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Abstract: Minimal Learning Machine (MLM) is a recently popularized supervised learning method,
which is composed of distance-regression and multilateration steps. The computational complexity
of MLM is dominated by the solution of an ordinary least-squares problem. Several different solvers
can be applied to the resulting linear problem. In this paper, a thorough comparison of possible
and recently proposed, especially randomized, algorithms is carried out for this problem with a
representative set of regression datasets. In addition, we compare MLM with shallow and deep
feedforward neural network models and study the effects of the number of observations and the
number of features with a special dataset. To our knowledge, this is the first time that both scalability
and accuracy of such a distance-regression model are being compared to this extent. We expect our
results to be useful on shedding light on the capabilities of MLM and in assessing what solution
algorithms can improve the efficiency of MLM. We conclude that (i) randomized solvers are an
attractive option when the computing time or resources are limited and (ii) MLM can be used as an
out-of-the-box tool especially for high-dimensional problems.

Keywords: machine learning; supervised learning; distance–based regression; minimal learning machine;
approximate algorithms; ordinary least–squares; singular value decomposition; random projection

1. Introduction

Minimal Learning Machine (MLM) [1,2] is a supervised learning method that is based on
a linear multi-output regression model between the input and output space distance matrices.
The distance matrices are computed with respect to a subset of data points referred to as reference
points. Although the mapping between the distance matrices is conducted linearly, the kernel-based
construction using pairwise distances to the reference points enables the MLM to learn nonlinear
relations from data for classification and regression problems. Promising results were obtained with
the MLM in several applications [3–5].

The original formulation of the MLM was proposed in [1] and fully formalized in [2].
However, closely related proximity-based machine learning methods were proposed already from
the start of the 21st century in [6–10]. Although the proposed methods in [6,9] are also based on
using distance kernel in supervised learning, they are very different from the MLM. In the MLM,
distances are used directly as features, and the outputs of the distance regression model are only used
to define the multilateration problem which can be solved efficiently to obtain the actual prediction.
The distance kernel-based construction of the MLM provides advantages compared to the more
popular supervised methods such as Neural Networks and Support Vector Machines: The MLM has
only one hyperparameter—the number of reference points—and over-learning seems not to occur in
multidimensional input spaces [3,11–14]. Moreover, compared to currently popular feedforward
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deep learning techniques [15] with nonlinear optimization of multiple layers of weights whose
dimensions depend on the data dimension, the number of unknowns in the linear problem for
the MLM is independent of the number of features (see Section 2.1). Hence, the simple formulation and
straightforward training can improve the efficiency and reliability of the machine learning framework
where the MLM is being applied. Practitioners do not need to tune various metaparameters related to
the structure of the model and the way in which it is trained, so that more efforts can be dedicated to
the way in which a particular application is being presented for supervised learning (see, e.g., [3]).

Lately, it was shown that the MLM possesses basic theoretical guarantees [12]: interpolation
and universal approximation capability. To reduce the complexity of the distance regression
model, reference point selection methods for the MLM were proposed for classification [16,17] and
regression [12]. In Ref. [13], use of a data independent regularization matrix in the MLM training was
proposed to reduce the MLM model’s complexity similarly to reference point selection. The prediction
of the MLM is obtained by solving a multilateration optimization problem determined by the predicted
distances of the distance matrix mapping. In general, methods such as Levenberg-Marquardt [1],
Newton [14], or Localization Linear System [12] (LLS) can be used to solve this problem efficiently.
However, in a single-output regression and in classification, iterative algorithms can be completely
avoided by using analytic formulae and nearest neighbor classification [11,18]. Hence, computationally
the most demanding step of the MLM is to recover the linear distance matrix mapping from the
ordinary least-squares (OLS) problem during training. If cross-validation is used to optimize the
MLM’s only hyperparameter, the OLS problem has to be solved several times [12].

One possibility to reduce the computational burden in the linear distance regression is to use
the iterative Singular Value Decomposition (SVD) update (pp. 101–102, [19]), which tries to reduce
the total computational complexity by using the previously computed regression model. A more
straightforward approach to speed up the computation is to use randomized SVD (pp. 49–50, [20])
or randomized LU decomposition (pp. 251–252, [21]) where the main idea is to compute the
decomposition in a lower dimensional space approximately and then expand the result to the original
dimensions. Comparisons between randomized and non-randomized solvers were reported previously,
e.g., in [20], but to the best of our knowledge, such comparisons have not been performed when
the overall quality of a machine learning framework, here the MLM, is being assessed. We also
present a comparison of the MLM with shallow and deep feedforward neural network (FNN)
models, experimenting on the effects of the number of features and the number of observations
with both methods.

Let us briefly summarize our main findings here. Direct solvers, especially Cholesky decomposition
hold their position as the go-to solver if accuracy of the MLM model is the main objective. They can be
also extended to GPUs [22]. Randomized solvers are a valid option if time is an issue or the accuracy
of the model can be slightly relaxed. In addition, differently from feedforward networks, the MLM
remains both efficient and accurate in a high-dimensional situation where even 90% of the given
features are unnecessary. Therefore, based on the comparison, the MLM should be generally preferred
over FNN for high-dimensional datasets.

The contents of the paper are as follows: First, in Section 2, we introduce the basic
MLM formulation and solvers for the MLM’s distance matrix mapping. In Section 3, we show
experimental results for the solver comparison with several real datasets. The expanded result
tables are presented in Supplementary Material. Discussion of the results is given in Section 4.
Finally, Section 5 concludes the paper.

