
machine learning &

knowledge extraction

Review

Recent Advances in Deep Reinforcement Learning Applications
for Solving Partially Observable Markov Decision Processes
(POMDP) Problems: Part 1—Fundamentals and Applications in
Games, Robotics and Natural Language Processing

Xuanchen Xiang * and Simon Foo *

����������
�������

Citation: Xiang, X.; Foo, S. Recent

Advances in Deep Reinforcement

Learning Applications for Solving

Partially Observable Markov

Decision Processes (POMDP)

Problems: Part 1—Fundamentals and

Applications in Games, Robotics and

Natural Language Processing. Mach.

Learn. Knowl. Extr. 2021, 3, 554–581.

https://doi.org/10.3390/make3030029

Academic Editor: Ausif Mahmood

Received: 8 June 2021

Accepted: 25 June 2021

Published: 15 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering,
Tallahassee, FL 32310, USA
* Correspondence: XX16@MY.FSU.EDU (X.X.); foo@eng.famu.fsu.edu (S.F.)

Abstract: The first part of a two-part series of papers provides a survey on recent advances in
Deep Reinforcement Learning (DRL) applications for solving partially observable Markov decision
processes (POMDP) problems. Reinforcement Learning (RL) is an approach to simulate the human’s
natural learning process, whose key is to let the agent learn by interacting with the stochastic
environment. The fact that the agent has limited access to the information of the environment enables
AI to be applied efficiently in most fields that require self-learning. Although efficient algorithms
are being widely used, it seems essential to have an organized investigation—we can make good
comparisons and choose the best structures or algorithms when applying DRL in various applications.
In this overview, we introduce Markov Decision Processes (MDP) problems and Reinforcement
Learning and applications of DRL for solving POMDP problems in games, robotics, and natural
language processing. A follow-up paper will cover applications in transportation, communications
and networking, and industries.

Keywords: reinforcement learning; deep reinforcement learning; Markov decision process; partially
observable Markov decision process

1. Introduction
1.1. Markov Decision Processes

Markov Decision Process is a general mathematical problem representing an optimal
path of sequential decisions in an uncertain environment. At each step of the sequence,
the agent (actor) decides on an action and move to the next state. According to the current
state, some rewards are available to get either positive gains or negative costs. Another
characteristic of MDP is the uncertainty in the consequential state regarding the action
taken.

As mentioned above, MDPs involve four sets of components: States S, Actions A,
Transition probabilities P(s′|s, a) and Rewards R(s, a). Figure 1 can represent the MDP
problems.

Solutions of MDPs are policies. A policy is a strategy and a rule specifying what action
to execute in every possible state, denoted as π(s).

Due to the uncertainty, following a policy yields a random path: s0, a1r1s1, a2r2s2,
Solving MDPs is to search for policies that maximize the rewards obtained by the agents. In
this report, we care more about the recent rewards, and the future rewards are discounted
by a factor γ (0 < γ < 1), called γ-discounted criterion. The sum of rewards, from state s,
on this random path is the utility of the policy Uπ(s):

Uπ(s) = r0 + γr1 + γ2r2 + ... + γtrt + ... =
∞

∑
t=0

γtR(st) (1)

Mach. Learn. Knowl. Extr. 2021, 3, 554–581. https://doi.org/10.3390/make3030029 https://www.mdpi.com/journal/make

https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0002-4897-2111
https://doi.org/10.3390/make3030029
https://doi.org/10.3390/make3030029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/make3030029
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make3030029?type=check_update&version=1

Mach. Learn. Knowl. Extr. 2021, 3 555

Figure 1. Markov Decision Process Model.

The expected utility following policy π from state s is the state value function Vπ(s)
of the policy, which is not random:

Vπ(s) = E[Uπ(s)] = E[
∞

∑
t=0

γtR(st)] (2)

State-action value function Qπ(s, a), also called Q-value, of a policy is the expected
utility of taking action a from state s, then following policy π:

Qπ(s, a) = ∑
s′

P(s′|s, a)[R(s, a, s′) + γVπ(s′)] (3)

When it is not in the end state, the value is equal to the Q-value of the policy. This yields
the Bellman Equation:

Vπ(s) = ∑
s′

P(s′|s, a)[R(s, a, s′) + γVπ(s′)] (4)

Bellman Equation is a recursive equation, as shown. Therefore, to find the optimal
policy, Value Iteration or Policy Iteration can be utilized. Value Iteration is to get directly
at the maximum expected utility. Vopt(s) is assigned as the optimal value attained by any
policy, and Qopt(s) is the optimal Q-value of any policy. When it is not in the end state:

Vopt(s) = max
a∈Actions

Qopt(s, a) (5)

Below is referred to as the Bellman Optimality Equation, solving which conducts the value
of the optimal policy:

V(t)
opt(s) = max

a∈Actions
∑
s′

P(s′|s, a)[R(s, a, s′) + γV(t−1)
opt (s′)] (6)

Policy Iteration randomly initializes the policy π and then solves the Bellman Equation to
get Vπ(s). Then update the policy according to the greedy policy until it converges:

πopt(s) = arg max
a

Qopt(s, a) (7)

More algorithms will be discussed in Section 1.3.

