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Abstract: Various big data sets are recorded on the server side of computer system. The big data are well
defined as a volume, variety, and velocity (3V) model. The 3V model has been proposed by Gartner, Inc.
as a first press release. 3V model means the volume, variety, and velocity in terms of data. The big data
have 3V in well balance. Then, there are various categories in terms of the big data, e.g., sensor data,
log data, customer data, financial data, weather data, picture data, movie data, and so on. In particular,
the fault big data are well-known as the characteristic log data in software engineering. In this paper,
we analyze the fault big data considering the unique features that arise from big data under the operation
of open source software. In addition, we analyze actual data to show numerical examples of reliability
assessment based on the results of multiple regression analysis well-known as the quantification method
of the first type.

Keywords: fault big data; reliability analysis; multiple regression analysis; quantification method;
open source project

1. Introduction

A waterfall development model is well-known as the traditional software development style.
At present, the software development style has been changed to various development paradigms.
In particular, the development style of open source software (OSS) has the unique style such as the
OSS project. The OSS project has the development cycle in the flow such as development, version
release, usage of users, reporting of bug, checking and modifying of OSS, and release of new version.
Recently, the OSS with network connection service is increasing more and more. Thus, the numbers of
network-oriented OSS such as cloud service, server, IoT (Internet of Things) device software have been
increasing as well as the standalone software.

In the past, various methods based on software reliability growth models have been proposed by
several research groups [1,2]. On the other hand, several research papers for OSS reliability assessment
have been published [3].

There are many OSS reliability assessment methods based on the stochastic models. In addition,
there are several methods based on empirical data analysis [4,5]. In particular, it is very useful for the
OSS developers to understand the trend of fault big data recorded on the OSS bug tracking system from
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the standpoint of bird’s-eye view. The organization of this paper is as follows: Section 2: discusses the
relationship between the raw data and categorical one. Section 3: proposes the multiple regression analysis
in order to solve the problem in terms of the degree of freedom for the large scale fault data. Section 4:
describes and analyzes the forward-backward stepwise selection method by analyzing the fault big data.
Section 5: discusses the upper and lower confidence limits based on the typical hazard rate model. Section
6: discusses the characteristics of the proposed method.

Many software reliability assessment methods based on the stochastic model have been proposed
by several researchers [6–8]. Recently, it is difficult to assess the software reliability because there are
various software development styles. Historically, the fault data sets are used for the software reliability
assessment. In addition, the software reliability assessment methods based on the measurements of
software metrics have been proposed in the past [9,10]. At present, many kinds of fault data have been
recorded on the bug tracking system in the case of OSS. In particular, it will be useful for the reliability
assessment by using various categorized fault data sets in the case of OSS. We will be able to propose the
high accuracy method by integrating the stochastic models and the statistical analysis if we can assess the
fault big data from the standpoint of statistical analysis.

As the related works, several research papers have proposed the methods in terms of the upper and
lower limits based on software reliability growth models [1,2], and the empirical approach for OSS [3].
However, it is difficult to understand the upper and lower bounds of the stochastic model for the big data
because of the problem for the degree of freedom. Generally, the degree of freedom is given by the number
of data. However, it is difficult to obtain the degree of freedom from the big data, because the data set is in
the large scale. Then, we will be able to use the number of explanatory variables in place of the number of
data. In this paper, we propose the data analysis method based on a quantification method of the first type.
Then, we focus on the fault big data analysis with a more simple method, because the analyses of fault big
data are required to take a lot of time for calculation and analysis. The multiple regression-based model to
analyze financial data has been proposed in the financial research area [11,12]. Moreover, the multiple
regression analysis is used in the research area of network [13]. In this way, the statistical methods such
as the multiple regression analysis have been applied to various research areas. This paper proposes the
method based on the statistical analysis and typical hazard rate model for the large scale fault data analysis
and OSS reliability assessment. Furthermore, we show several analysis examples based on the proposed
method by using the actual fault big data.