2. Methods

Next, we summarize the basic MLM method [2,11], the reference point selection algorithm
RS–maximin [11,12], and different choices of the linear system solvers.
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2.1. MLM in a Nutshell

Given a set of inputs X = {xi}N
i=1, where xi ∈ RM, and the corresponding outputs Y = {yi}N

i=1,
where yi ∈ RL, the MLM originates from the distance matrices Dx ∈ RN×K and Dy ∈ RN×K.
These are computed with respect to sets of reference points R = {rk}K

k=1 ⊆ X and T = {tk}K
k=1 ⊆ Y,

where Dx(i, k) = ‖xi − rk‖, Dy(i, k) = ‖yi − tk‖, and K ≤ N. Here ‖ · ‖ denotes the originally proposed
euclidean distance [2], although the MLM method is applicable with any dissimilarity metric.

The linear mapping between the distance matrices can be recovered from the Ordinary
Least-Squares (OLS) estimate (p. 36, [2])

B = (Dx
>Dx)

−1Dx
>Dy. (1)

For the special case when N = K we have a single solution if the matrix Dx is of full-rank
(p. 36, [2]). Then the mapping can be solved simply with

B = Dx
−1Dy. (2)

Equations (1) and (2) suggest that the inversion of the input distance matrix Dx has a central
role in the computational efficiency of the MLM. It is a dense matrix with non-negative components
because with distinct inputs only the distance from each reference point to itself (‖xi − xi‖) is zero.

The original suggestion in [2] was to select the reference points, i.e., locations of the distance-based
basis functions, randomly. However, this does not ensure proper exploration and representation of the
convex hull of the data. For this purpose, the RS–maximin algorithm was later suggested (p. 11, [12]),
(pp. 36–37, [11]) for the reference point selection. RS–maximin is based on maximin clustering method
by Gonzales [23]. It selects new reference points sequentially from the input space starting from the
mean of data by maximizing the distance to the already selected reference points. This selection
method makes the MLM approach fully deterministic and enforces possible duplicate observations in
the input data to be the last ones to be selected.

The training phase of the MLM simply consists of the creation of distance matrices and the
recovery of the coefficients B of the linear distance regression. To predict the output ỹ of a new,
unseen input x̃ with the MLM, one needs to solve a multilateration problem [2]

J (ỹ) =
K

∑
i=1

(
‖ỹ− ti‖2 − ffi2

i

)2
, (3)

where ffi = [‖x̃ − r1‖, ..., ‖x̃ − rK‖]B. As explained in Section 1, in single-output regression and
multi-class classification, the second step can be solved efficiently by using direct methods [11,18].

As the training phase of the MLM is based on learning a multi-target regression model for the
distance matrices, the computational costs and scalability of the method are solely determined by
the number of observations also for the high-dimensional input and output data. More precisely,
the number of features do not affect the dimensions of B as it is determined by the number of
observations. It does affect the computation time of B as vectors need to be computed for B.
This is a significant difference, e.g., compared to the feedforward randomized [24] or deep [15]
learning techniques.

2.2. OLS Calculation Methods

A total of nine different approaches for solving the matrix inverse in Equation (1) in the context of
the MLM were chosen for the comparison. While matrix inversion is a thoroughly explored subject,
the effect of a solver on the performance of the MLM, from both computational efficiency and prediction
accuracy perspectives, has not been presented before. Iterative, inexact stochastic gradient-based
methods such as Adam [25] are typically used in deep learning without rigorous control on the solution
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accuracy of the nonlinear optimization problem during training, so here we test how randomized
approximate solution affects the prediction capability of the MLM.

The methods were selected on the basis of covering different solution techniques and being
available. The selected approaches are summarized in Table 1 along with their abbreviations used
in the plots. Please note that the recently proposed randomized LU decomposition method in [21]
was omitted from the comparison because it is based on a randomized SVD template which is readily
covered by the other techniques.

Table 1. Methods compared.

Name Abbreviation Source

np.lstsq Lstsq_X [26]
np.inverse np_inv_X [26]
np.solve np_sol_X [26]
Cholesky decomposition Cho.Dec [26,27]
np.svd np_svd [26]
sp.svd sp_svd [27]
rank K random SVD rKrSVD_XX [20]
sk rank random SVD sk_rrSVD_XX [28]
SVD update SVD–upd [19]

More of the practical details of the methods compared are given in Section 3.1. It is also relevant to
note that when using RS–maximin as the reference point selection algorithm for the MLM, the rank of
matrix Dx increases as a function of the number of reference points as shown in Figure 1. We show the
mean of the number of relevant singular values in Figure 1 as each simulation was repeated 40 times
for each dataset and reference point percentage. This is explained further in Section 3.
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Figure 1. Mean of the number of relevant singular values in matrix Dx as the function of reference
points with dataset Computer Activity.

The singular value decomposition [29] is a factorization method of a matrix A ∈ RN×K in
which it can be expressed as the product of three matrices: unitary U ∈ RN×N , diagonal S ∈
RN×K and unitary V ∈ RK×K in the way of A = USV>. The randomized SVD [20,28] methods are
based on a random projection to a lower matrix rank by constructing a desired rank randomized
orthogonal matrix and using it with the original matrix to construct the singular value decomposition.
Their goal is to approximate the input matrix to a high enough degree to be useful in practical
situations while providing speedup in computational times by momentarily moving the calculation to
a lower dimension.
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The use of randomized SVD’s in solving B with Equation (1) is based on the singular value
decomposition of the input space distance matrix Dx = USV> which allows us to avoid computing
the matrix inverse. By substituting Dx = USV> into Equation (1) we get

B =
(

VS>U>USV>
)−1

VS>U>Dy

=
(

VS2V>
)−1

VS>U>Dy

= (V>)−1S−2V−1VS>U>Dy

= VS−1U>Dy.

(4)

Equation (4) is useful since the SVD decomposition can be used as it is and there is no need to
reconstruct Dx from the decomposition or to compute heavy matrix inversions. In this paper, we use
Equation (4) in the place of Equation (1) when using SVD based methods.

3. Experiments and Results

In this section we describe the experimental setup and show the experimental results.