1.2. Partially Observable Markov Decision Processes

In Completely Observable MDPs, a series of policies are given, while in reality, state
measurements are often partially observable. The problems in such settings formulate
Partially Observable Markov Decision Processes (POMDPs). POMDP is a generalization
of MDP. It is a more complex scenario with the agent has no access to the underlying

Mach. Learn. Knowl. Extr. 2021, 3 556

states. Instead, it must maintain a probability distribution over a set of states based on
observations and observation probabilities.

There are six essential components, S, A, T, R, O and Z, in a POMDP. Apart from
parameters similar to those in MDPs, O is a set of observations, T is a set of state transition
probabilities, and Z is a set of observation probabilities. At each time step, the agent is in
some state s and takes an action a, then the environment transits to state s′ with probability
T(s′|s, a). Based on the new state s′ and the action a, the agent receives an observation
o ∈ O with probability Z(o|s′, a). Furthermore, a reward R(s, a) is obtained.

However, in POMDP, the agent does not know what the current state is. The solution
is to transfer a POMDP to a belief MDP. The information about states is available as belief
states, and b is a probability distribution over states:

b = [b(s1), b(s2), b(s3), ...]

where b(si) indicates the probability that si ∈ S is the current state. By adding the concept
of belief states, POMDPs can be regarded as traditional MDPs, with belief states as complete
observable states.

At each time step, the agent is in a belief state b(s), according to some policy π, the
agent takes an action a and transits to the new physical state s′ and observes o, given a
reward r(b, a). The reward is not observed but can be computed from the original POMDP:

r(b, a) = ∑
s∈S

b(s)R(s, a) (8)

The new belief state vector is b′, in which an element is b′(s′). b′(s′) represents the proba-
bility of being in state s′ after b, a and o, calculated as:

b′(s′) = Pr(s′|b, a, o)

= ∑
s

Pr(s|b, a, o)Pr(s′|b, a, o, s)

= ∑
s

b(s)Pr(s′|a, o, s)

= ∑
s

b(s)
Pr(o|s′, a, s)Pr(s′|a, s)

Pr(o|a, s)

=
∑s b(s)Z(o|s′, a)T(s, a, s′)

∑s ∑s′ b(s)Z(o|s′, a)T(s, a, s′)

(9)

That is, for each possible new state s′, b′(s′) can be calculated with known components:
the current belief state, the observation probability, and the original transition probability.

The Value Iteration in POMDPs are similar in traditional MDPs, replacing states with
belief states, the recurrence equation becomes:

V(t)
opt(s) = max

a∈Actions
[r(b, a) + γ ∑

o
Pr(o|b, a)V(t−1)

opt (b′)] (10)

1.3. Reinforcement Learning

Machine Learning has three categories: Supervised Learning, Unsupervised Learning,
and Reinforcement Learning. RL is a framework used to solve problems that can be
expressed as incompletely-known MDPs. Rather than using static data like the other
categories, Reinforcement Learning works with a dynamic dataset from the environment.
RL’s goal is not to label or cluster data but to map actions from states of the environment to
get maximum outcome. Overall, RL is an optimization problem.

The trade-off between exploration and exploitation is one of the biggest challenges
in RL. The agent might prefer to choose actions that can produce rewards and explore
the effects of other actions rather than choosing one action all the time. Researchers
have studied the exploration-exploitation dilemma for a long time. There are methods

Mach. Learn. Knowl. Extr. 2021, 3 557

like epsilon-greedy, optimistic initial values, and Upper-Confidence Bound (UCB) action
selection, and each of them has some positive results and some problems [1]. Nevertheless,
the dilemma is still a challenge in RL studies.

Another challenge in RL is the Reward Delay. Sometimes, the rewards in the process
will not happen instantly; instead, they will return in the long term. Taken the Go game as
an example, the only way of expressing the reward itself is winning or losing the game, but
making each move will affect the result. That is to say, before jumping into the learning, the
reward-delayed system has to be adjusted with a better rewarding solution. Furthermore,
this is usually difficult to realize in applications.

To sum up, before making the agent interact with the environment, we need to
construct the system first. We first need to confirm whether the environment is actual or
simulated. Secondly, a reward function is appropriately set up to incentive the agent to
take proper steps. Then, a good policy needs to be chosen with logic and parameters. Next,
a training algorithm for the agent is employed. Lastly, the agent should be put into the
environment and starts training.

1.3.1. RL Algorithms

RL algorithms might be model-free or model-based, value-based and (or) policy-based,
on-policy or off-policy, with sample backups or full backups, as shown in Figures 2 and 3.

Figure 2. Reinforcement Learning Methods.

Figure 3. The taxonomy of representative RL Algorithms (For more information, see [2]).

Mach. Learn. Knowl. Extr. 2021, 3 558

Dynamic Programming

Dynamic Programming (DP) is a general solution for optimization problems with
recursion. MDPs with Bellman Equation is a good example. The idea of DP is to store the
solutions of subproblems and use them later when needed rather than re-compute them.
While solving RL, the solution of the subproblem is the value function of a policy. Thus,
the control problem is to find an optimal value function (Value Iteration) or an optimal
policy (Policy Iteration).

