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Abstract: In a gravity-free or microgravity environment, liquid metals without crystalline nuclei
achieve a deep undercooling state. The resulting melts exhibit unique properties, and the research of
this phenomenon is critical for exploring new metastable materials. Owing to the rapid crystallization
rates of deeply undercooled liquid metal droplets, as well as cost concerns, experimental systems
meant for the study of liquid metal specimens usually use low-resolution, high-framerate, high-
speed cameras, which result in low-resolution photographs. To facilitate subsequent studies by
material scientists, it is necessary to use super-resolution techniques to increase the resolution of
these photographs. However, existing super-resolution algorithms cannot quickly and accurately
restore the details contained in images of deeply undercooled liquid metal specimens. To address
this problem, we propose the single-core multiscale residual network (SCMSRN) algorithm for
photographic images of liquid metal specimens. In this model, multiple cascaded filters are used
to obtain feature information, and the multiscale features are then fused by a residual network.
Compared to existing state-of-the-art artificial neural network super-resolution algorithms, such as
SRCNN, VDSR and MSRN, our model was able to achieve higher PSNR and SSIM scores and reduce
network size and training time.

Keywords: liquid metal specimen photographs; super resolution; convolutional neural network;
multiscale feature fusion; residual learning

1. Introduction

Deep undercooling is a type of rapid solidification technique for preparing novel
materials. Compared to the rapid quenching technique, deep undercooling allows alloys
to rapidly solidify with slow cooling. This process provides a new means of studying
some of the nonequilibrium phenomena that occur during rapid alloy solidification, and
it also allows for the preparation of new materials with various outstanding properties,
which are otherwise impossible to obtain by conventional solidification techniques [1]. To
study the properties of deeply undercooled melts, it is necessary to simulate a microgravity
environment on the ground [2], which is typically performed using a vacuum drop tube. A
levitation system is installed at the top of the drop tube, which contains laser heaters and
cameras. Laser heaters are used to heat the levitated material, while cameras are used to
record this process and photograph the deeply undercooled liquid metal droplet, which
is levitated by the vacuum levitation apparatus after it is melted by laser heaters. Owing
to cost concerns, these systems usually use high-framerate, low-resolution, high-speed
cameras, which can only produce low-resolution photographs [3]. To obtain accurate state
information about these deeply undercooled liquid metal droplets, the low-resolution
photographs are reconstructed by super resolution—this is currently the most widely used
approach to study the properties of liquid metal specimens.
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The super-resolution reconstruction algorithm based on deep learning is one of the
current research hotspots [4,5]. In 2014, Dong et al. proposed an image super-resolution
algorithm based on a convolutional neural network (SRCNN) [6], which was the first to
apply a convolutional neural network to the field of image super-resolution. SRCNN only
uses simple three-layer convolution modeling to achieve good results. In order to speed up
the reconstruction speed, Shi et al. proposed a super-resolution algorithm based on sub-
pixel convolution (ESPCN) [7], which uses up-sampling technology instead of interpolation
in the network, thus accelerating reconstruction and also achieving better reconstruction
results. With the deepening of research, deep networks have reached a large number of
applications, but the deepening of the number of layers often leads to gradient dispersion,
making it difficult for the network to converge. Based on this, Kim et al. borrowed the idea
of the residual network (ResNet) [8] and proposed an image super-resolution algorithm
(VDSR) [9] based on deep convolutional neural networks, which uses a deep residual
network to accelerate network training. Li et al. proposed a multi-scale feature fusion
algorithm (MSRN) [10] based on the cascade structure of multi-scale feature extraction
blocks (MSRB). In the multi-scale feature extraction block, multiple convolution kernels
of different scales are used in parallel to extract multiple Scale features, and then perform
feature fusion. This algorithm applies multi-scale features to the residual network structure
for the first time. However, a larger size convolution kernel is used in the network, which
increases the amount of parameters of the network model to a certain extent.