3.1. Details on the Methods

Of the nine tested unique methods, five were tested multiple times with small differences.
Methods Lstsq, np.inverse and np.solve had two versions, one with Tikhonov regularization [30] and
one without. Methods rank K random SVD and sk rank random SVD are based on random projection to a
lower matrix rank and were tested with five different settings, one for each remaining rank percentage
(20%, 40%, 60%, 80%, and 100%). Thus, the total number of tested methods and their versions was 20.

Of the methods, np.lstsq, np.inverse, np.solve, Cholesky decomposition, np.svd, sp.svd and sk rank random
SVD were readily implemented in commonly available Python packages [26–28]. Of these, np.inverse and
np.solve require the input matrix to be square and invertible. Cholesky decomposition requires the input
matrix to be a Hermitian positive–definite matrix. Matrix D>x Dx in (1) is not guaranteed to satisfy
these assumptions. As the readily implemented methods are readily available with documentation and
source code, we will not go into detailed explanations here. As their names imply, np.lstsq uses a least
squares solver to compute the approximate solution, np.inverse solves the inverse of the given matrix
and np.solve computes the solution to a linear equation. Decomposition methods Cholesky decomposition,
np.svd, sp.svd and sk rank random SVD compute their respective decomposition and SVD based ones
make use of Equation (4). The Cholesky decomposition solves the inverse of a matrix by computing L
and using a specialized solver made for triangular groups of equations.

Martinsson et al. [20] proposed a rank–k random SVD algorithm, for which we could not find any
available implementation. Our implementation is based on algorithms 4.3 and 5.1 by (pp. 25–28, [31]).
Moreover, the SVD update by (pp. 101–102, [19]) was readily available for Python 2.7 (link in source
for original) and had to be modified to use Python 3.

Finally, the so-called industry standard least squares solver with Tikhonov regularization (Lstsq)
was chosen as the baseline in the statistical analysis of the MLM model’s generalization capability
(i.e., cross-validation error) using the Kruskal–Wallis H test [32].

3.2. Datasets

A representative set of publically available machine learning datasets were chosen for the tests,
as presented in Table 2. Of the public datasets, the first five are actual regression datasets and,
therefore, primarily used in this study. They were previously used in the MLM research and they were
chosen to enable us to probe the scalability of the OLS computation methods (p. 13, [12]). The largest
dataset, Mnist, was created by combining the training set and the test set. Because of our special
research interest in nanotechnology [3], the density functional theory (DFT) oriented nanostructures
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as gathered by Juarez-Mosqueda et al. [33] were used to create nine different special datasets.
These different feature representations of the Au38Q hybrid nanostructures allow us to assess the
effect of the number of features and the number of observations. The details on how these nine
instances of data were formed are given in Appendix C.

Table 2. Datasets used.

Dataset name Acronym # Obser. # Feat. # Uniq. Targets Source

Breast Cancer Progn. (Wisc.) BC 194 32 94 [34]
Boston Housing BH 506 13 229 [34]
Airplane Companies Stocks AC 950 9 203 [35]
Computer Activity (CPU) CA 8192 21 56 [36]
Census (House 8L) CE 22,784 8 2045 [36]
Mnist MN 70,000 784 10 [37]
Au38Q AuNx-yk 12,413 4000 12,413 [33]

Preprocessing each dataset included removal of incomplete observations and constant
features, and normalization of the input and output ranges into [0, 1] with minmax-scaling.
Duplicate observations were not removed. This only affects the Census dataset due to it being the
only one with duplicate observations (one duplicate). The duplicate was present in the simulations
when the portion of the reference points increased but it did not affect the results because of the use of
RS-maximin as the reference point selection algorithm (see Section 2.1).

The first two features (measurement identification number and class-based outcome variable)
were removed from the Breast Cancer dataset and the feature “disease-free time or recurrence time”
was used as the target output. For the other datasets, the last feature was used as the output feature.
Table 2 presents the dimensions of the input matrices for the datasets. The sources of the datasets
include a link to where we obtained the datasets.

3.3. Experimental Setup

Experiments were carried out using Python 3.7.3 with two Intel Xeon E5-2680 v3 CPUs (for
a total of 24 threads at 2.50 GHz) and 188 GB RAM. The main packages were NumPy (version
1.16.4) [26], Scikit-learn (version 0.20.3) [28] and SciPy (version 1.3.0) [27]. Source code for the
implemented rKrSVD_XX is provided in the supplementary files along with MLM and RS-maximin.
Each dataset was randomly split into a training set (80%) and a test set (20%) 100 times. We measured
the root mean square error (RMSE) value of the MLM test error and the process time taken to
compute Equation (1) when the portion of the selected reference points increased according to
[10%, 20%, . . . , 100%]. The measurements were performed on all methods for all reference points
before a new randomly generated dataset split was created. This was to ensure that the results from
each iteration would be comparable.

Exceptions had to be made with the Census dataset and SVD update due to time constraints.
The dataset Census was randomly split 40 times instead of 100, a smaller set of methods were tested
and with reference points [10%, 20%, . . . , 70%]. SVD update had to be measured differently, due to its
iterative nature. The method was used to evaluate Equation (1) at the same reference points as the
other methods. In the required intermediary update iterations, only the internal update was called to
avoid reconstructing the SVD decomposition which the SVD update holds within itself. For SVD update,
each provided process time value includes the time taken to evaluate Equation (1) and the time that
was taken to get to that evaluation. The SVD update in total is the slowest of the selected methods and
it was only experimented with the Breast Cancer, Boston Housing and Airplane Companies Stocks datasets.

Based on the results, we wished to study lower remaining rank percentages and chose to do this
with Census and Mnist. The reasons are further expanded upon in Section 4. We selected Cholesky
Decomposition as the baseline and compared it to sk rank random SVD with remaining rank percentages
[1%, 10%] at reference points [10%, 20%, . . . , 100%]. The measurements were repeated 30 times at
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each reference point by randomly selecting the training and test sets. We repeated the process time
and the model accuracy measurements 40 times. Each with randomly selected training and test set.
The full MLM case of Equation (2) is not used in the experiments. The results as a function of different
reference point percentages need to be comparable to each other, which removes the possibility of
using Equation (2).

