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Abstract: Machine Learning (ML) is increasingly applied for the control of safety-critical Cyber-Physical
Systems (CPS) in application areas that cannot easily be mastered with traditional control approaches,
such as autonomous driving. As a consequence, the safety of machine learning became a focus
area for research in recent years. Despite very considerable advances in selected areas related to
machine learning safety, shortcomings were identified on holistic approaches that take an end-to-end
view on the risks associated to the engineering of ML-based control systems and their certification.
Applying a classic technique of safety engineering, our paper provides a comprehensive and
methodological analysis of the safety hazards that could be introduced along the ML lifecycle,
and could compromise the safe operation of ML-based CPS. Identified hazards are illustrated
and explained using a real-world application scenario—an autonomous shop-floor transportation
vehicle. The comprehensive analysis presented in this paper is intended as a basis for future holistic
approaches for safety engineering of ML-based CPS in safety-critical applications, and aims to support
the focus on research onto safety hazards that are not yet adequately addressed.
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1. Introduction

Cyber-physical systems are systems that continuously interact with the physical world and
human operators. Combining the cyber and physical worlds allows the emergence of technologies,
which fosters innovation for a broad range of industries. The Cyber-Physical Systems (CPS) community
has been experiencing a strong push towards integrating machine learning in their systems. Besides the
large amount of analyzable data [1], machine learning algorithms help to master control problems
that do not lend themselves to traditional algorithmic control approaches. CPS applications include
medical devices and systems, assisted living, traffic control and safety, advanced automotive systems,
avionics and aviation software, critical distributed robotics, manufacturing, among others [2],
where most of these applications are safety-critical.

Industrial CPS-based applications have also been developed and deployed in Industry 4.0 [3,4].
Through CPS, Industry 4.0 (also referred to as Smart Factory [5]) is focused on creating smart products,
procedures and processes [6]. In the Industry 4.0 context, a proper safe collaboration between humans
and machines is needed, due to the widespread usage of Machine Learning (ML)-based robots
(industrial-, service-, mobile-robots, such as Autonomous Intelligent Vehicles (AIV)) in factories [7–9].
These CPS incorporate ML components in order to perform complex tasks such as pattern and image
recognition (i.e., tasks difficult to effectively perform using algorithmic methods alone) [10]. Along with
its growing applications, safety aspects of machine learning became a crucial topic of research [10,11].
For most real-world applications, the safety of ML-based systems must be evaluated and assured.
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The problem of failures in machine learning systems, defined as unintended and harmful behavior,
may emerge from inaccurate incorporation of ML into systems [12]. The probabilistic nature of ML
algorithms sometimes conflicts with the safety culture adopted when developing a safety-critical
system [13]. Their engineering is less well understood than of general software: despite a relatively
static and clean structure, their functionality depends on numerical parameters that are extracted from
datasets [14], without being explicitly programmed to perform a specific task [15].

The growing interest in the area of safety of ML has brought together researchers from the two
areas, in order to bridge the gap between safety engineers and machine learning [11]. Concerns about
assurance and certification of such systems have been explored in the literature taking different
approaches (high-level vs. low-level) [16,17]. Despite the advances, there is still an ongoing discussion
in the community on the definition of which standards and norms should be defined for the certification
of ML-based systems. Several recently launched initiatives on certification, such as the Dependable
and Explainable Learning (DEEL) Certification Workgroup [18] in France and standardization working
groups, for example, EUROCAE WG-114 and SAE G-34, indicate the relevance of this topic [19].

Our paper presents an extensive detailed analysis of the characteristics of ML models that could
potentially affect safety. This is achieved by describing the activities that occur during the machine
learning lifecycle (i.e., the iterative process responsible for designing and implementing a machine
learning component) that could introduce a hazardous behavior. We illustrate the process using a
real-world application scenario, i.e., a self-driving vehicle that operates in factory warehouses sharing
transportation routes and tasks with human workers. We consider that this illustration is extremely
important to support a clear view of the content of the paper. The aim of our study is two-fold:
(1) supporting the identification of sources for potential hazardous behavior in the machine learning
lifecycle, detailing how it can affect the overall system and illustrating it with an example scenario;
(2) establishing the basis for a future definition of a coherent framework to integrate hazards analysis
and verification techniques, along with mitigation mechanisms (detection and removal), towards the
ultimate goal of the standardization of the development process of safety-critical ML-based systems.

The rest of the paper is structured as follows. In Section 2, we describe the main literary works that
we consider fundamental for the advances made on the safety of ML so far, ranging from the definition
of safety concepts to the steps already taken into certification and assurance of ML. In Section 3,
we present some background on the concepts of safety as well as machine learning, and ultimately,
on safety and machine learning together. Section 4 extensively details the ML lifecycle following a
structured approach, defining activities and hazardous behavior of each phase of the cycle. Section 5
finalizes the paper by highlighting our main contributions and potential future steps.

2. Related Work

Recently, there is a growing concern in defining safety concepts, principals, and standards for
ML-based systems, especially for safety-critical applications. An existing community of researchers
have been studying the safety of ML-based systems that interact with the physical world [12].

Due to the variety of applications and also to its relatively recent research, authors have focused
on different topics regarding the safety of machine learning. The first steps of Amodei et al. [12] detail
concrete problems of ML models in order to avoid accidents, especially for the case of reinforcement
learning. On the same topic, Faria [11] addresses safety in machine learning, focusing not only on
reinforcement learning, but also on supervised and on non-supervised methods. Both researches
describe the identified failure modes, and both present strategies for managing safety issues.
Furthermore, similar works were presented by Varshney et al. [20,21], where both papers focus
not only on defining machine learning safety concepts, but also on the safety strategies for specific
applications (i.e., cyber-physical systems, decision sciences, and data products). This way, both
Faria and Varshney et al. presented the first steps on defining safety concepts for machine learning
applications. Later, other authors focused on these specific machine learning safety concepts, such as
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classifying the major sources of uncertainty, and how to treat it during development and testing of ML
models [22].

In parallel, other authors have conducted their research on the verification and validation of
safety-critical ML-based systems, with a special focus on the certification challenges, and on the
gaps of the currentInternational Organization for Standardization (ISO) standards for the automotive
domain [10,23–26]. These authors described adaptations that can be considered critically needed
to allow these systems to be compliant with ISO 26262, also identifying suggestions on how the
standards should evolve. More recently, and still in the context of autonomous driving, Schwalbe
and Schels [27] published a survey on methods for safety assurance of ML-based systems, where a
structured certification-oriented overview on available methods supporting the safety argumentation
of ML was provided.

At the same time, researchers were also concerned with machine learning engineering from a
software quality assurance perspective. Ma et al. [28] presented an extensive literature review and
proposed a Secure Deep Learning Engineering (SDLE) development process specialized for Deep
Learning (DL) software. This topic also got the attention of other researchers who focus on safety
architectural design and architectures for intelligent systems and safe ML [13], and also on the low-level
requirements of machine learning models code, by proposing requirements traceability of software
artifacts [29]. In a more recent study, Jenn et al. [18] presented the main challenges on the certification
of systems embedding ML.

One of the surveys published recently also addresses the safety of ML following an approach
very similar to ours. Ashmore et al. [16] presented a theoretical framework of safety considerations
in an ML component development lifecycle, detailing specific assurance properties for each phase
activity, and an overview of the state-of-the-art methods to provide the required assurance evidence.
The two works are very close to each other because they both present the safety concerns along the
ML lifecycle phases; however, the work of Ashomre et al. is concerned with obtaining evidence for
providing assurance to ML components. In contrast, our work is mainly focused on exploring the
susceptibilities of each lifecycle phase activity where safety hazards could be introduced.

