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Abstract: The outbreak of COVID-19 has caused more than 200,000 deaths so far in the USA alone,
which instigates the necessity of initial screening to control the spread of the onset of COVID-19.
However, screening for the disease becomes laborious with the available testing kits as the number of
patients increases rapidly. Therefore, to reduce the dependency on the limited test kits, many studies
suggested a computed tomography (CT) scan or chest radiograph (X-ray) based screening system as
an alternative approach. Thereby, to reinforce these approaches, models using both CT scan and chest
X-ray images need to develop to conduct a large number of tests simultaneously to detect patients
with COVID-19 symptoms. In this work, patients with COVID-19 symptoms have been detected
using eight distinct deep learning techniques, which are VGG16, InceptionResNetV2, ResNet50,
DenseNet201, VGG19, MobilenetV2, NasNetMobile, and ResNet15V2, using two datasets: one dataset
includes 400 CT scan and another 400 chest X-ray images. Results show that NasNetMobile
outperformed all other models by achieving an accuracy of 82.94% in CT scan and 93.94% in
chest X-ray datasets. Besides, Local Interpretable Model-agnostic Explanations (LIME) is used.
Results demonstrate that the proposed models can identify the infectious regions and top features;
ultimately, it provides a potential opportunity to distinguish between COVID-19 patients with others.

Keywords: chest X-ray; COVID-19; CT scan; deep learning; explainable AI; image processing;
radiography; SARS-CoV-2; small data

1. Introduction

The novel coronavirus, also known as COVID-19, created a global health crisis early in 2020.
The disease originates from the virus known as a severe acute respiratory syndrome or coronavirus
2, also called SARS-CoV-2 [1], a socially transmitted disease and can infect individuals because of
close contact to the infected patients. The number of infected individuals from COVID-19 cases
surpasses 30 million, and death raises close to one million as of 09 September 2020 [2]. While many
COVID-19 cases exhibit mild symptoms, a small percentage suffers from severe or critical conditions [3].
In increasingly genuine cases, the contamination can cause pneumonia, extreme intense respiratory
discomfort, multi-organ failure, and death [4]. The health systems have been overwhelmed among
developed countries such as the USA, UK, and Italy due to the expanding demand for intensive care
units, as those units filled with COVID-19 patients with severe medical conditions [5].

Until no fruitful vaccine is developed, expanding the screening and isolating the COVID-19
patients from the mass population is the only solution to reduce the transmissions on a large scale.
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Currently, all over the world, reverse transcription-polymerase chain reaction (RT-PCR) has been
used as a standard gold test to detect COVID-19 patients. However, the test results often produce
false alarms, and the current success rate is merely 70% [4]. Additionally, test results take time to
acquire, leaving behind a higher risk and possibility of spreading the disease among other peoples by
the patients.

Therefore, to limit the dependency on limited test kits and control the exponential growth of
COVID-19 patients, many studies suggested chest radiograph (X-ray) based screening procedures at
the early stages of this pandemic and demonstrated satisfactory results by achieving higher accuracy
than the RT-PCR test. However, since the disease outbreak in 2020, most of the studies had to deal
with limited data and reported their result with those available resources. For example, Ghoshal et al.
(2020) [6] experimented on a dataset comprises of 70 COVID-19 images from one source [7] and
non-COVID-19 images from another sources [8]. Their proposed Bayesian CNN model improves the
detection rate from 85.7% to 92.9% along with the VGG16 model [9]. Similarly, Narin et al. (2020) [10]
used only 100 images to conduct that experiment, and the dataset consist, 50 chest X-rays of COVID-19
and 50 normal chest X-ray of non-COVID-19 patients. Additionally, Zhang et al. (2020) presented
the ResNet model, using 70 COVID-19 and 1008 non-COVID-19 pneumonia patients from different
data sources. The evaluation result showed 96% sensitivity, 70.7% specificity and 0.952 of AUC [11].
Wang et al. (2020) introduced a deep CNN based model known as COVID-Net, which attained 83.5%
accuracy to detect COVID-19 patients from a dataset of 5941 images which includes 1203 healthy,
931 bacterial pneumonia, 660 viral pneumonia, and 45 individuals with COVID-19 cases [12].