It is also interesting to compare the performance of MLM with a shallow and a deep feedforward
neural network (FNN) models due to their popularity [38]. The experiments with FNNs were carried
out using the popular Tensorflow_cpu 2.1 for Python 3 framework [39]. Both a shallow model with one
hidden layer as well as a deep network architecture with three hidden layers, and four transformation
layers altogether, were tested. We applied systematic, gradual decrease strategy to fix the sizes of the
hidden layers. More precisely:

Deep feedforward neural network (FNN-4)

1. Input layer of size M,
2. Feedforward layer with sigmoid activation function of size M/2,
3. Feedforward layer with sigmoid activation function of size M/4,
4. Feedforward layer with sigmoid activation function of size M/8,
5. Feedforward layer with sigmoid activation function of size 1,

Shallow feedforward neural network (FNN-2)

1. Input layer of size M,
2. Feedforward layer with sigmoid activation function of size M/2,
3. Feedforward layer with sigmoid activation function of size 1,

FNNs were trained using maximum of 150 epochs using a batch size 10 with an early stopping
criteria that followed the RMSE test error.I.E. the default settings for Adam-solver and sequential dense
layer model given by Tensorflow 2.1 plus the early stopping criteria. Because of random initialization,
the training process of FNN is not deterministic, so we repeated the training 10 times and selected the
result based on the minimal training error. From the 40 results of the random splits into training/test
datasets, we then calculated the mean and standard deviation for the test errors. The random splits
into training/test datasets were the same as with the MLM, limiting to the first 40 in the case of smaller
datasets (where total of 100 splits were used with the MLM). We measured the training time of the
FNNs and compared them to Equation (1) computation time on the same hardware. The reported
process times for the FNNs are the average of the sum of 10 trainings made for each training/test split.

Finally, we performed experimentation on the Au38Q dataset. The dataset and its variants allowed
us to study the effects of the number of observations and the number of features on the MLM by
doing a method comparison between Cholesky decomposition and random SVD with remaining rank
percentages [1%, 10%]. We also computed results with the FNNs for the Au38Q dataset.

The MLM measurements were performed as previously, we had Cholesky Decomposition and
variants of sk_rrSVD_XX (remaining rank percentages [1, 10]) as the solvers. Each dataset was
randomly split into 40 different training and test datasets with 80/20 ratio and the reported normalized
RMSE value is measured from the test set as well as the process time taken to solve Equation (1).
FNN measurements were also carried out in the previous way with the 40 random 80/20 splits and
10 repeats at each random split.

3.4. Results

We were interested in measuring the MLM test error (RMSE) and process time (time taken to
compute Equation (1)) and we measured them as a function of reference point percentages [10%, 100%]

for each dataset. We report the numerical values in tables and of these tables, we show the RMSE
table for reference point percentage 70% in Table 3 here. Due to the number of tables, we opted to
present the rest in Supplementary Material (Tables S1–S19). In Table 3, we report the mean x and
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standard deviation σ of each measured method, dataset and reference point percentage combination.
For rigorous statistical analysis, [40], we also show the result of Kruskal–Wallis H test (significance
level 0.05) by bolding the text of the mean values that are considered to be different from the mean
result. In the data tables, below the symbol of either mean x or standard deviation σ is the order of
magnitude of the numbers in the same column.

Table 3. RMSE for K = 70. Bolded numbers differ statistically from Lstsq.

Dataset BC BH AC CA CE

x σ x σ x σ x σ x σ
Method/coef. 1 × 10−1 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−2 1 × 10−3 1 × 10−2 1 × 10−4 1 × 10−2 1 × 10−3

Lstsq 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 6.28 2.17
Lstsq (nr) 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
np.inv 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 6.28 2.17
np.inv (nr) 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
np.solve 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 6.28 2.17
np.solve (nr) 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
np.svd 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 6.28 2.17
sp.svd 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
Cho.Dec 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 6.28 2.17
rKrSVD02 2.67 2.33 7.93 1.38 2.57 1.47 2.48 8.17 6.21 2.12
rKrSVD04 2.72 2.27 7.1 1.36 2.31 1.48 2.45 8.27 6.24 2.18
rKrSVD06 2.75 2.37 6.86 1.36 2.23 1.46 2.44 8.39 6.27 2.18
rKrSVD08 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
rKrSVD10 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
skrSVD02 2.65 2.32 7.8 1.47 2.49 1.63 2.46 8.38 6.18 2.2
skrSVD04 2.72 2.35 6.98 1.38 2.28 1.46 2.44 8.3 6.24 2.2
skrSVD06 2.75 2.37 6.84 1.36 2.22 1.45 2.43 8.39 6.27 2.17
skrSVD08 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
skrSVD10 2.77 2.34 6.79 1.35 2.21 1.47 2.43 8.36 - -
SVDU 2.74 2.36 7.07 1.47 2.27 1.62 - - - -

We show plots of the RMSE and process time behaviors as a function of reference point percentages
for Airplane Companies Stocks in Figure 2, for Computer Activity in Figure 3 and for Census in Figure 4.
In the figures we show the mean value of either RMSE or process time and plot only the lines that are
either from Lstsq or differ statistically from it using the Kruskal–Wallis H test with 0.05 significance level.
As is shown in Table 3, we also calculated the standard deviation for each datapoint and as stated
previously, we presented similar tables corresponding reference point percentages [10–60%, 80–100%]
for RMSE and [10%, 100%] for process time in Supplementary Material. Non-Tikhonov-regularized
versions of methods are not shown in the figures in order to improve readability. Since the two random
SVD methods have nearly identical performance, only the readily implemented version, rank K random
SVD is shown in the figures.