Most of the aforementioned algorithms only use features of a single scale [11–13]. In
practice, however, the information contained by a photograph usually has multiple scales.
If one only extracts features on one scale, features on other scales will be absent in the
reconstructed high-resolution image. This makes it difficult to improve reconstruction
quality. Therefore, super-resolution techniques should, like the human visual system,
process image data on multiple scales to enable the optimal reconstruction of image
structures and details. In response to the above problems, a lightweight single-core multi-
scale residual network (SCMSRN) is proposed to achieve multi-scale feature extraction
in this paper. The network body is composed of multiple single-core multi-scale residual
blocks (SCMSRBs). The convolutional decomposition method is used within each SCMSRB.
The large-scale convolution kernels are replaced by several small convolution kernels of
the same scale; subsequently, the feature map of each layer is extracted by the cascading
residuals from the small convolution kernels to form a local fusion within the block. The
network parameters are compressed, and the feature information of low-resolution metal
sample melt images is fully extracted. To fuse the feature maps at different depths, global
fusion is performed on the features extracted from each SCMSRB. Finally, the sub-pixel
convolution is used to up-sample the feature maps to obtain high-resolution images.

The contributions of this study mainly include the following. (1) Convolutional
decomposition and residual structure are combined, thereby not only extracting the multi-
scale features from metal sample melt images but also compressing the scale of the network
and accelerating the convergence rate of the network model. (2) A hierarchical feature
fusion mechanism is proposed. Local fusion and global fusion structures are used to fuse
feature maps at different depths, enhancing the information flow among the features at
different depths in the network and providing more feature information for reconstruction.
(3) The proposed method achieves high performance in terms of various evaluation indices
for melt images, demonstrating relatively good reconstruction effect compared with the
existing excellent methods and accelerating the training speed.

2. Methods
2.1. Network Structure

The single-core multiscale residual network (SCMSRN) super-resolution model pro-
posed in this work is inspired by the VGG [14] architecture. The VGG architecture uses
small convolutional cores of the same size stacked on top of each other instead of large
convolutional cores; given the same receptive field, this approach increases network depth
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and improves the efficiency of the neural network. In this paper, a super-resolution recon-
struction network based on a SCMSRN is proposed. The main structure of the network
comprises gross feature extraction, hierarchical feature fusion, sub-pixel up-sampling
and reconstruction layers. The structure and process are shown in Figure 1. First, the
Low Resolution (LR) image is input into the gross feature extraction module, where a
3× 3× 64 transition convolutional layer is used to extract the LR image features of the
metal sample melt, and the number of channels in the LR image is expanded for subsequent
multi-scale feature extraction. The layered feature fusion module is composed of SCMSRBs
with M cascades, and the optimal value of M is obtained from the super-resolution recon-
struction experiment on the melt image of the liquid metal sample, which is described in
detail later. Four 3 × 3 convolution kernels of the residuals are cascaded in each SCMSRB,
and the feature map fusion at five scales, namely 1 × 1, 3 × 3, 5 × 5, 7 × 7, and 9 × 9,
is extracted to form the local fusion feature map within the residual blocks. Second, the
output feature map of each SCMSRB is extracted and fused through the residual network
to form a global fusion feature map. Finally, the global fusion feature map is up-sampled
by the sub-pixel convolutional layer, and the high-resolution image is obtained by the
reconstruction layer.
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2.2. Gross Feature Extraction

A 3 × 3 × 64 transition convolutional layer is used to increase the number of channels
in the LR image before the LR image is input to the SCMSRB. The inside of the residual
block is represented by the following mathematical formula.

F0 = σ
(

W0 ∗ ILR + B0

)
(1)

Here, * denotes a convolution computation, ILR denotes an LR liquid metal sample
melt image after interpolation amplification, and F0 denotes feature extraction of the
transition convolutional layer.

2.3. Hierarchical Feature Fusion

In a convolutional neural network, the receptive field [15,16] is defined as the region
in the input image that provides input to the feature map pixels of each convolutional
layer. As network depth increases, the receptive field of the CNN increases in size, and
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the extracted feature maps also gradually become larger. The receptive field of the nth
convolutional layer is given by the following equation.