All the literature presented in this section constituted a fundamental basis for constructing
our paper. Nevertheless, since we do not focus on software architecture or on assurance patterns,
we consider that our work positions itself in a different perspective compared to the remaining
state-of-the-art papers on safety of machine learning: by presenting a clear and structured analysis of
safety hazards detailed according to phases and activities of the ML lifecycle, and by proving for every
identified hazard an illustrating example based on a real-world application scenario.

3. Safety and Machine Learning

Machine learning algorithms are increasingly used in systems that involve humans or operate in
shared environments with humans, resulting in growing attention to the aspects of the safety of those
systems in the last few years. To provide a better understanding of the terms and notation of safety
and machine learning fields, this section presents clarifications for both areas individually, and then
for the intersection of both. For that purpose, the next subsections will focus on the definition of a
few statistical machine learning notations, as well as on the relationship of those notations with safety
concepts. At the end of this section, safety in machine learning is further illustrated by presenting an
example application of a safety-critical CPS where an ML model is integrated. The example presented
here will also be considered in Section 4.

3.1. Safety

Across multiple engineering disciplines, safety is a frequently used term, which designates the
absence of catastrophic consequences on the user(s) and on the environment [30].

The concepts of harm, risk, hazard, and uncertainty are inherent to safety. Without focusing
on machine learning, a system generally returns an outcome based on its state and on its inputs.
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This outcome may be desired or not, and an undesired outcome is only harmful if its consequences
exceed some threshold that is quantified by society. Therefore, harm is defined as a physical injury or
damage to the health of people, either directly or indirectly as a result of the damage of a property
or to the environment. Risk is the product between the probability and severity of a potential harm,
and a hazard is defined as a potential source of harm [31]. Harmful outcomes occur in unexpected
or undetermined scenarios and operating conditions. Uncertainty is connected with safety when the
outcome of a system is unknown and its probability distribution is also not known (or only partially
known) [32]. Epistemic uncertainty refers to uncertainty caused by a lack of knowledge of the physical
world (knowledge uncertainty).

A general definition of safety is related to the minimization of risk and epistemic uncertainty,
in order to minimize unwanted outcomes severe enough to be qualified as harmful [33]. Engineering
safe systems relies on minimizing the risk-product, either by minimizing the probability of the harmful
events or by reducing their damage. In order to achieve this, potential hazards must be carefully
identified and their risk assessed, strategies to eliminate or mitigate the identified hazards must be
implemented [34]. In addition, in most industries, the proper implementation of safety strategies must
be documented in safety cases, providing a convincing argument that the system is fulfilling its safety
goals for a given application in a given environment [35].

The success of the safety analysis fully depends on the complete and accurate knowledge of
multiple aspects of the system, such as the operating environment, system requirements, design,
and constraints. Thus, a safety assessment intrinsically has some level of epistemic uncertainty.
Keeping these concepts as background, the next step will be to analyze them as applied to the field of
machine learning.

3.2. Machine Learning and Notations

Machine learning is the science of programming computers that enables them to learn from
data [36]. It is a sub-field of computer science that evolved from the study of pattern recognition
and computational learning theory, exploring the construction of algorithms that can learn and make
predictions based on data [37]. Such algorithms operate by training a model from data inputs in
order to make data-driven predictions or decisions, instead of being hand-crafted to solve a particular
problem by means of “conventional” algorithms.

ML systems can be classified according to the amount and type of supervision they get during
learning, there exists four major categories: Supervised learning, Unsupervised learning, Semi-supervised
learning, and Reinforcement learning [36]. On Supervised learning, the data used for the learning process
includes the desired solutions (i.e., labels/annotations); on the contrary, for Unsupervised learning the
data are unlabeled (the system tries to learn without a teacher). Within Supervised learning, problems
can be divided into classification and regression, where classification models rely on identifying a
class (i.e., label) that the input belongs to, and regression models predict continuous-valued attributes.
For Unsupervised learning, models are based on cluster algorithms that are used to group similar inputs
into sets. In Semi-supervised learning, some algorithms can deal with partially labeled data (usually
a lot of unlabeled data and a small amount of labeled data). Lastly, Reinforcement learning is based
on a different approach, where the learning system, called an agent in this context, can observe the
environment, select and perform actions, and get rewards in return (or penalties in the form of negative
rewards) [38].

Machine learning builds on the foundations of Statistical learning theory. James et al. [39] refer to
Statistical learning as a vast set of tools for understanding data. The starting point in the theory and
practice of Statistical machine learning is risk minimization. Given the random example space X×Y
of observations (features) x and labels y, with a probability density function P(X, Y), where the goal is
to try to find a function f : X → Y that approximates the most probable label y for the observation x.
Considering the loss function L as the measure of the error incurred by predicting the label of an
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observation x as f (x) instead of y, Statistical learning defines the risk of f as the expected value of the
loss of f under P:

R( f ) =
∫

L(x, f (x), y)dP(x, y) (1)

Therefore, the Statistical learning problem consists of finding the function f that optimizes
(minimizes) the risk R. However, in an ML context, the probability function P(X, Y) is not known,
only a finite number of m examples (x(i), y(i))i=1...m are available. This way, for the algorithm
hypothesis h and the loss function L, the expected loss on the training set is defined as empirical risk
of h:

Remp(h) =
1
m

m

∑
i=1

L(x(i), h(x(i)), y(i)) (2)

Another important aspect is the ML model performance evaluation, which is the process of
understanding how well a model gives the correct prediction. In some cases, it is important to consider
how often a model gets a prediction correct, however in other cases, it is important to look if the model
gets a certain type of prediction correct more often than the others [40]. There are several metrics that
we can use to evaluate the performance of ML algorithms, which are dependent on the type of the
problem (e.g., classification, regression, clustering). For classification problems, the predictions could
be classified as: (1) True Positive (TP), where both prediction and label are positive; (2) False Positive
(FP), where the prediction is positive but the label is negative; (3) True Negative (TN), where both
prediction and label are negative; (4) False Negative (FN), where the prediction is negative but the
label is positive. Different evaluation metrics can be calculated through the combination of these four
values, being accuracy, precision, and recall the most used ones.

3.3. Safety in Machine Learning

The definition of machine learning safety has not yet been formalized among the community.
Several authors define machine learning safety in terms of risk, epistemic uncertainty and the harm
caused by unwanted outcomes [11,20,21].

Based on this generic notion, various approaches towards safety in machine learning focus on
reducing the likeliness of undesired outcomes and the induced harm by explicitly including these
aspects into the loss function L, thereby optimizing the machine learning system towards achieving
a safe behavior. Whilst this approach may form one of the core safety strategies to be used in the
context of machine learning, it falls considerably short of being sufficient to achieve safety as required
in real-world applications such as autonomous driving or factory automation in environments shared
between humans and machines.

In such contexts, we usually have to guarantee that the probability of harmful behavior is
extremely low. Applicable functional safety standards such as ISO 26262, IEC 61508, and SAE
ARP4754A, require the demonstration of failure probabilities of, for example, 10−7 and 10−9 per
operating hour [41–43]. The loss function approach as a single separate means is not capable of
achieving these levels. In addition to this shortcoming, the loss function approach does not adequately
address issues related to epistemic uncertainty and the proper formulation of the loss function itself
(these will be analyzed in detail throughout Section 4).