Please note that the process time in Figure 2b is not truly comparable between SVD update and
the other methods because of the iterative nature of the SVD update. The process time values for SVD
update include the iterative update steps that are necessary for the method. As the other methods do
not need iterative steps, they naturally have faster computation times in the type of point testing that
we performed.

After our initial simulations we wanted to see an even lower rank reduction percentage. To that
end, we chose to use Cholesky decomposition as the baseline method due to its performance in the initial
simulations. We compared sk_rrSVD_XX with remaining rank percentages [1%, 10%] to the selected
baseline with reference point percentages [10%, 100%]. As with previous simulations, we repeated
the calculations 40 times in order to use statistical testing. The result for RMSE values and process
times are shown in Figure 5 and the numerical values and standard deviations can be found in the
Supplementary Material in Tables S20 and S21. Please note that unlike in the initial simulations,
duplicates were removed from Census since the MLM requires all observations to be unique and Census
as it is contains a duplicate observation.
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Figure 2. Normalized RMSE values (a) and process times (b) as a function of reference points for the
Airplane Companies Stocks dataset. In (a), only methods that at any reference point percentage differ
from Lstsq with Kruskal–Wallis H test are shown along Lstsq.
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Figure 3. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1)
(b) as a function of reference point percentage for the Computer Activity dataset. In (a), only methods that
at any reference point percentage differ from Lstsq with Kruskal–Wallis H test are shown along Lstsq.
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Figure 4. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1)
(b) as a function of reference point percentage for the Census dataset. In (a), only methods that at any
reference point percentage differ from Lstsq with Kruskal–Wallis H test are shown along Lstsq.

After the results shown in Figure 5, we wished to see the behavior on an even larger dataset.
For this, we chose Mnist since it is readily available and sufficiently larger than Census. Mnist is a
classification dataset but here it is considered to be an integer regression dataset. Cholesky decomposition
continued to function as a baseline method to the compared sk_rrSVD_XX at reference point
percentages [10%, 100%]. We used remaining rank percentages [1%, 10%] with sk_rrSVD_XX and
repeated each point calculation 40 times with randomized selection of training and testing sets.
The result is shown in Figure 6 and the numerical values along with computed standard deviations
are presented in Supplementary Material in Tables S22 and S23. Please note that Mnist had duplicate
removal as a preprocessing step unlike the datasets in the initial simulations.

We opted to include result figures with the FNNs in Appendix A for datasets Breast Cancer
(Figure A1), Boston Housing (Figure A2), Airplane Companies Stocks (Figure A3), Census (Figure A5) and
Mnist (Figure A6). The raw data is provided in the supplementary as Tables S24 and S25. The figures
in Appendix A contain the calculated results for the FNNs and the corresponding results for the
MLM. Figures A1 and A2 are the normalized RMSE and process time used for the MLM and the
FNNs for datasets Breast Cancer and Boston Housing. Figure 2 corresponds to Figure A3, where the
difference is the addition of the FNN results. Similarily, Figures 3, 5 and 6 respectively correspond
to Figures A4, A5 and A6. The figures presented in Appendix A have the item “FNN-4” representing
the results relating to the deep neural network, or the neural network with four layers and “FNN-2”
representing the one with two layers. For the figures with RMSE values, we also included the standard
deviation and represented it as a see-through filled area.

Results for the dataset Au38Q are shown in Appendix B in Figures A7 and A8. The raw data is
provided in the supplementary as Tables S26–S45. It is important to note that in the name of readability,
we included another version of Figure A7 in Figure A9. The difference being the removed plot of
FNN-2 due to its behaviour in the 4000 feature column. In addition, Figures A8 and A9 also have
equalized Y-axes to better show the behaviour of MLM.
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Figure 5. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1)
(b) as a function of reference point percentage for the Census dataset. Variants of sk_rrSVD_XX that
differ statistically from Cholesky decomposition are marked with *.
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Figure 6. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1)
(b) as a function of reference point percentage for the Mnist dataset. Variants of sk_rrSVD_XX that
differ statistically from Cholesky decomposition are marked with *.

4. Discussion

Various methods to recover the weight matrix in the distance-regression and their effects to the
accuracy of the whole MLM were studied with fifteen different instances of seven datasets. In addition
to this, we also compared a smaller subset of MLM methods with two feedforward neural network
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configurations. We will first provide discussion related to the direct and randomized solvers and then
discuss the comparison between MLM and FNNs. We wished also to see the performance of the novel
incremental SVD update algorithm SVDU but the computational resources it required forced us to
stop using it on bigger datasets than Airplane Companies Stocks (see Figure 2b).

4.1. Comparison of Direct and Randomized Solvers for MLM

In the experiments, we wanted to see if the industry standard solver Lstsq could be improved upon
by randomization. It was noted that the readily implemented solvers generally had the same accuracy
with minor differences in progress times. Considering this, we do our comparisons of random SVD to
either Lstsq due to its status as the industry standard or to Cholesky decomposition due to it generally
outperforming all other readily implemented methods. We presented summary of the comparison in
Table 4. In short, Table 4 tells us that randomized solvers beat the accuracy of Cholesky decomposition in
two datasets and that the training time with randomized solvers is faster in 11 datasets. Expecially in
the largest two and in the Au38Q dataset. We can summarize Figures 2a, 3a and 4a by noting that
readily implemented methods match each other in the accuracy they provide to the MLM and that
randomized solvers start falling behind at 30% reference points and higher. It is to be expected that
the introduction of randomness in the solver causes the accuracy of the MLM to change relative to
the amount of introduced randomness. The differences between the methods are mostly found in the
process time Figures 2b, 3b and 4b. Based on the process time behavior in the figures, it is clear that
a specialized solver such as Cholesky decomposition is superior to Lstsq in the MLM context. This led
us to leave Lstsq out of further experiments and use Cholesky decomposition as the default method in
this comparison. The results also show the expected behaviour that the degree of randomness in the
random SVD solver has a direct effect on the process time taken.