Ln = Ln−1 + ( fn − 1) ∗
n−1

∏
i=1

Si (2)

Here, Ln is the size of the receptive field of the nth convolutional layer, Ln−1 is the
size of receptive field of the n−1th convolutional layer, fn is the size of the convolutional
core in the nth convolutional layer, ∏n−1

i=1 Si is the cumulative stride of the first n−1th
convolutional layers. A shallow convolutional layer will have a small receptive field, while
a deep convolutional layer will have a large receptive field. Hence, by fusing feature maps
from every convolutional layer, one can process features on multiple scales.

Therefore, this paper presents a hierarchical feature fusion structure that not only
compresses the network scale but also enhances the information flow and feature reuse
among the layers of the network, thereby making the network extract more detailed
information. This structure is shown in Figure 1 and includes local feature fusion (LFF) and
global feature fusion (GFF). LFF is mainly used for feature fusion within each SCMSRB and
is expressed by the following mathematical formula.

FLFF1 = FSCB(F0) (3)

FLFF2 = FSCB(FLFF1) (4)

FLFFM = FSCB

(
FLFF(M−1)

)
(5)

Here, FLFF represents local feature fusion, and FSCB(•) represents the use of a SCMSRB
to extract the local fusion feature. F0 represents the output feature map of the gross feature
extraction module. GFF is used to fuse the local features extracted from M SCMSRBs. After
fusion, a 1× 1× 64 convolution kernel is used to check the initial input feature, F0 and
reduce the dimensionality of the fusion of M SCMSRBs, to avoid producing too many
parameters. It is expressed by the following mathematical formula.

FGFF = σ
(

W1×1
GFF ∗ [F0 + FLFF1 + FLFF2 + · · ·+ FLFFM] + BGFF

)
(6)

Here, W and B represent the 1× 1 convolution kernel and the bias in GFF, respectively.
[F0 + FLFF1 + FLFF2 + . . . + FLFFM] represents the splicing of M+1 features.

2.4. Single-Core Multiscale Residual Block (SCMSRB)

In existing super-resolution algorithms, multiscale feature extraction is usually per-
formed using convolutional cores of varying size. For instance, the multiscale residual
network (MSRN) model proposed by Li, et al. and the GoogleNet Inception architec-
ture [12] both use convolutional cores of varying size (e.g., 1 × 1, 3 × 3 and 5 × 5) for
feature extraction from LR images. Large convolutional cores are also used in this process.
The number of parameters in each convolutional layer, G, is given by the following equation.

G = K× K× C× D + B (7)

Here, K is the size of the convolutional cores in the convolutional layer, C is the number
of channels in the LR image, D is the number of convolutional cores in the convolutional
layer, B is the bias of the convolutional core, whose value is identical to that of D. If C and D
are fixed, G is directly proportional to the size of the convolutional cores. Hence, the larger
the convolutional cores, the greater the number of parameters that must be computed in
each convolutional layer.

Factorized convolution [17,18] is the decomposition (factorization) of large convolu-
tional cores into a number of small, connected convolutional cores of the same size. The
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purpose of this process is to reduce the number of parameters in the convolutional cores
and the computational complexity of the algorithm. In this way, a (2K + 1)× (2K + 1)×D
convolutional core can be factorized into K connected 3 × 3 × D convolutional cores.
Given an input feature map with C channels, if the unfactorized convolutional core is
F ∈ R((2K+1)×(2K+1)×D) and M ∈ R(3×3×D×K) is the factorized convolutional core, factor-
ization will decrease the number of parameters by H, which is given by

H =
[(F× C)− (M× C)]

F× C
(8)

Here, H is proportional to the size of the unfactorized convolutional core, F. In other
words, the larger the convolutional core, the greater the decrease in the number of parameters.