Apart from chest X-ray, some literature suggested chest computed tomography (CT) based
screening to distinguish between COVID-19 and non-COVID-19 patients [11,13–17]. For instance,
Chen et al. (2020) used UNet++ to classify COVID-19 and non-COVID-19 patients considering
132 sample images using 51 COVID-19, 55 non-COVID-19, 16 viral pneumonia, and 11 non-pneumonia
patients and revealed that artificial intelligence reduces the reading time of radiologists up to 65% [13].
Zhang et al. (2020) [11] used the UNet model for lung segmentation, considering 540—included 313
COVID-19 and 229 non-COVID-19 patients’ CT scan—images, and reported the result with 90.7%
sensitivity and 91.1% specificity score. Besides, several studies employed the ResNet model to detect
COVID-19 patients from the chest CT [14–16]. Jin et al. (2020) [14] proposed the ResNet15V2 model for
detecting COVID-19 patients with the dataset of 1881 images (496 COVID-19 and 1385 non-COVID-19)
and study result shows 94.1% of sensitivity, and 95.5% of specificity [14]. Song et al. (2020) and Li et al.
(2020) implemented ResNet50 to detect COVID-19 patients from chest CT scan and achieved 86% and
96% accuracy, respectively [15,17].

Since most of the early studies used limited data, therefore questions raised regarding their
models’ stability. Thereby, a better approach to present such limited data result is to provide the
result with confidence intervals, which are missing almost in every study. The existing proposed
models either demonstrated their potential on chest radiography or CT scan-based datasets, not in both
scenarios. Therefore, a model developed with mixed data—chest radiography and CT scan—might
provide that answer.

Recently, explanatory artificial intelligence (EAI) gained much popularity in medical image
analysis as it helps to understand, visualize, and interpret any machine learning models used
for disease prediction [18,19]. Ribeiro et al. (2016) proposed Local Interpretable Model-agnostic
Explanations (LIME), a novel approach that explains any classifier’s performance in an interpretable
manner [20]. LIME drew much attention by showing superiority in explaining how Google’s
pre-trained network predicts by merely analyzing some random images [21]. Holzinger et al. (2017)
consent that explainable-AI might be the next future in medical domains when health professionals
rely on AI to understand the patients’ conditions [22]. Thus, an AI that explains the X-ray or CT
scan images’ infectious regions might help the general practitioners— doctors, nurses, and health
professionals, especially in rural areas— to detect between COVID-19 patients with others.
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In general, this investigation found that a large portion of the study either considered chest X-ray
or CT scan image analysis with a couple of deep learning models because of the time constraints.
However, in accordance with the recent literature and extending the current work one step further,
this research contributes as follows: (1) Proposed and tested eight individual convolutional neural
network-based models—VGG16 [23], InceptionResNetV2 [24], ResNet50 [25], DenseNet201 [26],
VGG19 [23], MobileNetV2 [27], NasNetMobile [28] ,and ResNet15V2 [29]—to detect COVID-19 patients
using CT scan and chest X-ray images; (2) analyzed between existing models with the proposed ones
in terms of accuracy, precision, recall, and f1-score; and (3) finally, applied LIME to explain features
that help the model to identify COVID-19 patients from others.

The rest of the paper is organized as follows: Section 2 discusses the research methodology of
this study. This is followed by the results of the proposed research for detecting COVID-19 from
chest X-rays and CT scan in Section 3. Section 4 then provides detailed discussion and insight by
analyzing the results in terms of models’ overall performances, comparing with the previous studies,
and others. Finally, Section 5 concludes the article summarizing our findings, with an identification of
opportunities for future work.