The process time figures gave us the idea to use even lower remaining rank percentages with
the random SVD and to use it on a larger dataset. This led us to use remaining rank percentages
[1%, 2%, . . . , 10%] which were reported in Figures 5 and 6. Figures 5a and 6a, in conjunction with
Figures 2a, 3a and 4a, show that the random SVD has a tendency to plateau around 30–50% reference
point mark. This is to say that the random SVD does not provide the MLM with meaningful increases
in accuracy at higher reference point percentages. The same 30–50% reference point mark is the area
where low remaining rank percentage random SVD overtakes Cholesky decomposition in process time
as is seen in Figures 5b and 6b. We do not know why in Figure 5a the Cholesky decomposition shows a
non-improving accuracy score.

Table 4. Summary of comparison between Cholesky decomposition and randomized solvers for the MLM.
Symbols + and − indicate that the randomized solver is better/worse than the Cholesky decomposition.

MLM (Cholesky Decomposition) Accuracy Training Time

Dataset rnd. Solver rnd. Solver

BreastCancer + −
BostonHousing − −
AirplaneCompanies − −
ComputerActivity − −
Census + +
Mnist − +
AuN2-4k − +
AuN2-8k − +
AuN2-12k − +
AuN10-4k − +
AuN10-8k − +
AuN10-12k − +
AuN100-4k − +
AuN100-8k − +
AuN100-12k − +
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The results of the MLM in the case of the Au38Q dataset are shown in Figures A7, A8 and A9.
Figure A8 depicts the process times and Figure A9 the accuracy most clearly. An immediate observation
from Figure A9 is that the subfigure columns for 400 features and 4000 features appear identical.

Figure A10 shows that the outlook of the dataset has not changed in any meaningful way when the
number of features increases from 400 to 4000. The reason for that is found in the original nanocluster
trajectory data for Au38Q where the entire dataset is composed of nanocluster configurations where each
adjacent nanocluster differs from each other in miniscule fashion. This is to say that the nanocluster
configurations in Au38Q are similar enough to each other that 4000 features do not provide additional
information that could be used when compared to 400 features. Should there be more variance
in the dataset (such as nanoclusters from another isomer) we would expect to see 4000 features
provide information that 400 features cannot provide. This is at the same time a good argument for
feature selection. Regarding random SVD and Cholesky decomposition, we are comfortable in noting
that Cholesky decomposition is a clear winner in the accuracy it provides to the MLM with the Au38Q

dataset. Although we do suspect that the result would not be so cut an dry with a dataset of more
variance. Considering the properties of the MLM in the case of Au38Q in Figure A7 we can say the
following: The increasing number of observations improves the accuracy of the MLM model and the
increasing number of features do not improve the result if the increased number of features do not
provide meaningful information. Also, the increasing number of features does not make the result
worse either. Process time wise (Figure A8), the MLM behaved as expected. The process time taken
increased as the number of observations increased and it changed only slightly by the changes in the
number of features.

4.2. Comparison of MLM to Shallow and Deep FNNs

We begin the discussion about the FNN results with a short summary of them. In general, the deep
FNN architecture, with higher computational costs, provided better accuracy than the shallow one.
However, the variation of accuracy for both FNN models was rather extensive in the Breast Cancer,
Boston Housing, Computer Activity and Census datasets. One could expect that the larger network FNN-4
would have higher accuracy than the FNN-2, with longer training times as a drawback. One could also
expect that the FNN-2 models for datasets with low number of features could be competitive against
the more complex FNN-4. Both assumptions are backed up by our results, although the process time
for Mnist in Figure A6b was smaller for the FNN-4 compared to FNN-2.

The results for the MLM and FNN comparison are summarized in Table 5. In terms of the overall
performance, i.e., by considering both accuracy and training time, MLM with Cholesky decomposition
was better than FNN in nine of fifteen (60%) of the cases. The training times were on a same level only
with Mnist, otherwise MLM training was more efficient with a clear margin, altogether in 93% (14/15)
of the cases. The FNN-4 model’s accuracy was comparable to the MLM in five cases, and better than
MLM only for the Mnist dataset. This outcome is probably due to the form of Mnist data, which is
given by small 28 × 28 images whose processing through multiple higher-level feature generating
layers is known to be advantageous, especially, compared to a direct distance computation between
the gray scale values as with the MLM.

Regarding FNN and the Au38Q dataset, one can immediately see that FNN-2 is not competitive in a
situation with 4000 features (Figure A7). This was fully expected, as FNN-2 was not meant for datasets
with high number of features (even if it adapts to the number of features in the dataset). In addition,
FNN-2 can at best only match FNN-4 with the Au38Q dataset. Observing FNN-4 in Figure A9 reveals
a trend. At first, the increasing number of features to 400 is beneficiary for both MLM and FNN-4.
However, a further increase in the number of features to 4000 causes FNN-4 to lose accuracy while
MLM stays the same. In addition, the increase in the number of observations causes FNN-4 to gain
accuracy with 80 and 400 features whereas it loses accuracy in the case of 4000 features. This indicates
that FNN-4 cannot naturally handle an increased number of either observations or features that do not
provide new information. Something that MLM shows itself to be capable of.
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Table 5. Summary of comparison of MLM with Cholesky decomposition to a shallow (FNN-2) and a
deep (FNN-4) neural network results. Symbols +, ≈, and − indicate that the FNN results are better,
no different, or worse than the MLM results, respectively. Symbol / and the symbols with it are used to
signify that the FNN results are not properly in either category.