Based on multicore multiscale residual blocks (MCMSRBs), we propose the single-
core multiscale residual block. The architecture of MCMSRB and its improved derivative,
SCMSRB, are shown in Figures 2 and 3, respectively.
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In the SCMSRB, N small and identically sized cascaded-residual convolutional cores
are used for multiscale feature extraction. The extracted features are then fused by a
concatenation operation and reassembled in one dimension, thus enabling multiscale
feature extraction from LR images of liquid metal specimens. Each convolutional core
generates 64 convolutional feature maps; after the feature maps have been concatenated, a
1× 1× 64 convolutional core is used to perform feature mapping and dimension reduction.
The multiscale fused feature map from the SCMSRB is then used as input for the next
SCMSRB, which extracts additional detail from the LR image. To improve the expressivity
of the network model and increase its nonlinearity, a PReLU activation layer is placed
after the convolutional layers. The inside of the SCMSRB is expressed by the following
mathematical formula.

f 1×1 = σ
(

w1×1 ∗ F0 + B1×1
)

(9)

f 3×3
1 = σ

(
W3×3

1 ∗ F0 + B3×3
1

)
(10)

f 3×3
N = σ

(
W3×3

N ∗ f 3×3
N−1 + B3×3

N

)
(11)

Here, f1×1 and f3×3 represent feature extraction from 1× 1 and 3× 3 convolutional cores
in the SCMSRB, respectively, while N is the number of convolutional cores in the SCMSRB.

FM
SCB = f 1×1 +

N

∑
i=1

f 3×3
i (12)

FM
SCB = σ

(
W1×1

2 ∗ FM
SCB + B1×1

2

)
(13)

Here, FM
SCB represents the feature extraction of the Mth SCMSRB after reduction in

dimensionality by the convolutional layer. W and B represent the 1 × 1 convolutional layer
and bias, respectively.

σ(x) = max(ax, x) (14)

σ(x) is the PReLU activation function, which takes values of a ∈ [0,1].

2.5. Upsampling Construction

To generate the global fused feature map, a residual network is used to fuse the LR
image with the fused feature map from all SCMSRBs. This is inputted into the subpixel
convolution layer [8] for upsampling to obtain the High Resulotion (HR) image. Since
the subpixel convolution layer simply arranges the pixels and does not perform any true
convolution operations, this arrangement improves the efficiency of the network. The
computations performed by the subpixel convolution layer are shown below.

Fup = ϕ(PS(W ∗ FGFF + B)) (15)

ϕ =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x (16)

Here, PS denotes the dimension transformation operation, which transforms the
H ×W × C•r2 feature map into the rH × rW × C HR images. W and B represent the
network weight parameter and bias vector, respectively. ϕ represents the tanh activation
function, which performs nonlinear operations on the up-sampling output.

2.6. Reconstruction

The up-sampled feature map is reconstructed using a 3 × 3 × 3 convolutional layer to
obtain a reconstructed image, IHR. It is expressed by the following mathematical formula.

IHR = W ∗ Fup + B (17)
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Here, W and B represent the convolution kernel and bias used by the 3 × 3 reconstruc-
tion layer, respectively, and IHR represents the reconstructed HR image.

3. Experimental Process
3.1. Experimental Environment

The computer used for this experiment was equipped with an Intel Core i7-9750H
CPU running at 2.60 GHz, NVIDIA GeForce GTX 1070 GPU, and 16 GB of RAM. The
software environment consisted of the 64-bit Windows 10 operating system, CUDA Toolkit
8.0, CUDNN 7.6.5, and the TensorFlow deep learning framework.