2. Methodology

This research uses two distinct datasets containing X-ray and CT scan images collected from the
open-source Kaggle datasets repository [8]. At the time of the study, one dataset contains 400 chest
X-ray images, and another includes 400 CT scan images. Table 1 summarizes the datasets used in
this study. As commonly adopted in data mining techniques, this study used 80% data for training,
whereas the remaining 20% was used for testing. The experiment was repeated two times and the
model’s performance was evaluated by averaging those two outcomes.

Table 1. Chest CT and X-ray datasets used in this study.

Dataset Label Train Set Test Set

CT Scan COVID-19 160 40
Non-COVID-19 160 40

Chest X-ray COVID-19 160 40
Non-COVID-19 160 40

A transfer learning technique was implemented to develop the models [30] by acquiring model’s
weight from pre-trained models (i.e., ImageNet [31]). The primary model’s architecture contains
three components—pre-trained network, modified head, and prediction class (inspired from [11]).
The pre-trained networks are employed to extract the high-level features and connected to the modified
network and classification head, respectively. Figure 1 illustrates one of the modified proposed
models’ architecture. The architecture contains 16 [32] CNN layers with different filter numbers, sizes,
and stride values.

The proposed models are constructed using three basic layers:

c = convolutionallayer
m = maxpooling

d = dense( f ullyconnectedlayer)

If c1 is considered as the input layer, then the proposed models layout for VGG16 may be
expressed as:

c1 − c2 − m1 − c3 − c4 −−mn −−cn −−d1 − d2 − d3
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Figure 1. VGG16 architecture implemented during this experiment [23].

A robust model also relays on proper feature extraction techniques as well [33]. Let the letter,

x = input image
k = kernel

Then the two-dimensional convolutional operation can be expressed as follows [34]:

(x ∗ k)(i, j) = ∑
m

∑
n

k(m, n)x(i − m, j − n) (1)

where * represents the discrete convolution operation [34]. Kernel, K slides over the images with the
stride parameters. The Rectified Linear unit (ReLu) is used as an activation function in the dense layer.
ReLu function can be calculated with the following equations [34]:

f (x) =

{
0.01x for x < 0

x for x ≥ 0
(2)

During this experiment 3 × 3 convolution filter with 4 × 4 pool size is used for feature
extraction [23]. An illustration of input images flows from the convolutional layer to the Maxpooling
layer is given in Figure 2.

Figure 2. An illustration of convolutional and maxpooling layer operations [34].

As a part of parameter tuning, initially, the batch size, the number of epochs and learning rate are
considered [35]. Following parameters are randomly selected at the beginning of the experiment:

Learning rate = [0.001, 0.01, 0.1]
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Epochs = [10, 20, 30, 40, 50]
Batch size = [5, 10, 15, 20]

Finally, using grid search methods the optimal parameters are found as follows:

Learning rate = 0.001
Epochs = 30

Batch size = 5

During the training phase, an optimization algorithm requires to set to optimize the model [36].
Some of the most popular optimization algorithms includes- adaptive learning rate optimization
algorithm (Adam) [37], stochastic gradient descent (Sgd) [38], and root means square propagation
(Rmsprop) [39]. To optimize the model, Adam is used due to its effectiveness in binary image
classification [40,41].

Finally, the overall result was statistically analyzed based on accuracy, precision, recall,
and f1-score [42]:

Accuracy =
tp + tn

tp + tn + fp + fn
(3)

Precision =
tp

tp + fp
(4)

Recall =
tp

tn + fp
(5)

F1 = 2 × Precision × Recall
Precision + Recall

(6)

where True Positive (tp)= COVID-19 patient classified as patient, False Positive ( fp)= Healthy people
classified as patient, True Negative (tn)=Healthy people classified as healthy, and False Negative
( fn)= COVID-19 patient classified as healthy. Figure 3 shows the overall flow diagram of the
experiment. The best model was selected based on the statistical analysis on CT scan and chest
X-ray image datasets.