Further, the loss function will typically combine different aspects to define inferior behavior and
undesired outcomes. Many outcomes of machine learning systems may be identified as undesired by
such combined loss function, but may be tolerable from a safety perspective. This is due to the fact
that these outcomes either do not lead to harmful behavior, or they are detectable, and therefore can be
masked by the embedding CPS. Making the distinction between an acceptable and a potentially
harmful undesired outcome is one of the challenges of applying ML-based control systems in
safety-critical environments.
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A related challenge is to define an adequate safety-directed reaction for those undesired outcomes
that are identified as potentially harmful. In many current and future safety-critical applications, such
as fully autonomous driving without a safety driver on board, there is no safe state in the traditional
sense. To ensure the proper functioning of the ML-based control system within its embedding CPS,
the failure modes of the ML-based control system must be understood as well as the consequences of
these failure modes may have at the level of the embedding CPS. Consequently, safety engineering for
CPS relying on ML-based control needs to cover both, the control system based on machine learning,
and also the embedding CPS as the operational context.

To properly address the safety of machine learning systems, one has to implement the rigorous
processes prescribed in functional safety, and utilize both: safety strategies known from conventional
systems development, and safety strategies developed specifically for machine learning systems.
The challenge here is to bridge the gap between the traditional defensive, risk-averse, and rigorous
functional safety culture, and the opportunity-oriented, technology-focused culture still dominating in
machine learning. In this paper, we aim to contribute to connecting these seemingly antagonistic views
by identifying the hazards and related failure mechanisms that may potentially lead to unsafe behavior
of machine-learning-controlled CPS, thereby providing a stable basis for identifying applicable safety
strategies addressing each one of these hazards.

3.4. Example Application

As mentioned above, machine learning algorithms are affected by probabilistic factors inherent to
their design, which consequently leads to several concerns that need to be assured for the guarantee of
safety in high-critical applications. With the goal in mind of presenting the whole process of designing
an ML-based system, we describe an example application that will be used as a mental reference to
provide guidance throughout the paper.

Not surprisingly, industries around the world are exploring the possibility of applying ML in their
operations [44]. Focusing on the example of the factories of the future, various Artificial Intelligence
(AI) use cases involve improving productivity across major areas of operations, both outside and
inside the factory walls. Inside the factory walls, AI can provide various benefits to production, and to
such support functions as maintenance and logistics. Keeping this in mind, we select an example
based on a self-driving vehicle that operates in factories and warehouses sharing transportation routes
and tasks with human workers. Recent research shows an increasing interest in the use of machine
learning algorithms for self driving vehicles inside factories [45]. The inevitable involvement of human
operators in their supervision and control introduces significant challenges in assuring safety while
achieving the expected performance.

Overall, autonomous vehicles rely on diverse technologies: sensors, actuators, complex algorithms,
and powerful processors. ML components are developed for scene recognition, path planning,
and vehicle control tasks. It is important to mention that we will only focus on the ML-based scene
recognition component for further exemplifications. From a high-level perspective, vehicles create a map
of their surroundings, by monitoring the position of nearby objects (other vehicles, people, signs, etc.).
These complex algorithms are usually composed of ML models that operate in scene recognition tasks,
which are based on localization and object detection and tracking [46]. This process is depicted through
a high-level diagram in Figure 1. For safe movement of the self-driving vehicle inside factories, all of the
system components must work together in order to avoid hazards.
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Figure 1. Simplified diagram of an autonomous vehicle operation during run time. A Machine Learning
(ML) component is responsible for scene recognition tasks.

The example presented here focuses on an autonomous vehicle, controlled by an ML model,
which transports material between assembly cells, using data from cameras and sensors to avoid
obstacles. Considering a safety-critical perspective, this example illustrates the case where humans
and robots (i.e., self-driving vehicles) work together, and the safety of the human being must be
guaranteed. Therefore, the scenario of collision represents a critical harm where the vehicle may collide
with obstacles (humans) due to failures in one of the components mentioned. Collisions can lead to
fatal injuries, which are not avoidable without safety measures.

4. Machine Learning Lifecycle

In safety-critical systems it is important to understand how these systems work and interact with
the surrounding environment, and respond to changes. Considering the application of a machine
learning model in one of these systems, assuring its safe operation requires a complete understanding
of the machine learning lifecycle, in order to identify in which step safety could be compromised by
development related safety hazards.

The ML lifecycle represents the process of the development and integration of a machine learning
algorithm into a system. Similar to traditional system development, this process is constructed based
on a set of system-level requirements, from which the requirements and operating constraints for
the ML models are derived. Nonetheless, machine learning development algorithms require dealing
with new paradigms that are not common in the standard software development lifecycle. Instead
of a well-defined set of product features to be built, as in traditional software, ML development
involves the acquisition of new datasets and is based largely on experimentation: different models,
software libraries, tuning parameters, etc. The manipulation of the datasets and the use of ML training
techniques, produces a pipeline that takes data as input and delivers trained models as output, for later
integration into systems. The successful development and integration of an ML model happens when
the system is capable of achieving the specified requirements for new unseen data [47].

Commonly, the ML lifecycle is divided into five main phases: Requirements, Data Management,
Model Development, Model Testing and Verification, and Model Deployment, which are depicted
in Figure 2. Here, we considered that the Requirements phase outputs the requirements list for the
remaining four phases, which we encapsulate in the block Design and Development. This block
compromises every phase necessary to output a deployed ML model into a system (i.e., self driving
vehicle). This section describes each phase in detail, presenting the activities associated, and the
potential hazards that could be introduced. Additionally, the example of the self-driving vehicle inside
factories (described in Section 3.4) will be considered here, presenting in each lifecycle phase an
illustrative case of the potential hazards and how they could affect system performance.
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Figure 2. Machine learning lifecycle (adapted from the work of Ashmore et al. [16]).

4.1. Requirements

The main goal of the Requirements phase is to define the right specifications for the intended
use of a system. Recently, authors have been discussing the challenges of requirements engineering
for ML-based systems, suggesting that ML engineering constitutes a paradigm shift compared to
conventional software engineering [48], and that requirements engineering is the most difficult activity
for the development of ML-based systems [49].

The Requirements phase identifies the functionality, performance levels, and other characteristics
that the system must satisfy in order to be acceptable to the customer/final operation. During requirements
engineering, the system architecture is constructed up to the smallest functional units, and for each, the use
case is specified, including intended operational environment and behavior [27]. Requirements can be
functional (FR) or non-functional (NFR), where typically, FRs describe the system functionality, while NFRs
describe system properties and constraints [50] (e.g., an FR for the self-driving vehicle example could
be the system has to detect obstacles, and an NFR could be the detection speed of the system should be less than
5 s). Furthermore, requirements are often organized hierarchically, where high level requirements focus
on what should be achieved, and lower ones on how to achieve it. In traditional software engineering,
there is a direct link (traceability, that is, proof of the complete implementation of requirements) between
low and high level requirements, as well as design (the total set of low level requirements must be
validated against the higher level parent ones). However, in an ML-based system, this traceability is not
straightforward, since it is not based on an explicit implementation of requirements for achieving a desired
function, but instead a generic calculation algorithm (e.g., a neural network), the behavior of which is
defined by parameters (e.g., weights). For that reason, high level requirements can be explicitly defined
but the low level ones are given implicitly when specifying the dataset (the characteristics of which are
defined in the Requirements phase and are implemented during the Data Management phase). Without
explicit low level requirements, the traditional traceability-based assurance approach—linking high-level
to low-level requirements, and low-level requirements to implementation—cannot be applied. On the
other hand, even if there would be explicit low-level requirements it would be hard to trace them into the
implementation, telling which elements of the machine learning algorithm and which of its parameters
contribute to implementing a specific low level requirement. Consequently, the traditional way of assuring
software functionality cannot be applied [51].