2. Fault Data Analysis

Table 1 presents the part of raw data in terms of fault big data. We can use the data in terms of the
time and categories as shown in Table 1. However, it is difficult to analyze the categorical data for the
reliability assessment. Historically, the data sets in terms of the number of faults and the time between
software failures have been well-used for the software reliability assessment. Therefore, we convert the
categorical data sets to the number of software faults. For example, Table 1 can be converted to Table 2.
For example, each line in Table 1 means one fault, e.g., Table 1 contains 5 fault. In addition, the unit of
“Opened” is “day”. Many software reliability growth models have been proposed by several researchers
as follows:

• Non-homogeneous Poisson process (NHPP) model (Fault Count Type).
• Hazard rate model (Time Interval of Fault Detection).
• Stochastic differential equation model (Fault Count Type).
• Logistic curve model (Fault Count Type).
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Therefore, it will stand to reason that the categorical data sets are converted to the number of faults and
the time between software failures from the stand point of the software reliability engineering. We define
the data sets in Table 2 as the dummy variables considering the multiple regression analysis.

Table 1. A part of the raw fault big data.

Opened Product Component Version Reporter Assignee

0.83895 Apache httpd-1.3 Documentation 1.3.23 rineau+apachebugzilla docs
1.12118 Apache httpd-1.3 Other mods 1.3.24 siegfried.delwiche bugs
0.17191 Apache httpd-1.3 Documentation 1.3.23 dard bugs
0.40766 Apache httpd-1.3 Other 1.3.23 bernard.l.dubreuil docs
0.51352 Apache httpd-1.3 Other 1.3.23 george bugs

Severity Status Resolution Hardware OS

normal CLOSED FIXED Other other
blocker CLOSED FIXED PC Linux
normal CLOSED FIXED All FreeBSD
minor CLOSED FIXED All All

normal CLOSED WORKSFORME PC Linux

Table 2. A part of the numerical value converted from the raw fault big data.

Opened Product Component Version Reporter Assignee

0.83895 898 815 95 1 815
1.12118 898 91 62 1 8378
0.17191 898 815 95 1 8378
0.40766 898 141 95 2 815
0.51352 898 141 95 1 8378

Severity Status Resolution Hardware OS

4946 2426 2910 1460 912
392 2426 2910 4755 3347

4946 2426 2910 2188 278
658 2426 2910 2188 2812

4946 2426 335 4755 3347

3. Multiple Regression Analysis

Generally, the number of data are used as the degree of freedom in the statistics. In the case of the
big data, it is very difficult to estimate the upper and lower limits from the number of big data in the
stochastic models, because the volume of data is huge. Many methods of OSS empirical assessment have
been proposed [4,5,14,15]. However, the size of fault data in OSS is large. Therefore, it is difficult to assess
the fault big data. Then, we focus on the number of explanatory variables. We will be able to estimate
the upper and lower bounds by using the number of explanatory variables as the degree of freedom.
The multiple regression analysis is well-known as the analysis method understanding the relationship
between the objective variable and explanatory one. The analysis step in this paper is shown as follows:
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Step 1: The pairplots for each factor are used in order to overlooking the fault big data.
Step 2: We apply the heatmap to the decision of the objective variable
Step 3: The explanatory variables are narrowed by using the forward-backward stepwise selection

method. Then, the degree of freedom is decided by the number of explanatory variables.
Step 4: The upper and lower bounds are estimated from the stochastic model and the degree of freedom

in place of the number of explanatory variables.

We show analysis examples by using the Apache HTTP Server Project [16] as the OSS. At first,
we show the pairplot for the OSS fault big data in Figures 1–4. We show the explanatory variables
as follows:

Opened: The date and time recorded on the bug tracking system,
Changed: The modified date and time.
Product: The name of product included in OSS.
Component: The name of component included in OSS.
Version: The version number of OSS.
Reporter: The nickname of fault reporter.
Assignee: The nickname of fault assignee.
Severity: The level of fault.
Status: The fixing status of fault.
Resolution: The status of resolution of fault.
Hardware: The name of hardware under fault occurrence.
OS: The name of operating system under fault occurrence.
Summary: The brief contents of fault.

The set of 10,000 lines data are plotted in Figures 1–4, respectively. Figures 1–4 simply visualize the
whole data. We can understand the whole trend of data from Figures 1–4. Then, the number of whole data
is about 130,000 data sets. In addition, all categories are simply shown by using three figures every three
categories because of the convenience for the paper size.