3.2. Dataset

This research topic is based on the study of the liquid metal sample melt under the
condition of deep supercooling. The datasets used contain images of the deep supercooled
sample melts suspended in the vacuum suspension equipment. There are 50 high-definition
images of the deep supercooled melts of the liquid metal samples, as shown in Figure 4a.
The image of the droplet part at the central position in the figure is intercepted as a target
image for subject research, and the size of the intercepted image is 280 × 280, as shown in
Figure 4b. Owing to the high cost of obtaining datasets, we expand the 50 high-definition
images by 90◦, 180◦ and 270◦ rotations of each image and scale them at 0.9, 0.8 and 0.7;
the expanded dataset contains a total of 350 high-definition images, numbered from 1 to
350. The datasets numbered 1 to 300 are used as the training sets, those numbered 301 to
325 are used as verification sets, and those numbered 326 to 350 are used as test sets. At
the training stage, each image in the training set is down-sampled by 2, 3, and 4 times.
Subsequently, the down-sampled images are interpolated to the target image resolution by
applying bicubic interpolation, and the enlarged LR images are cut into image blocks at a
pixel size of 17 × 17 without overlapping. Furthermore, the high-resolution melt images
are cropped in the same manner; finally, the image blocks are formed into high-resolution
and LR data pairs, which are used as the input of the network.
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0.9 and 0.0001, respectively. Training was performed with a fixed learning rate of 0.0001,
and the training process was terminated when training loss reached 0.00001. “SAME”
padding was used during the training process to ensure that the size of the feature maps
remained invariant.

As the aim of the training process was to learn an end-to-end mapping between
LR and HR images, the training set was divided into N LR-HR image pairs, that is,{

Ii
LR, Ii

HR

}N

i=1
, and the network was made to learn the residual image between the LR and
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HR images. Parameter learning was performed using the mean square error (MSE) [20]
between the outputted image and residual image of the image pair. MSE is given by the
following equation.

L(θ) = minθ
1

2N

N

∑
i=1
||F(xi, θ)− yi ||2 (18)

Here, L is the loss function, θ is the parameter to be trained, N is the total number of
training sets, F(xi, θ) and yi represent the reconstructed image and the corresponding HR
image, respectively.

3.4. Evaluation Criteria

Here, two objective metrics, the peak signal to noise ratio (PSNR) and structural
similarity index measure (SSIM), are used to objectively evaluate the efficacy of a few
super-resolution algorithms in the reconstruction of liquid-metal droplet images. PSNR
represents the fidelity of the reconstructed image with respect to the original image; the
higher the PSNR value, the lower the loss in fidelity and the greater the image quality. SSIM
is an objective measure of similarity based on three characteristics: luminance, contrast,
and structure. Unlike PSNR, which compares images in a pixel-by-pixel fashion, SSIM can
be used to quantify structural differences between a pair of images. The greater the SSIM
value, the more similar the images and the higher the image quality. The equations for
PSNR and SSIM are shown below.

PSNR(ŷ, y) = 10log10
(2n − 1)2

MSE(ŷ, y)
(19)

where n is the maximum number of pixel bits in the image, which typically has a maximum
value of 255 in grayscale.

SSIM(X, Y) = l(X, Y)c(X, Y)s(X, Y) (20)

I(X, Y) =
2µXµY + C1

µ2
X + µ2

Y + C2
(21)

c(X, Y) =
2σXσY + C2

σ2
X + σ2

Y + C2
(22)

s(X, Y) =
2σXY + C3

σXσY + C3
(23)

where X represents the reconstructed HR image, and Y represents the original LR image.
Here, µ is the mean value of the image, and σ is the variance of the image. C1, C2 and C3
are constants that prevent the denominator from being zero. The default interval of the
SSIM value is [0, 1]. When the value of SSIM approaches 1, the reconstructed image is
closer to the HR image.

4. Analysis of Results
4.1. Objective Index Analysis

Reconstruction experiments were performed on liquid-metal droplet images, and the
results were evaluated using the two aforementioned objective metrics. Tables 1 and 2
show the comparison of the results of our SCMSRN algorithm with those of mainstream
super-resolution algorithms, including the BICUBIC [21], SRCNN, ESPCN, VDSR and
MSRN algorithms, as well as the multicore MSRN (MCMSRN) algorithm shown in Figure 2.
The data shown in the tables are averages over all the images that were reconstructed by
a given algorithm. Figure 5 illustrates the training convergence curves of the SCMSRN,
MSRN and MCMSRN algorithms with a test set that consisted of liquid-metal droplet
images with a magnification factor of x2.
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Table 1. The average PSNR of each algorithm on the melt image of the liquid metal sample (dB).