Figure 3. Flow diagram of the overall experiment.
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3. Results

During this experiment overall accuracy, precision, recall, and f1-score were measured for eight
different deep learning approaches considering CT scan and X-ray image using Equations (3)–(6).

3.1. CT Scan

Table 2 summarizes the average accuracy, precision, recall, and f1-score for eight pre-trained deep
learning models used in this study on the train set. Among all the models, MobileNetV2 performed
best in terms of accuracy (99%), precision (99%), recall (99%), and f1-score (99%), and ResNet50
performed worst across all measures.

Table 2. Overall model’s performance on CT scan train set.

Model
Performance

Accuracy Precision Recall F1-Score

VGG16 0.85 0.85 0.85 0.85
InceptionResNetV2 0.81 0.82 0.81 0.81

ResNet50 0.56 0.71 0.56 0.47
DenseNet201 0.97 0.97 0.97 0.97

VGG19 0.78 0.82 0.78 0.77
MobileNetV2 0.99 0.99 0.99 0.99

NasNetMobile 0.90 0.90 0.90 0.90
ResNet15V2 0.98 0.98 0.98 0.98

In contrast, on the test set, NasNetMobile showed the best and ResNet50 showed the worst
performance across all measures, as shown in Table 3.

Table 3. Overall model’s performance on CT scan test set.

Model
Performance

Accuracy Precision Recall F1-Score

VGG16 0.86 0.85 0.86 0.86
InceptionResNetV2 0.84 0.84 0.84 0.84

ResNet50 0.55 0.64 0.55 0.46
DenseNet201 0.79 0.79 0.79 0.79

VGG19 0.76 0.81 0.76 0.75
MobileNetV2 0.89 0.89 0.89 0.89

NasNetMobile 0.90 0.90 0.90 0.90
ResNet15V2 0.84 0.84 0.84 0.84

3.2. X-ray Image

Table 4 summarizes the overall model’s performance amid this experiment on train sets for
X-ray images. From the result- most of the model performed well on the train set except ResNet50.
100% accuracy, precision, recall, and f1-score were achieved for VGG16, DenseNet201, MobileNetV2,
NasNetMobile, and ResNet15V2.

Table 5 summarizes the model’s performance on the test set. 100% accuracy, precision, recall and
f1-score were measured for NasNetMobile. On the other hand, ResNet50 appeared to have lowest
performance compared to any other models by achieving 64% accuracy, 79% precision, 64% recall,
and 58% f-1 score.
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Table 4. Overall model’s performance on X-ray train set.

Model
Performance

Accuracy Precision Recall F1-Score

VGG16 1.0 1.0 1.0 1.0
InceptionResNetV2 0.99 0.99 0.99 0.99

ResNet50 0.64 0.79 0.64 0.58
DenseNet201 1.0 1.0 1.0 1.0

VGG19 0.98 0.98 0.98 0.98
MobileNetV2 1.0 1.0 1.0 1.0

NasNetMobile 1.0 1.0 1.0 1.0
ResNet15V2 1.0 1.0 1.0 1.0

Table 5. Overall model’s performance on X-ray test set.

Model
Performance

Accuracy Precision Recall F1-Score

VGG16 0.97 0.98 0.97 0.97
InceptionResNetV2 0.97 0.98 0.97 0.97

ResNet50 0.64 0.79 0.64 0.58
DenseNet201 0.97 0.98 0.97 0.97

VGG19 0.91 0.93 0.91 0.91
MobileNetV2 0.97 0.97 0.97 0.97

NasNetMobile 1.0 1.0 1.0 1.0
ResNet15V2 0.99 0.99 0.99 0.99

3.3. Confusion Matrix

The confusion matrix was calculated on the test set to simplify the understanding of the
model’s performance. Figure 4 displays the confusion matrix for different models on given CT
scan images. In CT scan, the test set contained 80 patients, where 40 were COVID-19 and 40 were
non-COVID-19. In this case, NasNetMobile demonstrated the best result by correctly classifying
72 samples, while ResNet50 showed the worst performance by classifying 44 samples out of 80.