MLM (Cholesky Decomposition) Accuracy Training Time

Dataset FNN-4 FNN-2 FNN-4 FNN-2

BreastCancer ≈ ≈ − −
BostonHousing − − − −
AirplaneCompanies − − − −
ComputerActivity ≈ − − −
Census − − − −
Mnist + ≈ − / ≈ −/ ≈
AuN2-4k − − − −
AuN2-8k − − − −
AuN2-12k − − − −
AuN10-4k −/ ≈ − / ≈ − −
AuN10-8k − / ≈ − / ≈ − −
AuN10-12k − / ≈ − − −
AuN100-4k − − − −
AuN100-8k − − − −
AuN100-12k − − − −

In order to improve the FNN models’ accuracies, we would need to manually tailor the models
for each dataset. This brings an important point in the comparison of the MLM to FNN models.
The MLM has a clear advantage compared to the deep FNN models. Achieving a better result with the
MLM can be conducted straightforwardly since MLM has a only one hyperparameter. Increasing the
number of reference points increases the accuracy of the regression model with a cost of higher training
time. In contrast, the FNN models are known to require careful hyperparameter selection and a
well-designed structuring of the hidden layers. Zhou and Feng [41] argue that the training of deep
neural network models resembles more an art than science or engineering.

5. Conclusions and Future Work

Summarizing our work, we showed results for the accuracy of the MLM and the process time
taken to solve Equation (1) for randomized SVD algorithms with varying level of randomness and
for direct solvers that are well-known to research community. In addition to this, we compared the
accuracy of the MLM to deep and shallow FNN models by means of the number of observations and
the number of features. To begin, we started with Lstsq as the standard and ended up switching it to
Cholesky decomposition as it clearly outperformed Lstsq as well as other tested direct solvers. The only
datasets where Cholesky decomposition was not the clear winner in accuracy provided to the MLM
were Breast Cancer (see Tables 3, Tables S5–S9) and Census (see Figure 5a and Table S20). From there
we can make the conclusion that if the accuracy of the MLM is the only objective, then randomized
solvers do not provide an advantage if the dataset is preprocessed so that there are no duplicates.
The randomized solvers come in to play if the training speed is an issue and one is handling a large
number of observations. The random SVD follows the general principle that the higher the randomness
the lower the accuracy and faster the training speed. However, in the context of the MLM the reduction
of accuracy in the solver does not translate to as great of a loss in model accuracy. Meaning that one
might expect to have results roughly somewhere in the ballpark if 99% of the information is replaced
with randomness but in practice the results with random SVD at low remaining rank percentage are
in the same order of magnitude. We can conclude that a researcher may choose to sacrifice some
accuracy and gain speed in the training phase by choosing a randomized solver with a low remaining
rank percentage.
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As a whole, we demonstrated that:

1. If accuracy is the only objective in a prepared situation, one should choose to use a direct solver
with the MLM.

2. If not, randomized solvers provide comparable performance to direct solvers while
providing a speedup.

3. Utilization of linear training technique with a distance-based kernel is computational more
efficient than nonlinear optimizers needed for the FNN models. In general, the MLM
outperformed the shallow and deep FNNs with fixed architecture, with one exception.
Especially, in cases of thousands of features, as with the experiments for the Au38Q

dataset here, the MLM is the recommended technique from both training time and model
accuracy perspectives.

Therefore, the use of randomized algorithms appear to be a promising avenue for improving the
efficiency of the MLM and other distance-based regression techniques. In addition to this, we believe
that our comparison of the MLM with currently popular neural network techniques showed that the
MLM is a viable option as the general method for nonlinear regression problems.

While this work focused on randomized algorithms, we find it an important topic of future work
to expand the comparison also to iterative solution methods such as the Chebyshev method [42]
and the block-iterative methods [43]. Especially the classical block Jacobi method with successive
overrelaxation can be easily parallelized using data parallelism. It would also be interesting to see the
performance of the MLM when it is set to use a GPU in the calculations.
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Appendix A. MLM vs. FNN
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Figure A1. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1)
(b) as a function of reference point percentage for the Breast Cancer dataset. In (a) for MLM, only
methods that at any reference point percentage differ from Lstsq with Kruskal–Wallis H test are
shown along Lstsq.
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Figure A2. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1)
(b) as a function of reference point percentage for the Boston Housing dataset. In (a) for MLM,
only methods that at any reference point percentage differ from Lstsq with Kruskal–Wallis H test
are shown along Lstsq.
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Figure A3. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1)
(b) as a function of reference point percentage for the Airplane Companies Stocks dataset. In (a) for MLM,
only methods that at any reference point percentage differ from Lstsq with Kruskal–Wallis H test are
shown along Lstsq.
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Figure A4. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1)
(b) as a function of reference point percentage for the Computer Activity dataset. In (a) for MLM,
only methods that at any reference point percentage differ from Lstsq with Kruskal–Wallis H test are
shown along Lstsq.
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Figure A5. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1)
(b) as a function of reference point percentage for the Census dataset. For MLM, variants of
sk_rrSVD_XX that differ statistically from Cholesky decomposition are marked with *.
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Figure A6. Normalized RMSE values (a) and process time in seconds taken to compute Equation (1)
(b) as a function of reference point percentage for the Mnist dataset. For MLM, variants of sk_rrSVD_XX
that differ statistically from Cholesky decomposition are marked with *.
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Appendix B. Au38Q
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Figure A7. Normalized RMSE for Au38Q. Each subfigure has reference point percentage on the
horizontal axis and normalized RMSE on the vertical axis. The top row corresponds to dataset variants
with 4000 observations, middle row represents variants with 8000 observations and the bottom row is
for the full dataset. The left column represents dataset variants with 80 features, middle represents
400 features and the right column is for the full feature set. Please note that the Y–axis is different in
each column.
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Figure A8. Process time for Au38Q. Each subfigure has reference point percentage on the horizontal
axis and normalized RMSE on the vertical axis. The top row corresponds to dataset variants with
4000 observations, middle row represents variants with 8000 observations and the bottom row is for the
full dataset. The left column represents dataset variants with 80 features, middle represents 400 features
and the right column is for the full feature set. Please note that the Y-axis is equalized in the subfigures.