Generally, the equation of multiple regression is given as follows:

F = β + α1x1 + α2x2 · · ·+ αnxn, (1)

where F is the objective variable, αi i-th partial regression coefficient, and xi (i = 1, 2, · · · , n) is i-th
explanatory variable. β is the intercept.
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Figure 1. The pairplot for actual fault big data (1).
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Figure 2. The pairplot for actual fault big data (2).

Figure 3. The pairplot for actual fault big data (3).
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Figure 4. The pairplot for actual fault big data (4).

Deciding the objective variable, we discuss the estimation results by the heatmap analysis. Then,
the heatmap for actual fault big data is shown in Figure 5. From Figure 5, we find that the weight
parameters of “Hardware”, “OS”, “Changed”, and “Status”are large. Therefore, we focus on 4 factors of
“Hardware”, “OS”, “Changed”, and “Status” - as the objective variable, respectively. We analyze the data
in the period from January 2001 to May 2020. The x and y axes of Figures 1–5 are analyzed by using the
values of Table 2.

Moreover, we analyze all categories of OSS fault big data by the multiple regression. The estimation
results based on multiple regression analysis in cases of Hardware, OS, Changed, and Status as objective
variables is shown in Table 3. For example, the top of Table 3 denotes that the objective variable is
Hardware. Then, the other categories denote the explanatory variables. From Table 3, the multivariate
regression models are obtained as follows:
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Fhardware = 1645.7 + 2.791757x1 − 0.067763x2 + 0.051574x3 − 0.008983x4

− 0.131288x5 − 0.146627x6 + 0.058349x7 + 0.063834x8 − 0.02625x9

+ 0.003068x10 + 0.342187x11 − 0.452142x12, (2)

Fos = 1765.5 + 0.546647x1 − 0.042945x2 + 0.020329x3 − 0.072043x4

+ 0.162994x5 + 0.040314x6 − 0.035459x7 − 0.010353x8 − 0.038089x9

− 0.028639x10 + 0.199227x11 + 3.442676x12, (3)

Fchanged = 159.3 + 0.43598x1 + 0.027367x2 − 0.093938x3 − 0.054772x4

+ 0.53278x5 + 0.019791x6 − 0.003285x7 + 0.120565x8 − 0.282455x9

− 0.024331x10 + 0.026484x11 + 1.344123x12, (4)

Fstatus = 3191.5− 1.334526x1 + 0.444458x2 + 0.030289x3 + 0.069858x4

− 0.197055x5 + 0.366868x6 − 0.018191x7 + 0.025926x8 + 0.423487x9

− 0.034746x10 − 0.086595x11 + 1.250057x12. (5)
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Figure 5. The heatmap for actual fault big data.
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Table 3. The estimation results in cases Hardware, OS, Changed, and Status as objective variables.

Hardware Estimate Std. Error t Value p Value

Intercept 1645.720058 114.700127 14.348 0
Opened 2.791757 3.498686 0.7979 0.424923
Changed −0.067763 0.017142 −3.9531 0.000078
Product 0.051574 0.005491 9.3933 0

Component −0.008983 0.032654 −0.2751 0.783246
Version −0.131288 0.037497 −3.5013 0.000465

Reporter −0.146627 0.873514 −0.1679 0.866698
Assignee 0.058349 0.005035 11.5888 0
Severity 0.063834 0.00753 8.4776 0
Status −0.02625 0.008096 −3.2424 0.00119

Resolution 0.003068 0.016816 0.1824 0.855249
OS 0.342187 0.012378 27.6439 0

Summary −0.452142 0.712837 −0.6343 0.525911

OS Estimate Std. Error t Value p Value

Intercept 1765.506001 86.557174 20.397 0
Opened 0.546647 2.669727 0.2048 0.837766
Changed 0.042945 0.013078 3.2837 0.001028
Product 0.020329 0.004211 4.8277 0.000001

Component −0.072043 0.024922 −2.8908 0.003852
Version 0.162994 0.028514 5.7162 0

Reporter 0.040314 0.666462 0.0605 0.951767
Assignee −0.035459 0.003937 −9.0061 0
Severity −0.010353 0.005781 −1.7908 0.073361
Status −0.038089 0.006183 −6.1603 0

Resolution −0.028639 0.012835 −2.2314 0.02568
Hardware 0.199227 0.007261 27.4381 0
Summary 3.442676 0.539452 6.3818 0