Figure 4. Confusion matrix of different deep learning model for CT scan image dataset.

On chest X-ray test set, NasNetMobile outperformed all other models by correctly classifying all
the samples, while ResNet50 displayed the worst performance by misclassifying 29 out of 80 samples,
as shown in Figure 5.
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Figure 5. Confusion matrix of different deep learning model for chest X-ray image dataset.

3.4. Confidence Interval

The confidence interval (CI) was calculated using two standard methods: the Wilson score [43]
and Bayesian interval [44]. Both approaches are widely used and suitable to measure the performance
on a small dataset [45]. Table 6 delineates 95% CI for model accuracy on the test set for CT scan and
chest X-ray datasets. For instance, On the CT scan image dataset, ResNet50 has the lowest accuracy,
ranges from 0.441 to 0.654 and 0.441 to 0.656; in contrast, NasNetmobile has the highest accuracy set
out from 0.815 to 0.948 and 0.820 to 0.952 respectively.

Additionally, On the Chest X-ray test set, accuracy for VGG16, InceptionResNetV2, DenseNet201,
and MobileNetV2 was achieved between 0.913 and 0.993, 0.922 and 0.995 using Wilson score and
Bayesian interval, respectively. However, among all the models, higher accuracy was measured for
NasNetMobile, and lower accuracy was acquired for ResNet50.

Table 6. Confidence Interval (α = 0.05) of CT scan and chest X-ray in terms of accuracy on test set.
Sample size, n = 80 for both studies.

Study Model Test Accuracy
Methods

Wilson Score Bayesian Interval

CT scan

VGG16 0.86 0.756–0.912 0.76–0.915
InceptionResNetV2 0.84 0.742–0.903 0.745–0.906

ResNet50 0.55 0.441–0.654 0.441–0.656
DenseNet201 0.79 0.686–0.863 0.689–0.866

VGG19 0.76 0.659–0.842 0.661–0.845
MobileNetV2 0.89 0.800–0.940 0.805–0.943

NasNetMobile 0.90 0.815–0.948 0.820–0.952
ResNet15V2 0.84 0.742–0.903 0.745–0.906

Chest X-ray

VGG16 0.97 0.913–0.993 0.922–0.995
InceptionResNetV2 0.97 0.913–0.993 0.922–0.995

ResNet50 0.64 0.528–0.734 0.529–0.736
DenseNet201 0.97 0.913–0.993 0.922–0.995
MobileNetV2 0.97 0.913–0.993 0.922–0.995

NasNetMobile 1.0 0.954–1.00 0.969–1.00
ResNet15V2 0.99 0.933–0.998 0.943–0.999
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4. Discussion

MobileNetV2 and NasNetMobile outperformed all other models in terms of accuracy, precision,
recall, and f1-score on train set and test set, respectively as shown in Table 7. Additionally,
the misclassification difference between MobileNetV2 and NasNetMobile is just one which indicates
that both models almost equally performed on the CT scan image dataset.

Table 7. Overall summary of the best model found considering various factor on CT scan image dataset.

Model
Accuracy Precision Recall F1-Score Confusion Matrix Accuracy and Loss

During Epochs

Train Test Train Test Train Test Train Test Misclassified Accuracy Loss

VGG16 85% 86% 85% 85% 85% 86% 85% 86% 12 Satisfactory Satisfactory
InceptionResNetV2 81% 84% 82% 84% 81% 84% 81% 84% 13 Satisfactory Satisfactory

ResNet50 56% 55% 71% 64% 56% 55% 47% 46% 36 Not satisfactory Satisfactory
VGG19 78% 76% 82% 81% 78% 76% 77% 75% 19 Satisfactory Satisfactory

MobileNetV2 99% 89% 99% 89% 99% 89% 99% 89% 9 Satisfactory Satisfactory
NasNetMobile 90% 90% 90% 90% 90% 90% 90% 90% 8 Satisfactory Satisfactory

Similarly, on chest X-ray data set, Table 8 showed that NasNetMobile outperformed all of the
models taking into account the statistical measurement as such accuracy (100%), precision (100%),
recall (100%), f1-score (100%), confusing matrix (100%), and loss calculation.