Recall equations from the MDP section, Policy iteration (PI) integrates policy evalua-
tion and policy improvement. Based on the precious value function, an improved policy
can be found. Eventually, it will converge to an optimal policy; Value Iteration (VI) starts
with a value function. An improved value function will be obtained in the iterative process
until reaching the optimal value function. DP is model-based.

Monte Carlo and TD Learning

Two classic methods to estimate the value of a policy are Monte Carlo (MC) and
Temporal Difference (TD) Learning. With the MC-based method, the agent learns the value
Vπ(s) as the average return of all sampled episodes. For each episode, the approximated
value can be updated using an incremental mean according to the formula:

V(st)← V(st) + α[Gt −V(st)] (11)

Where V(st) is the estimated state value, initialized using a certain strategy; α is a rate
that influences the convergence; Gt is the return from time t that the actor first visited the
state-action pair (or sum of returns from each time t it visited the pair), can be calculated as
below:

Gt = rt+1 + γrt+2 + ... + γT−1rT (12)

MC method updates the value after a complete episode, making it a slow algorithm
with significant variance. TD Learning solves this drawback by updating value every
time step and does not require a whole episode to update the value. At time t + 1, the TD
approach compares the value with a TD target rt+1 + V(st+1) and updates it with TD error.
The simplest TD method, TD(0), explains the intuition:

V(st)← V(st) + α[rt+1 + γV(st+1)−V(st)] (13)

TD methods predict the future before knowing the total accumulated reward—this is
a form of bootstrapping. There is no bootstrapping in MC or DP methods. MC and TD
methods are both model-free, and they both work with sample backups.

Q-Learning

As learned in the MDP section, Q value is defined as the expected reward when
taking action a at state s, following policy π. So Q value can measure which action
a ∈ Actions is better than the others. Thus, we can find a better policy. This method is
called Q-learning [3].

The Q-learning method lets the initial policy π interact with the environment. Then
the Q value can be obtained at the state s, taking action a. TD or MC methods will now
contribute to finding a better policy π′ to replace the previous actor. Eventually, an optimal
actor will be reached. Q-learning uses a table with the rows as the states (or observations)
and the columns as the actions. Each cell in the table is the Q-value of this state, taking this
action.

SARSA [4] is similar to Q-learning. However, Q-learning is off-policy, and SARSA is
an On-Policy algorithm. SARSA selects a new action, using the same policy, instead of the
maximum reward for the next state, to update the Q-values.

Mach. Learn. Knowl. Extr. 2021, 3 559

Q-learning:

Q(s, a)← Q(s, a) + α[r + γmaxαQ(s′, a′)−Q(s, a)] (s← s′) (14)

SARSA:

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] (s← s′, a← a′) (15)

1.4. Deep Reinforcement Learning

Deep Learning (DL), or a Deep Neural Network (DNN), has more than one hidden
layer in a Neural Network. At each hidden layer, nonlinear transformation, or activation
function, is applied to obtain a new representation of the input from the previous layer [5].
As a result, deep Learning can interpret the pixels directly.

Deep Reinforcement Learning (DRL) combines Reinforcement Learning and Deep
Learning. It is more capable of learning from raw sensors or images as input, enabling
end-to-end learning, which opens up more applications in robotics, video games, NLP,
computer vision, healthcare, and more.

1.4.1. Value-Based Algorithms

A milestone in value-based DRL is employing Deep Q-Networks (DQN) to play Atari
games by Google DeepMind [6] in 2013. In DQN, the agent is trained by Deep Neural
Networks rather than the Q-table. In this structure, the current states (or observations)
from the environment are inputs, and the outputs are the agent’s actions. DQN overcomes
unstable learning by four main techniques: Experience Replay, Target Network, Clipping
Rewards, and Skipping Frames [7].

In 2015, van Hasselt et al. [8] proposed Double DQN, which uses deep neural networks
combined with the idea of Double Q-learning [9], yielding more accurate results on Atari
games. Schaul et al. [10] used Prioritized Experience Replay with Double DQN, making
learning from experience replay more efficient. In 2016, Wang et al. [11] presented Dueling
DQN, which has two streams to estimate state-value and the advantages for each action
separately, leading to better policy evaluation in the presence of similar-valued actions.
Categorical DQN was introduced in 2017 by Bellemare et al. [12], which models the value
distribution within a DQN agent. Noisy DQN from Fortunato et al. [13] has an agent with
parametric noise added to its weights and uses stochastic network layers for exploration.
Furthermore, Rainbow DQN was introduced in 2018 [14], combining several components
in one agent, including DDQN, prioritized replay, dueling networks, multi-step learning
[15], Distributional RL, and Noisy Nets.

Other techniques include the General Reinforcement Learning Architecture (Gorila)
by Nair et al. [16] that performs asynchronous training for many agents in a distributed
setting; Hierarchical DQN introduced by Kulkarni et al. [17] integrates hierarchical value
functions and operates at different temporal scales.