Changed Estimate Std. Error t Value p Value

Intercept 159.274647 69.47537 2.2925 0.021897
Opened 0.43598 2.096636 0.2079 0.835278
Product 0.027367 0.003366 8.1295 0

Component −0.093938 0.019572 −4.7996 0.000002
Version −0.054772 0.022467 −2.4379 0.014792

Reporter 0.53278 0.523398 1.0179 0.30874
Assignee 0.019791 0.003121 6.3411 0
Severity −0.003285 0.004545 −0.7227 0.469904
Status 0.120565 0.004782 25.2141 0

Resolution −0.282455 0.009813 −28.7829 0
Hardware −0.024331 0.005928 −4.1044 0.000041

OS 0.026484 0.007756 3.4146 0.000642
Summary 1.344123 0.427139 3.1468 0.001656

Status Estimate Std. Error t Value p Value

Intercept 3191.460936 129.213128 24.6992 0
Opened −1.334526 4.025544 −0.3315 0.740264
Changed 0.444458 0.019224 23.1196 0
Product 0.030289 0.006215 4.8737 0.000001

Component 0.069858 0.037401 1.8678 0.061817
Version −0.197055 0.043141 −4.5677 0.000005

Reporter 0.366868 1.004787 0.3651 0.715031
Assignee −0.018191 0.005768 −3.154 0.001616
Severity 0.025926 0.008674 2.9889 0.002807

Resolution 0.423487 0.018391 23.0264 0
Hardware −0.034746 0.011364 −3.0576 0.002238

OS −0.086595 0.014885 −5.8176 0
Summary 1.250057 0.816914 1.5302 0.125997
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4. Forward-Backward Stepwise Selection Method

The forward-backward stepwise selection method is well-known as the selection method of
explanatory variables for the multiple regression analysis. We use the forward-backward stepwise
selection method as the multiple regression analysis for OSS fault big data. The forward-backward
stepwise selection method is well-known as the selection method of explanatory variables in multiple
regression analysis. In particular, we apply the backward stepwise selection method. Then, we consider
the following steps:

Step 1: All explanatory variables are analyzed by the multiple regression.
Step 2: As the results of step 1, the explanatory variable is removed if p-value becomes large than 0.01.
Step 3: The selected explanatory variables are analyzed by the multiple regression again.
Step 4: The above steps 1 and 2 are continued until there is no p-value of explanatory variable larger

than 0.01.

There are many methods as forward-backward stepwise selection ones. Then, it will be difficult to
analyze the fault big data sets by using the other complex analysis method. Therefore, this paper is simply
analyzed by above steps, because the fault big data sets have many factors and lines of bugs. In the case of
the big data, it is very important to consider the calculation time and complexity in the estimation.

From Table 4, the multivariate regression models based on backward stepwise selection method are
obtained as follows:

Fhardware = 1626.4− 0.068803x1 + 0.05123x2 − 0.130621x3 + 0.058414x4

+ 0.063954x5 − 0.026041x6 + 0.341771x7, (6)

Fos = 1743.1 + 0.043135x1 + 0.020108x2 − 0.071013x3 + 0.163322x4

− 0.035639x5 − 0.038459x6 − 0.028896x7 + 0.198147x8 + 3.431072x9, (7)

Fchanged = 156.8 + 0.027344x1 − 0.09417x2 − 0.051485x3 + 0.019413x4

+ 0.120492x5 − 0.282509x6 − 0.024697x7 + 0.026598x8 + 1.348889x9, (8)

Fstatus = 3316.2 + 0.444006x1 + 0.03109x2 − 0.198328x3 − 0.021023x4

+ 0.025704x5 + 0.422041x6 − 0.034968x7 − 0.086049x8. (9)

In particular, the selection results from explanatory variable is shown in Table 5 by using the method
of backward stepwise selection. From Table 5, “Product”, “Version”, and “Assignee”are included as the
common factors for all objective variables. This means that these three factors are very important factors
to detect and fix the fault recorded on the bug tracking system. From this estimation results, we consider
that the OSS developers can appropriately manage by using the information obtained from “Product”,
“Version”, and “Assignee”. On the other hand, “Opened” and “Reporter” have been removed from all
explanatory variables by using the backward stepwise selection method. In other words, “Opened” and
“Reporter” may not be important from the standpoint of the quality control of OSS.
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Table 4. The estimation results by backward stepwise selection method in cases Hardware, OS, Changed,
and Status as objective variables.