Table 8. Overall summary of the best model found considering various factors on chest X-ray
image dataset.

Model
Accuracy Precision Recall F1-Score Confusion Matrix Accuracy and Loss

During Epochs

Train Test Train Test Train Test Train Test Misclassified Accuracy Loss

MobileNetV2 100% 97% 100% 97% 100% 97% 100% 97% 2 Not satisfactory Not satisfactory
ResNet15V2 100% 99% 100% 99% 100% 99% 100% 99% 1 Not satisfactory Not satisfactory
DenseNet201 100% 97% 100% 98% 100% 97% 100% 97% 2 Not satisfactory Not satisfactory

VGG16 98% 97% 98% 98% 98% 97% 98% 97% 2 Satisfactory Satisfactory
InceptionResNetV2 99% 97% 99% 98% 99% 97% 99% 97% 2 Satisfactory Satisfactory

NasNetMobile 100% 100% 100% 100% 100% 100% 100% 100% 0 Satisfactory Satisfactory
VGG19 98% 91% 98% 93% 98% 91% 98% 91% 7 Not satisfactory Satisfactory

To find out the best model among MobileNetV2 and NasNetMobile, a comparison was made
between those two models. The models’ performance was calculated by averaging the overall
performance both on the train and test set. From Table 9, MobileNetV2 outperformed NasNetMobile
in terms of accuracy, precision, recall, and f1-score. However, misclassification rate for MobileNetV2
(11.25%) is slightly higher than NasNetMobile (10%). Since the dataset is small, the error rate may not
be significant, yet, for a larger dataset, the misclassification rate may significantly impact.

Table 9. Comparison between MobileNetV2 and NasNetMobile on both dataset.

Model Accuracy Precision Recall F1-Score Error Rate
(Test Set)

MobileNetV2 96.25% 96.25% 96.25% 96.25% 11.25%
NasNetMobile 95% 95% 95% 95% 10%

Average accuracy was calculated by averaging the training and testing accuracy of all the models.
Table 10 shows the average accuracy for CT scan and chest X-ray image dataset. Results show that
almost all models performed better on the X-ray image data set compared to the CT scan. The average
accuracy for all the models on CT scan and X-ray image dataset is 82.94% and 93.94%, respectively.
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Table 10. Models average accuracy on both datasets.

Model CT Scan X-ray

VGG16 (85+86)
2 = 85.5% (100+97)

2 = 98.5%
InceptionResNetV2 (81+84)

2 = 82.5% (99+97)
2 = 98%

ResNet50 (56+55)
2 = 55.5% (64+64)

2 = 64%
DenseNet201 (97+79)

2 = 88% (100+97)
2 = 98.5%

VGG19 (78+76)
2 = 77% (98+91)

2 = 94.5%
MobileNetV2 (99+89)

2 = 94% (100+97)
2 = 98.5%

NasNetMobile (90+90)
2 = 90% (100+100)

2 = 100%
ResNet15V2 (98+84)

2 = 91% 100+99
2 = 99.5%

Average 82.94% 93.94%

4.1. Feature Territory Highlighted by the Model on Different Layer

In this work, we tried to understand how each layer dealt with the actual image. Figure 6
demonstrated CT scan images during different layers. Note that, just a few of the layers from VGG16
were addressed here.

Figure 6. Heat map of class activation of CT scan image on different layer acquired by VGG16.

Figure 7 manifested the different layer’s activity of model ResNet50 on chest X-ray images.
The region spotted by model ResNet50 was highlighted with a heatmap.
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Figure 7. Heat map of class activation of chest X-ray image on different layer acquired by ResNet50.