1.4.2. Policy-Based Algorithms

A policy gradient algorithm called Trust Region Policy Optimization (TRPO) was
introduced by Schulman et al. [18] in 2015. This method updates policies by repeatedly
optimizing a local approximation with a KL divergence penalty. It avoids the performance
collapse due to the difference of new and old policies in parameter space. Proximal Policy
Optimization (PPO) proposed in [19] has the same background as TRPO. They share similar
benefits, but it is simpler to implement and has better sample complexity. This variant of
PPO does not have a KL-divergence. Instead, it has a specialized clipping in the objective
function to avoid the new policy getting far from the old policy.

1.4.3. Actor-Critic Algorithms

Deep DPG (DDPG), based on deterministic policy gradient (DPG), [20], was intro-
duced in [21]. It uses off-policy data and Bellman equation to learn a Q-function and then

Mach. Learn. Knowl. Extr. 2021, 3 560

uses the Q-function to learn a policy. O’Donoghue et al. [22] also combines policy gradient
with Q-learning, drawing experience from a replay buffer. This combination allows us to
estimate the Q-values from the action preferences of the policy. Then Q-learning updates
are applied to the policy.

Soft Actor critic (SAC) [23] is an off-policy actor-critic algorithm based on the max-
imum entropy RL framework. The actor aims to maximize the expected reward and
maximize the entropy simultaneously, such that it achieves fast learning with high ran-
domness in the policy.

Advantage Actor-Critic algorithms have two main variants: the Asynchronous Ad-
vantage Actor-Critic (A3C) and the Advantage Actor-Critic (A2C) A3C was introduced in
[24], which implements parallel training for multiple agents in parallel environments and
updates a global value function.

A table of representative DRL techniques is shown in Table 1.

Table 1. Representative DRL Techniques.

DRL Algorithms Main Techniques

Value-based

DQN [6] Experience Replay, Target Network, Clip-
ping Rewards, Clipping Rewards, and
Skipping Frames

Double DQN [8] Double Q-learning
Dueling DQN [11] Dueling Neural Network architecture
Prioritized DQN [10] Prioritized experience replay
Bootstrapped DQN [25] Deep exploration with DNNs
Distributional DQN [12] Distributional Bellman equation
Noisy DQN [13] Parametric noise added to weights
Rainbow DQN [14] Combine 6 extensions to the DQN
Hierarchical DQN [17] Hierarchical value functions
Gorila [16] Asynchronous training for multi agents

Policy-based
TRPO [18] KL divergence constraint
PPO [19] Specialized clipping in the objective func-

tion

Actor-Critic

Deep DPG [21] DNN and DPG
TD3 [26] Twin Delayed DDPG
PGQ [22] Policy gradient and Q-learning
Soft Actor Critic (SAC) [23] Maximum entropy RL framework
A3C [24] Asynchronous Gradient Descent

2. Applications

Deep Reinforcement Learning has been widely utilized in many domains, as shown
in Table 2, which is summarized from [5]. This chapter will discuss the recent advances
in applications in games, robotics, Natural Language Processing (NLP), transportation,
industrial applications, communication and networking, and more topics. Usually, different
techniques may be employed in an application besides DRL, e.g., AlphaGo is trained using
supervised learning and reinforcement learning. In this report, POMDP problems are taken
into more consideration, but in reality, it is hard to define an application as a firm POMDP
problem or not. We focus applications generally based on Deep Reinforcement Learning,
not only on POMDP problems.

Mach. Learn. Knowl. Extr. 2021, 3 561

Table 2. Various DRL Applications, summarized from [5].

Domains Applications

Healthcare DTRs, HER/EMR, diagnosis
Education Educational games, recommendation, proficiency esti-

mation
Transportation Traffic control
Energy Decision control
Finance Trading, risk management
Science, Engineering, Art Math, Physics, music, animation
Business management Recommendation, customer management
Computer systems Resourse management, security
Games Board games, card games, video games
Robotics Sim-to-real, control
Computer vision Recognition, detection, perception
NLP Sequence generation, translation, dialogue

2.1. Games

Researchers have continuously been studying RL algorithms with games as testbeds
since long ago. This section discusses this research in board games, card games, and video
games. This section refers to Li’s overview [5].

2.1.1. Board Games

In the board games like Go, chess, checkers, and Backgammon, players have perfect
information about each other, and the environment is deterministic (not MDPs). The AI
research in two-person games can trace back to the 1950s, Claude Shannon and Alan Turing
proposed computer programs that could challenge humans.

RL in Board Games

There have been significant steps in AI playing games towards the DRL direction.
In 1994, TD-Gammon [27] was a Neural Network to estimate evaluation function with
TD learning for Backgammon. Buro [28] also wrote papers proposing methods of playing
Othello programs in the 1990s, for further references, see: https://skatgame.net/mburo/
publications.html, accessed on 11 January 2021. Schaeffer et al. [29] developed Chinook,
playing checkers, between 1989 and 2007. Ginsberg [30] is the inventor of GIB for playing
the computer bridge. For the Hex games, Huang employed MCTS in MoHex [31], and
Gao et al. [32] trained the neural networks by canonical maximum likelihood to enhance
MoHex 2.0.