At the end of this phase, the set of requirements defined is provided to the Design and
Development phases.
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4.1.1. Activities

For the Requirements phase we only considered the activity of requirements definition, which focuses
on the definition of several conditions that need to be satisfied along the rest of the ML lifecycle. For that
reason, the following requirements need to be considered during:

• Data Management: Requirements focused on defining the desired dataset according to the use
case. Identification of all possibly relevant sources of data that may help the ML system to provide
accurate and robust results. The definition of the data will impact the dataset distribution and the
ML model effectiveness to generalize.

• Model Development: Requirements focused on the objective/loss function and performance
measures definition. Definition and discussion of the performance measures and expectations
by which the ML system shall be assessed. As mentioned by Vogelsang et al. [48], performance
measures such as accuracy, precision, or recall are not well understood by customers. On the other
hand, the adequacy of the measures depends on the problem domain. Therefore, requirements
should consider the demands of the stakeholders by translating them to the appropriate measures.

• Model Testing and Verification: Definition of testing and verification requirements related with
performance metrics, fault tolerance, and scenario coverage. Here it is important to clarify which
scenarios should be tested, which performance metrics should be achieved, and which faults the
systems should tolerate.

• Model Deployment: Specifications of conditions for data anomalies that may potentially lead to
unreasonable or non-safe behavior of the ML system during runtime. The specification should
also contain statements about the expected predictive power: performance on the training data
can be specified as expected performance that can immediately be checked after the training
process, whereas the performance at runtime (i.e., during operations) can only be expressed as
desired performance that must be assessed during operation.

4.1.2. Hazard Identification

The Requirements phase is crucial for ensuring that a model is fitted to its purpose within a
specific context. As mentioned above, requirements definition affect the remaining ML lifecycle phases;
therefore, the hazards introduced during this phase will have a direct impact on them.

• Incomplete definition of data. When defining the operation mode of an ML-based system it is
important to have a complete definition of all data examples in order to avoid future problems on
the dataset distribution, which will surface during the Data Management phase. This assumes
that humans can correctly identify all varying conditions at requirement specification time,
which is a difficult mark to achieve.

• Incorrect objective function definition. One of the requirements that needs to be defined is the
objective function, that is, the loss function that needs to be minimized. The definition of this
function could cause different problems in case the wrong objective function is defined, or that
some undesirable behavior occurs during the learning process. The incorrect definition of the
objective function could potentially harm any ML-based system, since its maximization leads to
harmful results, even in the limit of perfect learning and infinite data. This could happen when
the designer/requirements engineer specifies an objective function that focuses on accomplishing
some specific task in the potentially very large environment, but ignores other aspects of it.
By doing that, it implicitly expresses indifference over environmental variables that might actually
be harmful to change, resulting in negative side effects specifically if human safety is not correctly
accounted for.

• Inadequate performance measure. The definition of the performance measures happens during
this phase and it will have a direct impact on model training during the Model Development
phase and ultimately on the delivered model. Although there exist several measures that can be
used for evaluating the performance of ML algorithms, most of these measures focus mainly on
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some properties of interest in the domains where they were developed. According to a specific
system, different predictions can be of great importance in safety-critical systems, and deciding
which measure we want to optimize will influence the system behavior.

• Incompleteness on testing/verification. The definition of the entire necessary testing and
verification scenarios may not be complete, and/or values to be achievable for different metrics
may not be correctly defined. For both cases, incompleteness in the quantity and quality
(i.e., threshold values for metrics) could lead to safety hazards (e.g., error rate, execution time).

• Inadequate safe operating values. During the Model Deployment phase, the monitoring of
outputs requires the definition of some kind of “measure of confidence” and/or a “comparison
to reasonable values” in order to detect incorrect outputs. The inadequate definition and/or
implementation of this requirement could potentially provoke a safety hazard.

Considering our example application of a self-driving vehicle in a factory, the Requirements
phase can introduce several hazards as mentioned above. At the very beginning, when defining the
dataset examples, we should consider under which conditions the self-driving vehicle will operate
(e.g., amount of light, identification of which objects/obstacles it should detect). If this definition is
not performed adequately, this could result in an incomplete definition of data. For example, if the
amount of light in the room is less than some lumens value, and this scenario was not defined in the
requirements, the vehicle could miss the detection of an object and cause harm.

On the other hand, an incorrect objective function definition, may occur for the case where the
importance of detecting certain obstacles it is not balanced correctly (e.g., the error of not detecting a
person should have a higher weight than the case of not detecting a box).

An inadequate performance measure selected that could also impact the operation of the
self-driving vehicle. For example, a system that is supposed to detect humans and other obstacles,
fails to classify human presence, resulting in an FN case and ultimately in crashing into a person.
On the other hand, in an FP case (i.e., false alarm), such an ML-based detection system may result in
automatically applying the brakes of the vehicle to prevent crashing into what the algorithm identifies
as an obstacle. Minimizing FN seems to have more weight than minimizing FP, because in this scenario
FP could be considered to have only an effect on operational performance. However, such FP could
also cause a safety-critical hazard if the vehicle stops for no necessary reason. Therefore, existing
measures need to be carefully optimized in order to fit the needs for evaluating a safe performance of
ML models [52].

The incompleteness of validation/verification requirements also represents a safety hazard in the
factory context when the definition of some value is incorrect or incomplete. Defining a non-sufficient
runtime performance can later translate into hitting an obstacle, if for example, an obstacle was detected
within the value defined; however, since the definition was incorrect, it still caused an accident.

Lastly, in autonomous vehicles the term “safe state” refers to a state where the risk from the system
is reasonable [53]. However, when using the term safe state, the challenge relies on the identification of
a threshold, that is, an inadequate safe operating value under which the risk level is not acceptable.
Therefore, the definition of this value could also result in an accident in the factory.

4.2. Data Management

The Data Management phase is responsible for acquiring meaningful data for the machine
learning model to be able to make predictions on future data. The inputs of this stage are the set
of requirements that the application has to achieve, and the outputs are composed by the training
and test datasets, to serve as inputs for the Model Development and Model Testing and Verification
phases, respectively. For producing such datasets, this phase focuses on four different activities: data
collection, data annotation, data preprocessing, and data augmentation.
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4.2.1. Activities

The goal of data collection is to find datasets that can be used to train ML models, gathering data
samples representative of the real-world system or process for which an ML model needs to operate.
These data can be obtained by data discovery and/or data generation [54]. Data discovery is necessary
to share or search for new datasets, and has become important as more datasets are available on the
Web and corporate data lakes. Despite the value of data, the machine learning community has many
public datasets in different areas [55,56]. On the other hand, data generation can be used when there
is no available external dataset, but it is possible to generate manual or automatic datasets instead.
For manual construction, crowd-sourcing is the standard method where human workers are given
tasks to gather the necessary bits of data that collectively become the generated dataset. Alternatively,
automatic techniques can be used to generate synthetic datasets [57]. For mostly industrial applications
it is unlikely that a specific dataset already is available; therefore, all of the aforementioned techniques
are usually explored.

Alongside data collection is data annotation, which is the human process of labeling data available
in various formats (e.g., text, video, images). Data need to be precisely annotated using the right tools
and techniques. Having annotated datasets improves the model accuracy at the end because we have
more variety of datasets to be used later in the training phase.