Datasets Scale BICUBIC SRCNN ESPCN VDSR MSRN MCMSRN SCMSRN

Test
Datasets

2 36.18 37.25 38.96 39.89 40.12 40.57 42.15
3 34.76 35.98 37.42 36.90 37.59 37.63 37.67
4 33.39 34.56 35.87 35.69 36.27 36.28 36.48

Table 2. SSIM average value of each algorithm on the melt image of liquid metal samples.

Datasets Scale BICUBIC SRCNN ESPCN VDSR MSRN MCMSRN SCMSRN

Test
Datasets

2 0.8530 0.9185 0.9392 0.9463 0.9528 0.9623 0.9637
3 0.8263 0.8482 0.8850 0.8764 0.8885 0.8890 0.8891
4 0.8073 0.8278 0.8431 0.8407 0.8467 0.8512 0.8517

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW  9 

 

 

𝑆𝑆𝐼𝑀(𝑋, 𝑌) = 𝑙(𝑋, 𝑌)𝑐(𝑋, 𝑌)𝑠(𝑋, 𝑌) (20)𝐼(𝑋, 𝑌) = 2𝜇 𝜇 + 𝐶𝜇 + 𝜇 + 𝐶  (21)

𝑐(𝑋, 𝑌) = 2𝜎 𝜎 + 𝐶𝜎 + 𝜎 + 𝐶  (22)

𝑠(𝑋, 𝑌) = 2𝜎 + 𝐶𝜎 𝜎 + 𝐶  (23)

where 𝑋 represents the reconstructed HR image, and 𝑌 represents the original LR im-
age. Here, 𝜇 is the mean value of the image, and σ is the variance of the image. C1, C2 and 
C3 are constants that prevent the denominator from being zero. The default interval of the 
SSIM value is [0, 1]. When the value of SSIM approaches 1, the reconstructed image is 
closer to the HR image. 

4. Analysis of Results 
4.1. Objective Index Analysis 

Reconstruction experiments were performed on liquid-metal droplet images, and the 
results were evaluated using the two aforementioned objective metrics. Tables 1 and 2 
show the comparison of the results of our SCMSRN algorithm with those of mainstream 
super-resolution algorithms, including the BICUBIC [21], SRCNN, ESPCN, VDSR and 
MSRN algorithms, as well as the multicore MSRN (MCMSRN) algorithm shown in Figure 
2. The data shown in the tables are averages over all the images that were reconstructed 
by a given algorithm. Figure 5 illustrates the training convergence curves of the SCMSRN, 
MSRN and MCMSRN algorithms with a test set that consisted of liquid-metal droplet 
images with a magnification factor of x2. 

  

(a) (b) 

Figure 5. Model convergence analysis diagram x2. (a) PSNR-epochs curve; (b) loss-epochs curve. 

Based on Tables 1 and 2, our SCMSRN algorithm was able to outperform all other 
algorithms, at all magnification factors. Compared to the similarly sized MSRN algorithm 
and MCMSRN algorithm, the PSNR of our SCMSRN algorithm was 2.03 dB and 1.58 dB 
higher when the magnification factor was two, 0.08 dB and 0.04 dB higher when the mag-
nification factor was three, and 0.21 dB and 0.2 dB higher when the magnification factor 
was four. The improvement in PSNR was most pronounced when the magnification factor 

Figure 5. Model convergence analysis diagram x2. (a) PSNR-epochs curve; (b) loss-epochs curve.