Mannen’s thesis [33] implemented experiments in the training of neural networks as
evaluation functions for a chess program. Block et al. [34] used reinforcement learning in
chess engines, extending KinghtCap’s [35] learning algorithm with a larger database. Later,
Lai [36] presented Giraffe, using Deep Reinforcement Learning with automatic feature
extraction in chess, outperformed other chess engines during the time.

AlphaGo

In 2016, AlphaGo [37] became the first computer Go program that won the professional
Go player Lee Sedol. This is the historical moment that AI proves to be able to surpass
human learning in board games. AlphaGo was trained by a combination of supervised
learning and reinforcement learning of self-play. The networks also combined Monte Carlo
simulation with value and policy networks. Later, Silver et al. [38] introduced ALphaGo
Zero, based solely on RL without human data or guidance beyond game rules. A neural
network is trained to predict AlphaGo or other winner’s action selections. This resulted in
higher quality and more robust self-play features. Later, Silver et al. [39] also came up with
a general algorithm called AlphaZero. It realized superhuman performance in many other

https://skatgame.net/mburo/publications.html
https://skatgame.net/mburo/publications.html

Mach. Learn. Knowl. Extr. 2021, 3 562

games and defeated champion programs in chess, shogi, and Go. Furthermore, Kimura
et al. [40] applied AlphaZero to POMDP maze problems, and it turned out effective.

AlphaGo is a turning point in the application of Deep Reinforcement Learning. It has
made tremendous progress in recent years.

2.1.2. Card Games

Card games, like many variants of Poker, UNO, and mahjong, have incomplete
information. The agents and the environment are stochastic and uncertain. These games
are usually POMDP problems.

Texas Hold’em Poker

One of the classic poker games is Texas Hold’em Poker. Davidson [41], Davidson et al.
[42], Felixa and Reis [43], and Bayes’ Bluff presented by Southey et al. [44] used Neural
Networks to model opponents in Texas Hold’em Poker, thus the network was able to
predict the next actions of players correctly.

Zinkevich et al. [45] presented Counterfactual Regret Minimization(CFR). CFR is to
compute an approximate Nash equilibrium for the abstract game by iteratively traversing
the game tree. Based on the CFR technique, Bowling et al. [46] weakly solved Heads-up
Limit Hold’em Poker. Furthermore, Deep CFR was discussed by Brown et al. [47].

DeepStack computer program presented by Moravčík et al. [48], uses deep neural
networks as the value function for its depth-limited look-ahead, defeated professional
poker players for the first time, in heads-up no-limit Texas Hold’em. More information
about DeepStack can be found at https://www.deepstack.ai/, accessed on 11 January 2021.

Prior breakthroughs have been limited to settings with two players. Brown and
Sandholm [49] proposed Pluribus, a superhuman AI capable of defeating elite human
professionals in six-player no-limit Texas hold’em poker, with self-play through improved
Monte Carlo CFR.

Hearts and Wizard

Hearts is a multi-player non-cooperative finite-state zero-sum imperfect-information
game that can formulate a POMDP [50]. Fujita and Ishii [51] developed model-based RL
for large-scale multi-player games with partial observability and applied it to Hearts, using
Markov Chain Monte Carlo (MCMC) technique. Sturtevant and White [52] developed a
player for the game of hearts of 4 players, based on stochastic linear regression and TD
learning.

In 2017, Wagenaar’s thesis [53] used a multi-layer perceptron (MLP) and Monte Carlo
learning to play Game Hearts and realized DRL. However, more work is required to realize
mature performance in the Hearts game.

Similar to Hearts, Wizard is also a multi-player imperfect-information poker game.
RL has turned out effective for these POMDP games. Backhus et al. [54] applied RL in the
Wizard game, separately dealing with forecasting and trick playing.

RLCard

In recent years, the full-width extensive-form fictitious play (XFP) was introduced by
Heinrich and Heinrich and Lanctot [55], Neural Fictitious Self-Play (NFSP) was presented
by Heinrich and Heinrich and Silver [56], and Unified Game-Theoretic Approach was
proposed by Lanctot et al. [57]. We can see that RL strategies can perform well in betting
games. These results give the inspiration for researchers to explore DRL in more card
games.

Zha et al. [58] presented RLCard, an open-source toolkit for reinforcement learning
research in card games. It provides various card game environments, including Black-
jack, Leduc Hold’em, Texas Hold’em, UNO, Dou Dizhu, and Mahjong, with easy-to-use
interfaces (see Figure 4).

https://www.deepstack.ai/

Mach. Learn. Knowl. Extr. 2021, 3 563

Figure 4. RLCard: It supports various styles of card games and board games [58].

2.1.3. Video Games

Video games are valuable resources with video frames as inputs to RL/AI agents, in
which computer games are the most popular testbeds for DRL algorithms. Similar to the
MDP process as shown in Figure 1, DRL for video games employs CNNs to extract features
from the video frames (environment) to be recognized by the agents. Recently, DRL has
been applied in Sega, Nintendo, Xbox, etc. Shao et al. [59] made a comprehensive survey
of DRL in video games. Based on which, Figure 5 presents popular video-game platforms
for RL research. In this section, we particularly dig into details about games with POMDP
characteristics.