After collecting the data, data preprocessing is the step to produce consistent datasets, seeking to
reduce complexity of collected data or to engineer features to support training. Real-world data may be
incomplete, noisy, and inconsistent, which can disguise useful patterns. This is due to (1) incomplete
data: lacking of attribute values or certain attributes of interest, or containing only aggregate data;
(2) noisy data: containing errors or outliers; (3) inconsistent data: containing discrepancies in codes
or names [58]. Data preprocessing generates a dataset smaller than the original one, which can
significantly improve the performance of an ML model. This task includes selecting relevant data,
through attribute selection using filtering and wrapper methods, and also removing anomalies,
or eliminating duplicate records. For unbalanced data, over or under sampling approaches help to
deal with imbalanced datasets. Additionally, some data exploration could be performed in order to
find correlations, general trends, and outliers.

Lastly, data augmentation complements previous steps where existing datasets are enhanced by
adding more external data and small perturbations to the real data. Creating synthetic examples helps
the model to generalize, and be invariant to those perturbations (e.g., noise, rotation, illumination).
In the data management community, entity augmentation techniques have been proposed to further
enrich existing entity information [54].

4.2.2. Hazard Identification

Data are the core of machine learning. An ML algorithm makes predictions based on a model
calculated from its input data, and its performance is usually dependent on the quality of these data.
The activities during the Data Management phase could be susceptible to the introduction of some
error that would potentially cause a misbehavior in the future. Among the many challenges in machine
learning, data collection is becoming one of the critical bottlenecks. Except for use cases where data
already exists in a preprocessed form (e.g., Fashion-MNIST [55] and COCO [59] datasets), the majority
of the time for running machine learning end-to-end is spent on preparing the data. Several dimensions
of concern that are relevant for safety can be identified during this step:

• Inadequate distribution. Real-world data are usually imbalanced and it is one of the main causes
for the decrease of generalization in ML algorithms [60]. As already mentioned in the Requirements
phase, distribution problems may occur when the definition of the requirements for the dataset
are not complete. Several other aspects of the distributions can contribute to a safety hazard. First,
if the distribution of the training examples does not adequately represent the probability distribution
of (X, Y) (e.g., due to lost or corrupted data), the learned hypothesis H may be susceptible to
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failure [11]. Additionally, the distribution of input variables can also be different between training
and the operating environment. This issue is called covariate/distribution shift, which is one form
of epistemic uncertainty [21]. ML algorithms assume that training and operating data are drawn
from the same distribution, making algorithms sensitive even to small distribution drifts. Moreover,
datasets are not complete when rare examples are absent or under-represented due to their small
probability density (they were probably not anticipated when acquiring data), which could yield a
substantial mishap risk [11,20]. Here, rare examples could be divided into corner cases (i.e., infrequent
combinations) and edge cases (i.e., combinations that behave unexpectedly, so the system does not
perform as required/expected) [61]. For these cases, the learned function h will be completely
dependent on an inductive bias encoded through H rather than the uncertain true distribution,
which could introduce a safety hazard. Additionally, edge cases also incorporate adversarial attacks,
where deliberated actions are taken by an adversary, which manages to modify input data in order
to provoke incorrect outputs and harm the system and the surroundings [62]. Despite adversarial
attacks happening only during the Model Deployment phase, not considering adversarial inputs
as part of the dataset could potentially cause some harm later on in the lifecycle. For that reason,
this hazard is being presented here, since the dataset acquired should account for input examples of
possible adversarial attacks in order to prevent a future safety hazard. Furthermore, other sources that
affect distribution rely on datasets that were obtained synthetically, which could impact distribution
by not accounting for real-world scenarios, or by introducing some bias if they generate inputs
with frequent features (e.g., all generated examples containing the same background color or noise).
All the hazards presented above are mostly connected with data collection activity. Other possible
hazards affecting distribution are introduced during data preprocessing, for the case where the
partition of the dataset into train, validation, and test set is not done correctly and affects distribution.

• Insufficient dataset size. First, as ML is used in new applications, it is common that there is not
enough training data. Traditional applications, like machine translation or object detection, have
massive amounts of training data that have been accumulated over decades. On the other hand,
more recent applications have little or no training data. It takes a lot of data for most ML algorithms
to work properly and generalize well on unseen data. Even for very simple problems, thousands
of examples could be needed, and for complex problems such as image or speech recognition,
millions of examples may be required [36]. Size is connected with distribution, since having a small
dataset directly influences the distribution and total coverage of all possible cases. The dataset
has to have a minimum size in order to be representative and adequately distributed. ML models
can overfit if the dataset is too small (i.e., the case of high variance, where variance is defined as
the difference in performance on the training set vs. the test set). Even if a dataset is adequately
distributed if it is too small, the model has only a small number of cases to learn from, which will
affect its general performance and potentially cause a safety hazard.

• Bias. There are different types of bias that could be introduced when data are collected to train and
test a model. Considering the dataset distribution mentioned above, when examples are missing
in a dataset, we are introducing sample bias. Here, the variety and amount of samples collected will
introduce bias on the model if the samples are not representative. Data examples could also come
from different sources, so we should also keep in mind that if all the samples of training and/or
testing sets come from the same source, we could be introducing measurement bias. Other types
of bias connected with distribution is confirmation bias [63]. This type of bias happens when we
focus on information that confirms already held perceptions. That is, samples might have some
features that appear together on the collected data but their connection has no meaning in the
real-world. This way, ML models could learn incorrect features to make a prediction because they
seem to be correlated for some random reason (i.e., they keep showing up together on samples).
Additionally, during data prepossessing, some important samples and features could be removed,
which contributes to exclusion bias.

• Irrelevance. The data acquired contains extraneous and irrelevant information, ML algorithms
may produce less accurate and understandable results, or may fail to discover anything of use at
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all. Relevance here considers the intersection between the dataset and the desired behavior in the
intended operational domain [16].

• Quality deficiencies. Each activity of the Data Management phase affects data quality. First,
during data collection, all kinds of data collected (based on sensors but also on human input) are
limited in their accuracy and can be potentially affected by various types of quality issues.
This property can also be defined as accuracy, since it considers how measurement (and
measurement-like) issues can affect the way that samples reflect the intended operational domain,
covering sensor accuracy [16]. Next, during data annotation, quality could be compromised due
to the incorporation of incorrect labels or incorrectly annotated area, since it is a task mainly
performed by humans. During preprocessing, different techniques such as rescaling, filtering,
and normalization contribute to a delta between the quality of the cleaned data and the data on
which the model is currently being applied, which contributes to uncertainty [22]. Lastly, during
data augmentation, the inclusion of non-realistic examples could affect dataset quality by using
augmentation techniques, which generate data that do not make sense and change the complete
meaning in a sample.

ML models learn from a subset of possible scenarios represented on the training dataset, which
determines the training space, defining the upper limit of the ML model performance [64]. As pointed
out above, the feature space could miss data, be incomplete, and can cover only a very small part of
the entire feature space, with no guarantee that the training data are even representative [23].