Hardware Estimate Std. Error t Value p Value

Intercept 1626.405219 97.43963 16.6914 0
Changed −0.068803 0.016619 −4.1401 0.000035
Product 0.05123 0.00532 9.6292 0
Version −0.130621 0.037285 −3.5033 0.000462

Assignee 0.058414 0.004989 11.7087 0
Severity 0.063954 0.007503 8.5233 0
Status −0.026041 0.007774 −3.3498 0.000812

OS 0.341771 0.012315 27.7524 0

OS Estimate Std. Error t Value p Value

Intercept 1743.085854 85.250018 20.4468 0
Changed 0.043135 0.01308 3.2978 0.000978
Product 0.020108 0.004139 4.8586 0.000001

Component −0.071013 0.024916 −2.8501 0.00438
Version 0.163322 0.028485 5.7336 0

Assignee −0.035639 0.00385 −9.2573 0
Status −0.038459 0.006145 −6.2587 0

Resolution −0.028896 0.012789 −2.2595 0.023879
Hardware 0.198147 0.007192 27.5505 0
Summary 3.431072 0.537922 6.3784 0

Changed Estimate Std. Error t Value p Value

Intercept 156.810893 68.42801 2.2916 0.02195
Product 0.027344 0.003314 8.2522 0

Component −0.09417 0.019566 −4.8129 0.000002
Version −0.051485 0.022444 −2.2939 0.021816

Assignee 0.019413 0.003056 6.353 0
Status 0.120492 0.004752 25.3539 0

Resolution −0.282509 0.009778 −28.8923 0
Hardware −0.024697 0.00588 −4.2001 0.000027

OS 0.026598 0.007748 3.4327 0.0006
Summary 1.348889 0.425998 3.1664 0.001548

Status Estimate Std. Error t Value p Value

Intercept 3316.187141 116.49209 28.4671 0
Changed 0.444006 0.019226 23.0943 0
Product 0.03109 0.006181 5.0303 0
Version −0.198328 0.043107 −4.6008 0.000004

Assignee −0.021023 0.005759 −3.6502 0.000263
Severity 0.025704 0.008673 2.9637 0.003048

Resolution 0.422041 0.018285 23.0815 0
Hardware −0.034968 0.011359 −3.0784 0.002087

OS −0.086049 0.014875 −5.7846 0

Table 5. The selection results of explanatory variable.

Factors Selected from Factors Removed from
All Objective Variables All Objective Variables

Product Opened
Version Reporter

Assignee ———–
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5. Multiple Regression Analysis with Application to Reliability Assessment

Many software reliability assessment models have been proposed in the past [17–21]. In particular,
the hazard rate model is well-known as the typical software reliability model. We apply the hazard
rate model to the time-interval between correction faults. The distribution function of Xk(k = 1, 2, · · · )
representing the time-interval between correction faults of (k− 1)th and k-th is defined as:

Qk(x) ≡ Pr{Xk ≤ x} (x ≥ 0), (10)

where Pr{Φ} represents the occurrence probability event Φ. Therefore, the following derived function
means the probability density function of Xk:

qk(x) ≡ dQk(x)
dx

. (11)

From Equations (10) and (11), the hazard rate is given by the following equation:

zk(x) ≡ qk(x)
1−Qk(x)

, (12)

where the hazard rate means [1,22] the software correction rate when the software correction does not
occur during the time-interval (0, x]. Therefore, the software reliability assessment measures are obtained
from the typical hazard rate model in Equation (12). The probability density function can be derived as

zk(x) = φ(N − k + 1),

where N is the number of latent faults in OSS, φ the hazard rate per inherent fault. Then, the mean time
between software failures correction (MTBFc) is given as follows:

E[Xk] =
∫ ∞

0
xqk(x)dx

=
∫ ∞

0
1−Qk(x)dx

=
∫ ∞

0
e−φ(N−k+1)xdx

=

[
−e−φ(N−k+1)x

φ(N − k + 1)

]∞

0

=
1

φ(N − k + 1)
. (13)