Mach. Learn. Knowl. Extr. 2020, 2 553

Reference point %

No
rm

al
ize

d 
RM

SE

Cho.Dec
sk_rrSVD_010
sk_rrSVD_009

sk_rrSVD_008
sk_rrSVD_007
sk_rrSVD_006

sk_rrSVD_005
sk_rrSVD_004

sk_rrSVD_003
sk_rrSVD_002

sk_rrSVD_001
FNN-4

20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

#feats: 80

20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

#feats: 400

20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

#feats: 4000

20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

20 40 60 80 100
0.00

0.01

0.02

0.03

0.04

0.05

#o
bs

: 4
00

0
#o

bs
: 8

00
0

#o
bs

: 1
24

13
Figure A9. Same as Figure A7 but, for readability, without FNN-2. In addition, the Y–axis scale is same
in each subfigure.

Appendix C. Au38Q MBTR-K3 Dataset and Its Variants

The Au38Q dataset has its roots in a hybrid nanostructure reported by Qian et al. [44]. The Au38Q

is a monolayer ligand protected nanoparticle, or a hybrid nanoparticle that is from here on referred
to as a nanostructure (referring more to the physical structure than to the scientific concept, also to
avoid confusion with the machine learning meaning of a cluster). The nanostructure was studied
with molecular dynamics simulations under heating by Juarez-Mosqueda et al. [33] which produced a
trajectory file (a data format containing one or more nanostructure configurations and metadata) for
Au38Q that contained 12,413 nanostructures formed during a molecular dynamics simulation from a
start point to an end point. Each nanostructure in the trajectory is akin to a log of a time step during the
molecular dynamics simulation. Each nanostructure is also paired with a value called potential energy,
which can be used to describe the stability of a nanostructure. The potential energy was calculated by
Juarez-Mosqueda et al. [33] using a density functional theory (DFT) calculator GPAW. However, a raw
nanostructure configuration (the cartesian coordinates of the atoms) is problematic as it is for machine
learning since there is no way to deterministically order the atoms so that the order in which they
are given has no effect on the machine learning model. A set of cartesian coordinates are also not
translationally and rotationally invariant, which is a major issue since the orientation and the exact
location of a nanostructure are not allowed to have an effect. To solve this problem one has to use a
concept called a descriptor. A descriptor is very literal in its function. We opted to use one called many
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body tensor representation (MBTR) [45] which combines several descriptors to form its own. The use
of MBTR in the context of nanostructures is also discussed in [3,45]. In our case, the description of a
nanostructure is a vector, computed using a package known as Dscribe [46] (version 0.4.0). In short,
the input values in our Au38Q datasets are the description vectors and the output values are the
potential energy values of each nanostructure.

We opted to use a setting denoted as K = 3 which computes a distribution of angles between
groups of three elements and then concatenates those distributions to form a description vector.
The Au38Q is formed of four elements, hydrogen (H), carbon (C), sulfur (S) and gold (Au). The name
Au38Q refers to the nanostructure having 38 gold atoms as its core. For example, one of the distributions
is formed from H-Au-C, meaning that the angle between vectors formed from H-Au and Au-C
are computed. Repeated angles are of no interest, in our case there are 40 different three element
angle groups [H-H-H, H-H-C, . . . , Au-S-Au, Au-Au-Au] that are calculated to form the MBTR K = 3
description vector. We used mainly the default settings of the MBTR in Dscribe: l2 normalization
(the length of a description vector was normalized to 1), cosine was used as the angle calculation
function, measurement grid was set as [−1, 1] and σ was 0.1. We used exponential weighting function
with a scale of 0.5 and a cutoff of 1 × 10−3. As we were describing a single nanostructure in a vacuum
at a time, the descriptor is not periodic.

We mentioned that there are variants of Au38Q dataset. In total we used nine variants by having
two parameters with three values in each. One of the varied parameters was the number of features
through the grid accuracy parameter N for the MBTR, which defines the number of points in a single
angle distribution component. In other words, a grid accuracy parameter N = 100 results in 40 vectors
of 100 length to form a description vector with 4000 features. The grid accuracy parameters that we
used were N ∈ [2, 10, 100]. The number two is the lowest that can be used since a single number is
not enough to describe a distribution. The other varied parameter was the number of observations.
The full variant is denoted as 12 k, even though it uses the full 12,413 observations. Other two
variants are 4 k and 8 k, which use 4000 observations and 8000 observations, respectively. The subsets
of observations are taken from the full set with the use of the reference point selection algorithm
RS-maximin. Since RS-maximin is deterministic, the first 4000 observations in 8 k are the same as
all the observations in the 4 k subset. We denoted the variants of Au38Q as AuNx-yk in the tables,
where x ∈ [2, 10, 100] and y ∈ [4, 8, 12]. As Au38Q is not a commonly used dataset we included a
figure showing the mean of all 12,413 MBTR description vectors with the three grid accuracy values
in Figure A10 to aid the reader in understanding the way that a description vector might look like.
The data files are available at 10.5281/zenodo.4268064.
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Figure A10. Means of 12,413 MBTR-K3 descriptors for grid accuracy N values 2 (a), 10 (b) and
100 (c). Features represent N consecutive numbers representing the angle distribution measured
between groups of three atoms. The nanostructure Au38Q is composed of four elements, hydrogen
(H), carbon (C), sulfur (S) and gold (Au). The first N features are H-H-H angles, second N are H-H-C
and so on. Ending with Au-Au-Au angle. There are no repeated angles and so there are a total of
40 distributions laid consecutively to form the resulting MBTR-K3 vector.

https://dx.doi.org/10.5281/zenodo.4268064
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