Based on Tables 1 and 2, our SCMSRN algorithm was able to outperform all other
algorithms, at all magnification factors. Compared to the similarly sized MSRN algorithm
and MCMSRN algorithm, the PSNR of our SCMSRN algorithm was 2.03 dB and 1.58 dB
higher when the magnification factor was two, 0.08 dB and 0.04 dB higher when the
magnification factor was three, and 0.21 dB and 0.2 dB higher when the magnification factor
was four. The improvement in PSNR was most pronounced when the magnification factor
was two, and the quality of the reconstruction was also highest at this level of magnification.

In Figure 5, it is shown that the introduction of the SCMSRB increased the speed of
convergence and reconstruction performance. After 25 epochs of training, the PSNR of the
SCMSRN algorithm reached a stable value. The value of the loss function also stopped
decreasing after this point.

4.2. Visual Effects Analysis

To provide a more intuitive illustration of the results shown by the performance
metrics, the image reconstructions were also analyzed in terms of subjective visual acuity.
Figure 6 shows the reconstructed and locally magnified images of a 2×-downsampled
liquid metal droplet photograph. By comparing the reconstructed images in Figure 6, it
is clear that the BICUBIC algorithm was outperformed by all deep learning-based image
super-resolution algorithms, as the BICUBIC reconstructions are quite blurry. Compared
to the BICUBIC result, the SRCNN algorithm greatly improved image clarity but had a
much fuzzier background than the original HR image. The ESPCN and VDSR algorithms
were better in terms of background clarity, and the overall clarity of their images were a
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significant improvement over that of the SRCNN algorithm. The MSRN, MCMSRN and
SCMSRN algorithms were able to reconstruct much of the high-frequency detail, and their
outputs are a significant improvement over those of the ESPCN and VDSR algorithms
in terms of clarity and the definition of the droplet’s edges. In terms of subjective visual
quality, our algorithm was able to reconstruct the edges of the droplet more clearly than all
other algorithms and produce a result that strongly resembles the original HR image.
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Figure 6. Comparison of the local effects of various algorithms on the melt image of liquid metal samples x2.

For the reconstructed high-resolution image, the Canny operator is used to extract the
image contour, and the diameter and area error ratios between the reconstructed image
and the original high-resolution image of various algorithms are compared by the method
of calculating pixels, so as to verify the various algorithms’ effectiveness in terms of the
super-resolution reconstruction of melt images of liquid metal samples.

Figure 7 shows that the algorithm is able to rebuild the samples of liquid metal melt.
The Canny operator is utilized to extract the contours of the image; it can be seen that this
algorithm rebuilds the image contour information with a richer, more complete outline of
the small aperture. This algorithm adopts the hierarchical feature fusion mechanism, which
can be extracted from the liquid metal melt sample image in greater detail. It can be seen
from Table 3 that the melt image of the liquid metal sample reconstructed by the algorithm
in this paper can accurately measure the diameter and area of deep undercooled melt.
Based on the original image, the diameter error of the algorithm in this paper is only 0.0103,
and the area of error is only two, which is the best among all the comparison algorithms.
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Table 3. The outline diameter and area of the melt image of the liquid metal sample extracted based
on the Canny operator x2.

Methods Diameter Diameter Error Area Area Error

HR Image 124.0011 0 12076.5 0
BICUBIC 123.8572 0.1439 12049.0 27.5
SRCNN 123.8952 0.1059 12055.0 21.5
ESPCN 123.9369 0.0642 12064.0 12.5
VDSR 123.9138 0.0873 12059.5 17
MSRN 124.0576 0.0565 12087.5 11