Figure 5. Popular video-game platforms for Reinforcement Learning research, summarized from [59].

Atari

A traditional platform, the Arcade Learning Environment (ALE) [60], provides an
interface to lots of games in Atari 2600 and is a pioneer evaluation platform in RL research.
As described in Chapter One, many value-based methods are tested in Atari 2600 and the
un-mentioned techniques, such as DRQN [61] and ADRQN [62]. Aytar et al. [63] presented
an exciting method of playing Atari exploration games by watching Youtube. They map
unaligned videos from several sources to a common representation, then embed a single
YouTube video in this representation to construct a reward function. Hence, the agent
learns to imitate human gameplay. This method exceeds human-level performance on
MONTEZUMA’S REVENGE, PITFALL! and PRIVATE EYE, with no environment rewards
in games.

ViZDoom

Doom is a classical first-person shooter (FPS) game with a 3D environment, where
agents observe perspective 2D projections from their positions as pixel matrices. The partial
observability of game states is the main challenge. ViZDoom [64] is a Doom-based platform
that offers API.

Lample and Chaplot [65] used a divide and conquered method in Doom to divide
the action space. They trained an action agent and a navigation agent. Different agents
will act [66] based on the detection of an enemy. Akimov and Makarov [67] proposed

Mach. Learn. Knowl. Extr. 2021, 3 564

Categorical 51 with Multi-step (C51M) architecture, outperformed baseline methods in
ViZDoom environment.

In the survey [59], they mentioned the following important techniques that evaluated
in ViZDoom: Wu and Tian [68] proposed a framework combining A3C with curriculum
learning [69]; Parisotto and Salakhutdinov [70] developed Neural Map, a memory system
with an adaptable write operator, using a spatially structured 2D memory image to store
arbitrary environment information; Shao et al. [71] also introduced ACKTR, which teaches
agents to battle in the ViZDoom environment.

TORCS

The Open Racing Car Simulator (TORCS) is a racing game with acceleration, braking,
and steering as actions. It has been used as testbeds for visual-input games. It is also an
essential platform for testing autonomous driving methods with its realistic feature.

In 2014, Koutník et al. [72,73] had Max-Pooling Convolutional Neural Network
(MPCNN) compressor and recurrent neural network (RNN) controllers evolved success-
fully to control a car in TORCS based on visual input; DDPG [21], as mentioned, was
assessed in TORCS; Wang et al. [74] adopted DDPG and selected sensor information from
TORCS as inputs, evaluated on different modes in TORCS; Sallab et al. [75] formulated two
categories of algorithms for lane-keeping assist: DQN for discrete actions and Deep De-
terministic Actor-Critic Algorithm (DDAC) for continuous actions; Furthermore, Liu et al.
[76] proposed DDPG method with expert demonstrations and supervised loss, simulated
in TORCS, which improves efficiency and stability significantly; Verma et al. [77] presented
Programmatically Interpretable Reinforcement Learning (PIRL), to generate interpretable
agent policies and a new method called Neurally Directed Program Search (NDPS), to find
a programmatic policy with maximal reward;

In addition to the works shown above, some techniques discussed by Shao et al. [59]:
Sharma et al. [78] proposed Fine Grained Action Repetition (FiGAR) to improve DDPG;
Gao et al. [79] used TORCS to evaluate Normalized Actor-Critic (NAC); Mazumder et al.
[80] developed a property called state-action permissibility (SAP), with which the agent
learns to solve the lane-keeping problem in TORCS, with faster training process; Li et al.
[81] breaks the vision-based lateral control system down into a perception module and a
control module; Zhu and Zhao [82] uses DRL to train a CNN to perceive data.

Minecraft

Minecraft is a well-known sandbox video game where players can explore a blocky,
procedurally-generated 3D world and build structures and earthworks with freedom in
different game modes. It supports scenarios from navigation and survival to collaboration
and problem-solving tasks, making it a rich environment to carry out RL.

Project Malmo [83] is an AI experimentation platform on top of Minecraft, created by
Microsoft. Marlo, based on Malmo, provides a higher-level API and a more standardized
RL-friendly environment for RL study. In 2019, Guss et al. [84] presented a comprehensive,
large-scale, simulator-paired dataset of human demonstrations: MineRL, which provides
an RL environment and competitions.

Some RL tasks created in Minecraft were effectively achieved. Liu et al. [85] con-
structed tasks with shared characteristics in Minecraft for multi-task DQN (MDQN), which
turned out effective. Oh et al. [86] also designed tasks to evaluate DRL architectures:
Memory Q-Network (MQN), Recurrent Memory Q-Network (RMQN), and Feedback Re-
current Memory Q-Network (FRMQN). Frazier [87] conducted experiments with two RL
algorithms: Feedback Arbitration and Newtonian Action Advice, enabling human teachers
to give action advice. Furthermore, HogRider [88] is the champion agent of MCAC in 2017,
using a Q-learning approach with state-action abstraction and warm start; Tessler et al. [89]
proposed a lifelong learning system that is able to transfer knowledge from one task to
another, incorporated with Hierarchical-DRLN with a deep skill array and skill distillation;

Mach. Learn. Knowl. Extr. 2021, 3 565

Jin et al. [90] utilized counterfactual regret minimization to update an approximation to an
advantage-like function iteratively.