It is important to assess the upper and lower bounds of MTBFc, E[Xk], because the difficulty of fault
correction continuously keeps the variation state. Then, the upper and lower confidence limits for the
MTBFc can be estimated from Chi-squared distribution. Then, the upper and lower confidence limits in
100(1− α) percentage point of Chi-squared distribution for the MTBFc is given by

2m Ê[Xk]

χ2
2m(

α
2 )
≤ Ê[Xk] ≤

2m Ê[Xk]

χ2
2m(1−

α
2 )

, (14)
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where m is the statistical degrees of freedom in objective variable of the regression equation. Then,
we consider the regression equation of Equation (8). The explanatory variables are shown in Table 4.
From Equation (8) and Table 4, the statistical degrees of freedom for the regression equation is 9 in the case
of “Changed”. In the case of “Changed”, 90% upper and lower confidence limits for MTBFc are as follows:

18 Ê[Xk]

χ2
18(

0.1
2 )
≤ Ê[Xk] ≤

18 Ê[Xk]

χ2
18(1−

0.1
2 )

. (15)

As an example, the estimated upper and lower confidence limits for MTBFc are shown in Figure 6.
As shown in Figure 6, we can assess the upper and lower confidence limits for MTBFc. By using the
estimation results in Equation (8) and Table 4, we can consider the influence degrees from the explanatory
variables for MTBFc as the upper and lower confidence limits. The upper and lower bounds in Figure 6
mean the influences from “Product”, “Component”, “Version”, “Assignee”, “Status”, “Resolution”,
“Hardware”, “OS”, and “Summary”as the main factors.
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Figure 6. The estimated upper and lower confidence limits for the MTBFc in actual fault big data.

Several research papers have proposed the methods in terms of the upper and lower limits based on
software reliability growth models, and the empirical approach for OSS [23,24]. As the comparison with the
conventional method, we show the estimated upper and lower confidence limits based on the conventional
method in Figure 7. The number of fault data is used as the degree of freedom in Figure 7. In Figure 7, we
found that the conventional method can not estimate the upper and lower bounds accurately because the
value of degree of freedom is large. On the other hand, the proposed method can appropriately estimate
the upper and lower confidence limits for the actual fault big data, because the degree of freedom is
properly given by using the proposed method.

As the comparison results of the other model, we compare the following Moranda model with the
Jelinski–Moranda model.

E[Xk] =
1

D(ck−1)
. (16)
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where c is the decreasing rate of hazard rate, D the hazard rate per inherent fault.
Similarly, we show the estimated upper and lower confidence limits for the MTBFc in actual fault big

data in the case of the Moranda model in Figure 8. Moreover, we show the estimated upper and lower
confidence limits based on the conventional method in the case of the Moranda model in Figure 9.
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Figure 7. The estimated upper and lower confidence limits based on the conventional method.
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Figure 8. The estimated upper and lower confidence limits for the MTBFc in actual fault big data in the
case of the Moranda model.
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Figure 9. The estimated upper and lower confidence limits based on the conventional method in the case
of the Moranda model.

As our main contribution, we have proposed the estimation method for upper and lower confidence
limits based on the typical hazard rate model. The conventional models cannot estimate the upper and
lower confidence limits because the degree of freedom is very large. The proposed method can estimate
the upper and lower confidence limits based on the typical hazard rate model in case of large scale fault
data sets by using our method.

6. Conclusions

We have discussed the quantification method of the first type for the fault recorded on the bug
tracking system of OSS. Then, we apply the multiple regression analysis. We have found that the
proposed method can assess the important factors in terms of the OSS quality control by using the
multiple regression analysis.

It is difficult for the OSS developers to assess from the bug tracking system because the fault big
data are large scale. The proposed method is simple structure by using the traditional stepwise selection
method. Therefore, our method can be simply use for the other OSS. The proposed method can find the
main factors as explanatory variables affecting the quality management. Thereby, the OSS developer will
be able to easily assess the quality from the standpoint of the condition recorded from actual fault big data.

In particular, we have applied the estimation results of multiple regression analysis to the reliability
assessment. Under the situation of big data, the objective variable will depend on various explanatory
variables. We have proposed the reliability assessment method based on the multiple regression analysis
and stochastic model for the OSS fault big data. As the study, the OSS managers can assess the upper
and lower limits of the software reliability models for the fault big data. Thereby, the OSS managers can
comprehend the stability of OSS development and operation.
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