Considering the example of a self-driving vehicle in a factory, the Data Management phase
plays a major role, especially due to inadequate distribution. Since the input distribution cannot
be controlled, which compromises the assumption that the training samples were drawn from the
same underlying distribution as the testing samples [13]. As mentioned above, data could be lost
or corrupted or even acquired from different sources, due to the fact that sensors were replaced
between acquisition and operating phases (e.g., different models, different specifications), or even the
case that the routes acquired are from different shop floors between training and operating phases.
Both examples cause a mishap between training and testing distributions (distribution shift), and are
closely connected to sample and measurement bias. The completeness of the dataset regarding rare
examples relies on the under-representation of corner and edge cases. Some examples of corner cases
could be described by the small probability of some object being present on the factory shop floor
(e.g., new robots, machines), or even by the case of some human worker being completely or partially
covered by an object (occlusion problem), and not being detected. On the other hand, the unexpected
behavior of an edge case, could be that an unusual obstacle is actually on the shop floor (something we
cannot think of), or even, for example, some strange behavior of the ML model due to a person being
dressed with stripes (that could confuse the model to detect a lane marker). Still on the edge cases,
but considering the scenario of the factory suffering an attack, an adversary might slightly modify an
image to cause it to be recognized incorrectly, and provoke a non-safe action by the vehicle (for example,
some “STOP” or “DANGER” sign placed on the factory could be modified by an adversary, preventing
the self-driving vehicle from stopping and making it possible to cause an accident—here we are only
considering modifications of an object’s appearance that do not interfere with a human observer’s
ability to recognize the object).

Furthermore, the problem of insufficient dataset size is related to the case of not enough acquired
data, preventing the model from being able to generalize (e.g., some obstacle detection with low
accuracy prevents the vehicle from stopping and provokes an accident).

In terms of bias, and in specific the confirmation bias, one example could be described by the
case where in every sample of the dataset, there is a human worker and some other feature that by
coincidence (e.g., a specific machine, a specific background color) always appear together. This way,
the model could potentially learn that there is a person in every sample where this specific feature is
present (or vice-versa). In that case, the model is biased and can cause harm.
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Data could be irrelevant for different reasons: if the training dataset only contains one floor of
the warehouse and not the complete building, or if a self-driving vehicle is reallocated into another
building of a different type of factory, and the data acquired will no longer be completely relevant.

Lastly, data quality inefficiencies could emerge during all activities. During data acquisition, if a
problem on data sources (e.g., cameras, radars, LiDARs, ultrasonic sensors, GPS units and/or inertial
sensors) occurs compromising its quality, and producing noise and unreliable data (e.g., acquiring
image data with some defect on the camera will then compromise, for example, the detection of
a moving object). Also during data annotation, quality is affected, since it is mainly performed
by humans. Errors such as the incorrect identification of the area that some object (e.g., human,
machine) occupies in an image, and the attribution of the wrong label (e.g., machine instead of human)
could cause harm. The quality of data could also be affected during preprocessing, if for example,
images acquired by the cameras of the self-driving vehicle are rescaled for computation reasons
(this specific case could not lead to harmful results; however, it could have a potential effect on model
performance). During the data augmentation, an image rotation or a noise added to the inertial sensor
signal, could not be translated into a real sample in the operation scenario, affecting data quality.

4.3. Model Development

This phase is responsible for training a model based on the training dataset given by the Data
Management phase, reproducing the correct relationship between inputs and outputs. The trained
model will then be given to the next phase for its verification and testing. The Model Development
phase is composed of a set of decisions related to models and parameters, and also by the training part
of the ML model development process.

4.3.1. Activities

Given a prediction task, the first step is model selection. This process starts from analyzing
well-known models that have been successful in similar task domains. This activity decides the type
of model according to the problem that needs to be solved. As mentioned before, different machine
learning models exist for different problems, for example, classification, regression, and cluster analysis.

In ML, we have both model parameters and parameters that are later tuned during model training.
These tuning parameters are called hyperparameters, and they deal with controlling optimization
function and model selection during training with the learning algorithm. The hyperparameter
selection focuses on ensuring that the model neither underfits nor overfits the training dataset,
while learning the structure of the data as quickly as possible. The subset of data used to guide
the selection of hyperparameters is called the validation set [65].

After model and hyperparameter selection, the model needs to be trained on the training data
provided by the Data Management phase. This way, during tmodel training, the model is able to
understand patterns, rules, and features of the training data, optimizing the performance of the ML
model with respect to an objective function, which specifies the model requirements (defined in the
Requirements phase, in Section 4.1). Here, the training data given are divided into training and
validation sets. The training set is used to find internal model parameters (such as weights of a neural
network, or polynomial coefficients) which minimize an error metric previously selected (also in the
Requirements phase). The validation set is then used to assess the model performance. These two
steps are iterative in order to tune not only the model parameters but also the hyperparameters of the
training task. Although there is no consensus on the best methodology for tuning hyperparameters,
the most common techniques include initialization with values offered by ML frameworks, manual
configuration based on recommendations from literature or experience, or trial and error [16]. Due to
the lack of understanding of the exact nature between the parameters learned during model training
and the performance of the trained model [66], the adjustments and tuning inside the loop are driven
by heuristics (i.e., adjusting hyperparameters that appear to have a significant impact on the learned
weights). Thus, many similar models are trained and compared, and a series of model variants needs
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to be explored and developed. Due to the expensive training phase, each iteration of the modeling
loop takes a long period of time and should produce many (checkpointed) snapshots of the model for
later analysis [67].

4.3.2. Hazards Identification

One of the main concerns regarding ML models is the software implementation. Generally,
a programmed component is one that is implemented using a programming language, regardless of
whether the programming was done manually or automatically [23]. On the contrary, an ML model
is one that is a trained model using a supervised, unsupervised, or reinforcement learning approach.
The probabilistic nature of the training phase and the amount of parameters and hyperparameters to
be defined, leads to several potential hazards that could compromise safety:

• Model mismatch. During the model selection activity, the selected ML model or the model
architecture does not fit the use case application, not fully covering the requirements defined.
The choice of a particular model depends on the size of the training data, number of relevant
features, linearity (if classes can be separated by a straight line), the goal for an interpretable or
accurate model (trade-off between accuracy and interpretability), and the time and resources for
training [68]. Additionally, model selection could also be affected by the computational power
required to train a model. To reduce computational costs, the complexity of the models selected is
restricted, which commonly leads to a decrease in model performance. Therefore, in some cases a
trade-off may be required when the computational power is limited to some extent [16], which is
related to the model mismatch hazard.

• Bias. The bias introduced in this phase is called algorithm bias, and it comes from the model
selection activity. This bias is a mathematical property of an algorithm.

• (Hyper) Parameters mismatch. The methodology for selection and initialization of the model
parameters or the training hyperparameters has a high impact on model performance.
This happens because the same training process can produce different training results, since there
are several techniques for model weights initialization and hyperparameter tuning.

• Performance measure mismatch. The selection of the adequate performance measures happens
during the Requirements phase, as mentioned in Section 4.1; however, the impact of its definition
takes effect during the Model Development phase, specifically during model training. If there is
a mismatch between the selected performance measure(s) and the requirements, the ML model
could be inadequately optimized during training.

• Error rate. Although an estimate of the true error rate is an output of the ML development process,
there is only a statistical guarantee about the reliability of this estimate. Even if the estimation
of the true error rate was accurate, it may not reflect the error rate that the system actually
experiences while in operation after a finite set of inputs, since the true error is based on an infinite
set of samples [23]. Additionally, the probability of failing is intrinsic to an ML model. The system
is not able to ensure the complete correctness of an ML module output in the user environment
where unexpected input occurs sporadically. Furthermore, wrong predictions could happen;
however, there is not an impact in the system behavior (model “silently” fails) compromising the
definition of safety-critical scenarios, which could later become a problem.