4.2. Models Interpretability with LIME

To identify which specific features help the deep learning model (MobileNetV2, NasNetMobile)
to differentiate between COVID-19 and non-COVID-19 patients, Local Interpretable Model-agnostic
Explanations (LIME) was used. LIME is a procedure that helps to understand how the input features
of a deep learning model affect its predictions. For example, for image classification, LIME finds the
set of super-pixels with the most grounded relationship with a prediction label [46]. LIME makes
clarifications by creating another dataset of random perturbations (with their separate forecasts)
around the occasion being clarified and afterward fitting a weighted neighborhood proxy model.
This neighborhood model is usually a more straightforward model with natural interpretability,
such as a linear regression model. LIME creates perturbations by turning on and off a portion of the
super-pixels in the image. A quick shift strategy was utilized with the following parameters in order
to calculate the super pixel, as shown in Table 11:

Table 11. Parameter used to calculate maximum pixels.

Function Value

Kernel Size 4
Maximum Distance 200

Ratio 0.2

Figure 8 is the output after computing the super-pixels on a sample chest CT scan image.

Figure 8. Super-pixels on a sample chest CT scan images.

Additionally, Figure 9 shows different image conditions considering perturbation vectors and
perturbed images. To predict the class, during this experiment 150 perturbations were used.
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Figure 9. Examples of perturbation vectors and perturbed images.

The distance metric was utilized to assess how far each perturbation is from the original image.
Cosine metrics were used with kernel width as 1/4 to measure the original image’s distance and
perturbed images. A weighted linear model was used to explain the overall model. A coefficient
was found for every superpixel in the picture that represents how solid the superpixels impact in the
prediction of COVID-19 patients. Finally, top features were sorted in order to determine what are the
most important superpixel. Here, Figure 10 demonstrates the top four critical features.

Figure 10. Top four features (a) on COVID-19 patients CT scan image (b) on other patients CT
scan image.

Here Figure 11, depicts the overall interpretability for image classification with LIME on chest
X-ray images considering each step. The prediction was conducted using NasNetMobile.

Figure 11. Overall prediction analysis using Local Interpretable Model-agnostic Explanations.

In brief, based on the overall experiment, this study found that, among all eight deep learning
models, MobileNetv2 and NasNetMobile performed better both on CT scan and chest X-ray image
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datasets. Additionally, all deep learning models performed well on the chest X-ray image dataset
compared to CT scan images with an average 8% higher accuracy. This research addressed that existing
deep learning approaches could be used along with RT-PCR testing as an alternative approach for
detecting COVID-19 patients on a mixed datasets. The study results also revealed that, NasNetMobile
can be used to identify COVID-19 patients both CT scan and chest X-ray images. Additionally,
the proposed models detect the top features along with the predictions, which might assist the general
practitioners to understand about the virus and the infectious regions.

5. Conclusions

In this study, in the CT scan image dataset, MobileNetV2 and NasNetMobile outperformed
all other models, while NasNetMobile is the best model on the chest X-ray image dataset alone.
NasNetMobile outperformed all other models—except MobileNetV2—with 95% CI on CT scan
datasets, and accuracy ranges from 81.5% to 95.2%, and on chest X-ray image dataset, the accuracy
varies 95.4% to 100%. Additionally, top features that differentiate between COVID-19 and other
patients were analyzed using LIME. With this short time and pandemic situations, we expect this study
will give some insights to researchers and developers who are actively seeking the alter screening
procedures by using both CT scan and chest X-ray image datasets for COVID-19 patients. Additionally,
the experimental result may imitate other current studies, reflecting the possibility of developing
a COVID-19 screening system using a deep-learning approach. Further analysis includes but is
not limited to- understanding deep learning models performance with highly imbalanced data,
model performance with a larger dataset, Check for data bias [47], parameter tuning, and developing
a decision support system.
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