MCMSRN 123.9754 0.0257 12071.5 5
SCMSRN 124.0114 0.0103 12078.5 2

4.3. Model Performance Analysis
4.3.1. Sub-Module Analysis

By comparing a multitude of model architectures in terms of their efficacy in the super
resolution of liquid-metal droplet images, it was found that the number of SCMSRBs was a
critical factor for image quality. Network models with 1–8 SCMSRBs were trained to extract
and merge 1 × 1, 3 × 3, 5 × 5, 7 × 7 and 9 × 9 residual maps, with each SCMSRB having
four cascaded-residual 3 × 3 convolutional cores. In order to ensure the fairness of the
experimental results, each model was trained by the training set described in Section 3.2,
and the performance was tested on the test set. In the training stage, the learning rate was
set as 0.0001, and the number of iterations was 100. Figure 8 illustrates how the number
of SCMSRBs affects the super resolution of liquid-metal droplet images by the SCMSRN
algorithm, with magnification factors of two, three, and four.
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During model training, the network model was only cascaded with one single-core
multi-scale residual block. The learning rate was fixed, the peak signal-to-noise ratios
(PSNRs) of the test set of the deep undercooling melt images were 41.23 dB, 37.75 dB
and 36.12 dB at magnification factors of two, three, and four, respectively. It can be seen
that Multiscale feature fusion is a highly effective approach for the super resolution of
liquid-metal droplet images.

When cascading 8 SCMSRBs, regardless of the magnification factor, the PSNR value of
the sample melt image reconstructed by the model will continue to decrease. This might be
attributed to the excessive depth of the model causing convergence difficulties during the
training phase; the training loss of this network model only reached 0.00001 after almost
300 epochs of training.

Integrating the effect of model reconstruction under the three magnification factors,
when four single-core multi-scale residual blocks are cascaded, the PSNR value of the
reconstructed liquid-metal droplet image reaches the peak value at the three magnification
factors. Therefore, the number of single-core multi-scale residual blocks M is set to four for
the best reconstruction effect.

4.3.2. Performance Analysis

To quantify the efficiency gains that were obtained by the introduction of factorized
convolution, MCMSRN and SCMSRN network models were constructed based on the
basic modules shown in Figures 2 and 3, respectively, and then assessed in terms of compu-
tational efficiency. The metrics used to measure computational efficiency were the number
of model parameters (Params), the number of floating-point operations (FLOPs) [21], and
training time. The Params metric evaluates the size of the network model, that is, its
spatial complexity; the higher the Params value, the greater the spatial complexity. The
FLOPs metric assesses the computational complexity of the network model, that is, its
time complexity. The lower the FLOPs, the lower the time complexity. Training time is
defined as the time taken for the loss function to reach 0.00001 during the training phase.
In Figure 5b, it is shown that model loss stabilizes after reaching 0.00001, which indicates
that convergence occurs at this point.

In Table 4, it is shown that the SCMSRN algorithm reduced Params by 75%, FLOPs by
75%, and training time by 18 min compared to MCMSRN. Hence, it has been experimentally
demonstrated that the SCMSRN algorithm is able to outperform the MCMSRN algorithm
in terms of reconstruction quality (while using a smaller number of parameters) and
training efficiency.
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Table 4. Comparison in terms of computational efficiency.

Methods Params/k FLOPs/w Train Time/min

MCMSRN 2791.7 806.8 56
SCMSRN 694.5 200.7 38

5. Conclusions

This work proposes an image super-resolution network model for photographic
images of liquid metal specimens (droplets), which uses factorized convolution to reduce
the tremendous number of model parameters that result from the use of large convolutional
cores for multiscale feature extraction and, thus, improves training efficiency for network
models of this type. Single-scale multiscale residual blocks are created based on the ideas
of residual networks, and they improve the performance of the network model by reducing
its number of parameters while enabling the extraction of features with different scales
and ensuring sufficient network depths. In liquid-metal droplet image reconstruction
experiments, our network model outperformed all current state-of-the-art super-resolution
models, in terms of PSNR and SSIM, at three different magnification factors. In the
subjective assessment, our network model was able to clearly reconstruct the edges of the
liquid metal droplet. The diameter and area that were calculated from the resulting profile
were very similar to those derived from the original high-resolution image. Hence, our
image super-resolution algorithm can provide accurate data for molten samples poised in
simulated gravity-less or microgravity environments, which is significant for the study of
novel metastable materials. In the future, we will incorporate an attention mechanism in
the design of our network architecture to improve its performance in image reconstruction
and, thus, reduce errors in diameter and area measurements.
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