• Lack of interpretability. The process of integrating machines and algorithms into peoples
daily lives requires inseparability to increase social acceptance [69]. Interpretability in ML
supports assurance [16] since it provides evidence for: (1) justifying results (i.e., explanation of
a decision for a specific outcome, particularly when unexpected decisions are made. and also
justifications in order to be compliant with legislation); (2) preventing things from going wrong
and identifying and correcting errors (i.e., the understanding about the system behavior provides
greater visibility over unknown vulnerabilities and flaws); (3) assisting model improvement
(i.e., a model that can be explained and understood is one model that can be more easily improved);
and (4) supporting the understanding of the operational domain (i.e., a helpful tool to learn new
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facts, gather information, and thus to gain knowledge) [69]. ML and DL models can have millions
or billions of parameters, and the most successful constructs are very complex and difficult
to understand or explain [70]. Interpretability does not ensure safety by itself, but can help to
understand where models are failing. Therefore, non-interpretable models may not constitute a
hazard, we consider that it is important to mention its influence at this phase.

As stated, the Model Development phase is characterized by a series of decisions considering ML
models, techniques, and parameters. In particular, DL technologies used in self-driving vehicles rely on
Convolution Neural Networks (CNN), Recurrent Neural Networks (RNN), and Deep Reinforcement
Learning (DRL) [71]. CNNs are mainly used for processing spatial information, such as images, and can
be viewed as image feature extractors; RNNs are especially good at processing temporal sequence
data, such as text, or video streams; and DRL is a combination between reinforcement learning,
which uses sequential trial and error to learn the best action to take in every situation, and deep
learning. As mentioned in Section 3.4, these models are integrated in perception and localization
components. For those tasks, models and (hyper)parameters were already broadly explored in the
literature, considering their computational power and bias. A complete review can be found in
the work of Grigorescu et al. [71]. Due to the advance in the literature regarding these approaches,
we consider that for the application scenario that is being considered, the safety hazards such as model
mismatch, (hyper)parameter mismatch, and bias are non safety-critical.

Regarding error rate, it is known that a model periodically fails. Due to differences between
the ML model runtime and the unpredictability of human behavior, a scenario where an incorrect
prediction was made could not compromise a safe operation. For example, considering that a person
is in front of the vehicle, but the system does not detect the obstacle/person (i.e., makes an incorrect
prediction). The runtime of the system keeps the vehicle moving forward; however, the unpredictability
of the human behavior makes the person move out of the front of the vehicle just in time for no
accident to occur. The system failed “silently” and safety was not compromised. Since no failure
was visibly detected, the error will not be reported, hindering the identification of these types of
safety-critical scenarios.

Considering interpretability, some of the networks, for example, CNN, can be roughly understood
since they have very approximate analogies to different parts of the human visual cortex [71].
For example, interpretable visualization for self-driving vehicles can use a visual attention model,
highlighting regions that causally influence deep neural perception [72]. On the other hand, DRL and
RNN lack interpretability [73,74].

4.4. Model Testing and Verification

The Model Testing and Verification phase is responsible for evaluating the trained model on a
dataset that was never seen during the training phase, in order to see how the model generalizes to
new input data. To design reliable systems, engineers engage in both testing and verification. At the
end of this phase, a verified model and a verification result should be provided to the next phase
containing sufficient information to allow potential users to decide if the model is suitable for the
intended application. The importance of the Model Testing and Verification phase is enhanced if
its results provide information that supports the correction of errors (e.g., a testing or verification
requirement is not fulfilled and points to a process that needs to be improved, for example, more data
needs to be collected).

4.4.1. Activities

Here, we refer to the term testing, meaning the evaluation of the system under various conditions
and observing its behavior while watching for defects. The term verification relies on producing a
compelling argument that the system will not misbehave under a broad range of circumstances.
This way, this phase balances two different activities: model testing and formal verification.
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The model testing activity is characterized by the systematic evaluation of the model generality
and quality, when the model completes training with its decision logic determined. It is important
to mention that the testing activity in the AI community mainly considers whether the obtained ML
model generalizes to the prepared test dataset, to obtain high test accuracy (or another metric selected
to be optimized)—mentioned by some authors as test-based verification [28]. Therefore, this activity
involves providing test cases to the trained model and checking the outputs against the expected
results [16].

On the other hand, the formal verification activity considers a more general evaluation scope, such as
generality, robustness, defect detection, as well as other non-functional requirements (e.g., efficiency) [28],
using mathematical techniques to provide evidence that the model satisfies the formal specified
properties [75]. Formal verification methods such as model checking and mathematical proof, enable
these properties to be rigorously established before the ML model is considered suitable for integration
into a safety-critical system.

4.4.2. Hazards Identification

ML testing and verification introduce challenges that arise from the fundamentally different
nature and construction of its systems compared to traditional (relatively more deterministic and less
statistically-orientated) software systems [75]. At this phase, hazards can be identified regarding:

• Incompleteness. The definition of testing/verification requirements can be inadequate and/or
not sufficient. As mentioned before, this step is performed during the Requirements but it impacts
the Model Testing and Verification phase. Other important aspects related to incompleteness is
the case of limited test scenarios. Due to the large input space, it is difficult to test or approximate
all possible inputs (the unknown is never tested). This way, the ML model only encounters a
finite number of test samples and the actual operational risk is an empirical quantity of the test
set. Thus, the operational risk may be much larger than the identifiable actual risk for the test set,
not being representative of the real-world operation performance [21].

• Non-representative distribution. Keeping the goal of achieving a certain performance, the test
set should also be adequately distributed, in order to cover a balanced number of all the
possible scenarios (the ones we can think of). This hazard distinguishes itself from the previous,
since it assumes that the amount of test scenarios is enough, and it is mainly concerned with its
distribution (the need to make accurate predictions in a representative/well distributed set).

Considering our example application, the incompleteness on the limited test scenarios problem
is also present because it is demanding to test for every possible scenario of a self-driving vehicle
in a factory warehouse. As mentioned before, most unsafe scenarios have low probability and are
rare and unpredictable. In the factory context, situations that were never watched in the training
phase, such as having more people than usual, having new equipment, or placing objects into different
locations, could result in a wrong prediction or in a failure of one of the ML components of the
self-driving vehicle.

The non-representative distribution of these examples hinders to assure that the model achieves
a reliable performance. For example, if we want to have a self-driving vehicle on the shop floor that
always achieves a minimum level of performance, we need the test set and, consequently, the testing,
to include a balanced distribution of all possible scenarios (even corner and edge cases).

As expected, the examples presented in this phase with respect to the incompleteness and
the distribution hazards are very similar to the distribution and size hazards detailed in the Data
Management phase. To a certain extent, we can say that these hazards are exclusively introduced
during data collection activity, and its effects spread along the ML lifecycle. Therefore, it is always
important to have enough and distributed data for both model training and testing. The scenarios of
unknown/unexpected, corner or edge cases, and/or adversarial attacks, will be consistently vulnerable
during the entire ML lifecycle due to its data-driven nature.
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Assuring that an ML-based safety-critical system will perform adequately in its intended
operational environment is a critical part of overall system design. According to [26], ensuring that
training and testing datasets are complete require at least ensuring that all aspects of the operational
domain have been addressed either by ensuring safe system operation or by ensuring that the system
can recognize and mitigate an excursion beyond the defined operational domain. Considering the
autonomous vehicles use-case, works such as the PEGASUS project [76] have proposed databases that
aim at capturing the challenges imposed by the world; however, ref. [26] suggests to identify a much
richer set of relevant safety concerns, focusing on operational domain characterization in terms of
objects and events. Furthermore, Safety Of The Intended Functionality (SOTIF) and shorthand for
ISO/PAS 21448) [77] provided test cases with high coverage of scenarios and detailed guidelines for
data collection, as well as specified conditions that are normally rare and less represented in normal
driving but that might impact perception [78].

