 2, pp. II–409.

23. Kobayashi, T.; Watanabe, K.; Otsu, N. Logistic label propagation. Pattern Recognit. Lett. 2012, 33, 580–588.
[CrossRef]

24. Uray, M.; Skocaj, D.; Roth, P.M.; Bischof, H.; Leonardis, A. Incremental LDA Learning by Combining
Reconstructive and Discriminative Approaches. In Proceedings of the British Machine Vision Conference
2007 (BMVC), Warwick, UK, 10–13 September 2007; pp. 1–10.

25. Manzo, M.; Pellino, S.; Petrosino, A.; Rozza, A. A novel graph embedding framework for object recognition.
In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014;
Springer: Berlin, Germany, 2014; pp. 341–352.

http://dx.doi.org/10.1016/j.patcog.2018.06.017
http://dx.doi.org/10.1016/j.patcog.2013.08.012
http://dx.doi.org/10.1371/journal.pone.0203339
http://www.ncbi.nlm.nih.gov/pubmed/30208096
http://dx.doi.org/10.1016/j.neucom.2017.07.025
http://dx.doi.org/10.1016/j.inffus.2014.05.004
http://dx.doi.org/10.1109/83.841950
http://www.ncbi.nlm.nih.gov/pubmed/18255446
http://dx.doi.org/10.1109/34.946985
http://dx.doi.org/10.1023/B:VISI.0000042993.50813.60
http://dx.doi.org/10.1016/j.cviu.2005.09.012
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.360.6420
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.360.6420
http://dx.doi.org/10.1016/j.patrec.2011.12.005


Mach. Learn. Knowl. Extr. 2019, 1 882

26. Morales-González, A.; Acosta-Mendoza, N.; Gago-Alonso, A.; García-Reyes, E.B.; Medina-Pagola, J.E. A new
proposal for graph-based image classification using frequent approximate subgraphs. Pattern Recognit. 2014,
47, 169–177. [CrossRef]

27. Morales-González, A.; García-Reyes, E.B. Simple object recognition based on spatial relations and visual
features represented using irregular pyramids. Multimed. Tools Appl. 2013, 63, 875–897. [CrossRef]

28. Gago-Alonso, A.; Carrasco-Ochoa, J.A.; Medina-Pagola, J.E.; Fco, J.; Martínez-Trinidad, J.F. Full duplicate
candidate pruning for frequent connected subgraph mining. Integr. Comput. Aided Eng. 2010, 17, 211–225.
[CrossRef]

29. Jia, Y.; Zhang, J.; Huan, J. An efficient graph-mining method for complicated and noisy data with real-world
applications. Knowl. Inf. Syst. 2011, 28, 423–447. [CrossRef]

30. Acosta-Mendoza, N.; Gago-Alonso, A.; Medina-Pagola, J.E. Frequent approximate subgraphs as features for
graph-based image classification. Knowl. Based Syst. 2012, 27, 381–392. [CrossRef]

31. Wang, Y.; Gong, S. Tensor discriminant analysis for view-based object recognition. In Proceedings of the
18th International Conference on Pattern Recognition, Hong Kong, China, 20–24 August 2006; Volume 3,
pp. 33–36.

32. Marée, R.; Geurts, P.; Piater, J.; Wehenkel, L. Decision trees and random subwindows for object recognition.
In Proceedings of the ICML Workshop on Machine Learning Techniques for Processing Multimedia Content
(MLMM2005), Bonn, Germany, 11 August 2005.

33. Morioka, N. Learning object representations using sequential patterns. In Proceedings of the Australasian
Joint Conference on Artificial Intelligence, Auckland, New Zealand, 1–5 December 2008; Springer: Berlin,
Germany, 2008; pp. 551–561.

34. Obdrzalek, S.; Matas, J. In Proceedings of the Object Recognition using Local Affine Frames on Distinguished
Regions, Cardiff, UK, 2–5 September 2002; Volume 2, pp. 113–122.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.patcog.2013.07.004
http://dx.doi.org/10.1007/s11042-011-0938-3
http://dx.doi.org/10.3233/ICA-2010-0342
http://dx.doi.org/10.1007/s10115-010-0376-y
http://dx.doi.org/10.1016/j.knosys.2011.12.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Bag of ARSRG Words
	Image to Graph: ARSRG
	Similarity Matrix
	Graph Words Vocabulary
	Graph to Vector

	Results
	Datasets
	Experimental Setup
	ALOI
	Caltech 101
	COIL-100
	ETH-80


	Conclusions
	References