DeepMind Lab

DeepMind Lab [91] is a 3D customizable first-person game platform for agent-based
AI research, a modified version of Quake III Arena. It is usually used to study how RL
agents deal with complex tasks in large, partially observed, and visually diverse worlds.

Many researchers have created RL tasks in DeepMind Lab and tested algorithms.
Johnston [92] introduced an unsupervised auxiliary task—“surprise pursuit”. It quantifies
the surprise” the agent encounters when exploring the environment and trains a policy to
maximize this “surprise”.

There also are researchers who used DM-Lab to propose new architectures. As
mentioned by [59], Mankowitz et al. [93] proposed Unicorn, which demonstrates robust
continual learning; Schmitt et al. [94] had a teacher agent to kickstart the training of a
new student agent. The method mentioned by Jaderberg et al. [95] trains plenty of agents
concurrently from lots of parallel matches, where agents play cooperatively in teams,
competing in randomly generated environments.

Later on, DeepMind also invented Psychlab [96], a psychophysics testing room em-
bedded inside the world of DM-Lab. This framework allows DRL agents to be directly
compared with humans, lifted from cognitive psychology and visual psychophysics.

Real-Time Strategy Games

Real-time strategy games (RTS) allow players to play the game in “real-time” simulta-
neously rather than to take turns to play. RTS like StarCraft, Dota, and LOL are popular
platforms in AI research. The real-time games usually consist of thousands of time steps
and hundreds of actions selected in real-time through the gameplay. StarCraft is a game in
which players balance high-level economic decisions in the control of tons of units. In each
time step, the agent receives imperfect information from observations. In 2019, DeepMind
proposed AlphaStar [97], which defeats professional players for the first time. Table 3
presents the techniques carried out in StarCraft.

MOBA (Multiplayer Online Battle Arena) games have two teams, and each team
consists of five players. OpenAI Five [98] used Dota2 as the research platform and achieved
expert-level performance, and is the first AI system who could defeat the world champions
in an esports game.

Table 3. Techniques used in StarCraft, summarized based on [59].

StarCraft Algorithms Main Techniques

GMEZO [99] Micromanagement; greedy MDP; episodic zero-
order exploration

BiCNet [100] Multiagent bidirectionally coordinated network
Stabilising Experience Replay [101] Importance sampling; fingerprints
PS-MAGDS [102] Parameter sharing multi-agent gradient descent

SARSA(λ)
MS-MARL [103] Master-slave architecture; multi-agent
QMIX [104] Decentralised policies in a centralised end-to-end

training
NNFQ & CNNFQ [105] Neural network fitted Q-Learning
SC2LE [106] FullyConv-A2C; baseline results
Relational DRL [107] Self-attention to iteratively reason about the rela-

tions
TStarBots [108] Flat action structure; hierarchical action structure
Modular architecture [109] Splits responsibilities between multiple modules
Two-level hierarchical RL [110] Macro-actions; a two-layer hierarchical architec-

ture

Mach. Learn. Knowl. Extr. 2021, 3 566

2.2. Robotics

Robotics is widely used in science, industries, healthcare, education, entertainment,
and many more domains. Robotics has many challenging problems involved, including
perceptron, control system, operation system, etc. The development of Deep Reinforcement
Learning paves the way in robotics. Many applications mentioned in the gaming section,
including AlphaGo, are also involved in Robotics. While in this section, we focus on
manipulation and locomotion.

For more surveys in Robotics, see [111] in 2009, a study of robot learning from demon-
stration (LfD), with which a policy is learned from demonstrations, provided by a teacher;
Deisenroth [112] made a survey on policy search for robotics in 2013; In 2014, Kober
and Peters [113] provided a general survey on RL in robotics; Tai et al. [114] presented a
comprehensive survey for learning control in robotics from reinforce to imitation in 2018.

A 3D physics simulator MuJoCo physics engine [115], which stands for Multi-Joint
dynamics with Contact, was developed by OpenAI for continuous control. Mainly based
on which series algorithms are evaluated.

2.2.1. Manipulation

Dexterous manipulation is one of the most challenging control problems in robotics
due to the barriers of high dimensionality, intermittent contact dynamics, and under-
actuation in dynamic object manipulation; Dexterous manipulation can be widely used in
different domains. These make it a hot topic in Robotics. Nguyen and La [116] provided
a review of DRL for Robot Manipulation with the challenges, the existing problems, and
future research directions.

For reinforcement learning, researchers made significant progress, making DRL in
manipulation tasks accessible in recent years. For example, in 2008, Peters and Schaal
[117] evaluated policy gradient methods on parameterized motor primitives, and Episodic
Natural Actor-Critic [118] outperforms the others; In 2010, Theodorou et al. [119] presented
Policy Improvement with Path Integrals (PI2); In 2010, Peters et al. [120] suggested Relative
Entropy Policy Search (REPS) method; In 2011, Kalakrishnan et al. [121] used PI2 with
force control policies. Nair et al. [122] demonstrated overcoming the exploration problem
and solved the block stacking task using RL.