In a general way, the problem of having a sufficient dataset size in absolute terms is almost
impractical to define, as the generality of range, size and complexity of applications is vast [79].
Nevertheless, the effectiveness of a large dataset alone is no guarantee of functional safety, completeness
is also related to ensuring that the data used in training has possibly covered all important scenarios [27].
Understating completeness across the operation domain remains an open challenge [16].

4.5. Model Deployment

The Model Deployment phase receives as input a verified model that is ready to be deployed
into a target platform. The outcome of this phase is a fully deployed and operating real-world system.

4.5.1. Activities

The first step of Model Deployment is integration of the ML model into a wider system
architecture. Here, the integration must consider the architecture of the system into which the model is
being deployed (which includes linking the model to system inputs, e.g., sensor systems, as well as
protecting the wider system from hazardous effects that may arise from incorrect model outputs).

After integration, the monitoring of the deployed model ensures that it continues to perform
as intended. For that purpose, the monitoring activity considers four types of monitoring: (1) input
monitoring, for checking whether inputs are within acceptable bounds before they are given to the
ML model; (2) environment monitoring, for checking that the observed environment matches any
assumptions made during the ML workflow; (3) model internal monitoring, to protect against the
effects of single event upsets; (4) output monitoring, by replicating a traditional system safety approach
in which a high-integrity monitor is used alongside a lower-integrity item [16].

Lastly, since new data are being collected continuously, ML models can become obsolete when
they are not maintained properly. This concept is called model drift. In order to avoid this, and similarly
to software, it is expected that the deployed ML models need to be updated during a system life;
therefore, updating is also an existing activity (offline maintenance). Moreover, this activity can also
include, as a particular case, updates that occur as part of online learning. Online learning models can
learn from new examples in close to real time. That is, they predict and train in real time (typically
one data point at a time is considered for updating the parameters and re-training the model, which is
immediately implemented) [36].

4.5.2. Hazards Identification

When deploying the ML model into different platforms or with different implementation
frameworks, there will always be opportunities for introducing hazards:

• Differences in computation platforms. Deploying a model into a device can result in computation
limitations and compatibility issues across platforms. For example, for a neural network, which is
mostly developed and trained on servers or computers with Graphic Processing Unit (GPU) support,
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when it needs to be deployed on a mobile device or edge device with limited computation power,
the software must be adjusted for computation/energy efficiency, which could lead to computation
differences affecting system behavior (e.g., time performance).

• Operational environment. Differences between the operational environment and data used for
model development and testing, can lead to different/new inputs that affect the output produced.
This could happen due to several reasons: (1) failure on one of the subsystems that provide
inputs to the deployed ML model, (2) deliberate actions of an adversary; and (3) changes in the
underlying processes to which the data are related (changes on the environment or on the way
people or other systems behave) [16].

• Non detection of potentially incorrect outputs. An ML model may produce an incorrect output
when it is used outside the intended operational domain, which could be detected during
monitoring. For that purpose, ML-based systems calculate a “measure of confidence” (mentioned
in the Requirements phase as the inadequate safe operating values hazard). If this value is
incorrectly defined and/or implemented, its consequences are felt during the Model Deployment
phase, where there is a non-safe confidence in the model and potentially incorrect outputs may
not be detected.

• New data/Continuous learning. This hazard only considers the case of online learning
(i.e., systems that continue to learn parameters and train the model during operation). Despite the
fact that the incorporation of new data from the real operation domain suggests improving the
model performance, since new data are added to the model training, the dataset distribution
could be biased and it is no longer supervised, susceptible to result in lower model performance
in scenarios that are no longer as frequent on the new data (e.g., a self-driving vehicle that
was trained before operation on an adequate distributed dataset is now operating only at dark
scenarios; for this case, the model could start to be optimized for dark conditions and to behave
less accurate in the remaining day time scenarios).

Regarding the Model Deployment phase, the differences in computation platforms where
ML models are deployed could be crucial in terms of safety if it causes differences in the runtime.
For example, if some unexpected obstacle appears in front of the self-driving vehicle, it is important
that the vehicle has the capacity to provide a prediction within an acceptable amount of time; otherwise,
the behavioral planning might fail and not be able to change its route on time to avoid the obstacle.

Furthermore, once deployed and running on the self-driving vehicle, the ML model could
face some unexpected changes, and have to deal with different operational environments. This can
happen due to several reasons: there is a failure on one of the subsystem modules compromising data
acquisition (i.e., data are corrupted or do not have the expected quality); an adversary attack happens
that was not accounted for during data acquisition (already mentioned in the Data Management
phase); or there is a change in the environment or the behavior of a human worker changes for some
reason, where none of the situations were accounted for before (e.g., walls and/or floor of the factory
are re-painted with a different color, or workers need to change their behavior due to new functions
that they need to start to perform). All of these examples of differences between the operational use
and the data acquired for the model development and testing/verification, could lead to incorrect
predictions and affect the safety of the robot, human, and environment.

On an additional topic, online learning has been pointed out as a practical and useful tool for
solving large-scale decision-making problems in many systems and networking domains, including
spam filtering, network intrusion detection, E-commerce, and the social networking industry [80].
Nevertheless, online learning methods are difficult to evaluate online since it is not possible to hold
out a “test” set for evaluation because no distributional assumptions are being made. As pointed
out above, the inability to control the distribution makes this type of algorithm currently not suitable
for safety-critical applications as the ones we are considering in this paper. However, this may
change as research also evolves in this area, and measures become available that explicitly address the
related hazards.
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5. Conclusions

The application of ML in safety-critical systems in domains such as healthcare, transportation,
and manufacturing, has great potential. However, several concerns regarding standards and norms to
ensure their safe operation are still open topics among the research community.

Control systems for safety-critical applications must comply with the approval conditions of
their area of application. Therefore, most industry branches have their own standards and norms.
Some progress has already been made for the definition of safety goals in safety-critical applications,
providing evidence that ML is sufficiently safe for its intended use. Specifically, work developed for the
automotive industry covers a significant fraction of safety-related concerns. Despite the fact that this
work ranges from high-level suggestions governing behavior at the system level (e.g., vehicle level) to
low-level approaches that attempt to find a solution at the ML component, it does not yet adequately
address every individual hazard identified in our paper. This indicates that further work is required to
cover all of the safety-related aspects of the ML lifecycle, and to support the use of ML-based control
systems in highly safety-critical applications and their certification.

Our paper focuses on presenting the challenges during the design and development of a system
with an integrated ML algorithm, specifying for each phase of the ML lifecycle which safety hazard can
be introduced during the specific activities of that phase. By providing an extensive hazard analysis,
and by illustrating each hazard with a real-world application example, our work aims to establish the
basis for a future definition of product-oriented (i.e., describing technical requirements for approval)
and process-oriented (i.e., defining processes to be observed) precautions in order to reduce hazardous
behavior and its consequences. This rigorous approach also provides a natural basis for the creation of
safety cases that demonstrate the safety of ML-based CPS by supplying sufficient evidence against
each of the hazards identified herein.

We believe that our work is a step forward into future holistic approaches for safety engineering
and certification of ML-based systems, supporting the research community to identify remaining gaps
regarding product- or process-related measures that are required to ensure the proper functioning of
ML-based CPS in safety-critical applications.
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