Multi-Fingered Hands

Dexterous multi-fingered hands can perform a wide range of manipulation skills.
They are essential in research while it requires high dimensional observation and ample
action space. Kumar et al. [123] demonstrated online planning based on an ADROIT
platform, and Kumar et al. [124] described a model-based method combining optimizing
Linear–Gaussian controllers models with KL-constrained optimization. It was applied on a
pneumatically-actuated tendon-driven 24-DoF hand, which learned hand manipulation
involving clockwise rotation of the object.

Rajeswaran et al. [125] then demonstrated that model-free DRL could scale up to
complex manipulation tasks. It does not require a model of the dynamics and can opti-
mize the policy directly. They used a combination of RL and imitation learning Demo
Augmented Policy Gradient (DAPG), achieved in object relocation, in-hand manipulation,
door opening, and tool use tasks.

However, in the real world, the interaction time with the environment is limited,
the model-free methods perform poorly in such cases. Haarnoja et al. [126] studied how
maximum entropy policies trained using soft Q-learning. Policies learned using soft Q-
learning can be composed to create new policies, the optimality of which can be enclosed
knowing the divergence between the composing policies. By composing existing skills
can efficiently improve the training process. This method is sample efficient than prior
model-free DRL methods and can be performed for simulated and real-world tasks.

Zhu et al. [127] surveyed multi-fingered manipulation and used model-free DRL
algorithms with low-cost hardware, succeeded in learning complex contact-rich behaviors.

Mach. Learn. Knowl. Extr. 2021, 3 567

Considering interacting with fragile objects, Huang et al. [128] realized gentle object
manipulation, minimizing impact forces, with dynamics-based surprise and penalty-based
surprise.

Grasping

Levine et al. [129] trained using guided policy search (GPS), which can perform policy
search by supervised learning, where supervision is granted by a simple trajectory-centric
RL method. It was evaluated in various tasks, like learning to insert, screw, fit, and place
the objects. DRL has also been applied to learn grasping objects [130,131], Popov et al. [132]
introduced two extensions to the Deep Deterministic Policy Gradient (DDPG) algorithm to
improve data efficiency with linear speedup for 16 parallel workers. The method succeeded
in grasping objects and precisely stacking them on another in simulation. Kalashnikov et al.
[133] introduced QT-Opt, a scalable self-supervised RL framework, enables closed-loop
vision-based control. They achieved real-world grasping tasks with a high success rate
based only on RGB vision perceptron.

Opening a Door

Gu et al. [134] presented Asynchronous NAF with practical extensions. The experi-
ment shows success in several 3D manipulation skills in simulation and a door opening
skill on real robots.

Cloth Manipulation

Regarding cloth manipulation, the state of the cloth can vary, unlike rigid objects.
Tsurumine et al. [135] proposed Deep P-Network (DPN) and Dueling Deep P-Network
(DDPN) to combine smooth policy update with feature extraction, evaluated in flipping
a handkerchief and folding a t-shirt by a dual-arm robot. Jangir et al. [136] investigated
the effectiveness of different textile state representations and the importance of speed
and trajectory, solved dynamic cloth manipulation tasks by restricting the manipulator
workspace.

Magnetic Manipulation

Magnets can be utilized in magnetic resonance imaging (MRI) applications, lifting
machinery, levitation devices, jewelry, bearings, audio equipment, and hard disc drives. de
Bruin et al. [137] deployed two experience replay databases in the method, one filled with
experiences in the First In First Out (FIFO) manner. The experiences are overwritten with
new experiences in the other. This method limits the detrimental effects of exploration,
tested on a simulated horizontal magnetic manipulation task.

2.2.2. Locomotion

Over the recent years, many RL methods have been proposed to control locomotion,
locomotion examples are shown in Figure 6. On humanoid platforms such as Nao, Pepper,
Asimo, and Robotis-op2 include the cameras [138], many algorithms were evaluated. The
main goal for robot locomotion is to imitate human motions dynamically. Several main
techniques such as DeepDPG [21], A3C [24], TRPO [18] etc., that were previously covered,
were tested in robotics locomotion and turned out effective. They are the key to the vast
development of DRL algorithms in locomotion [139,140].

Mach. Learn. Knowl. Extr. 2021, 3 568

Figure 6. Locomotion examples.

In Robotics, many tasks are complex and poorly specified. Christiano et al. [141]
had humans compare possible trajectories, used the data to learn a reward function, and
optimized the learned reward function with RL, and scaled up this method to DRL. In
particular, the robotics tasks including walker, hopper, swimmer, etc., were implemented
in MujoCo and OpenAI Gym [142].

DeepLoco [143] adopted a two-level hierarchical control framework. First, low-level
controllers (LLC) learn to operate at a timescale and achieve robust walking gaits. Second,
high-level controllers (HLC) learn the policy at the timescale of steps by invoking desired
step targets for the low-level controller. Both levels of the hierarchy use an identical style
of the actor-critic algorithm.

To develop sound strategies for integrating or merging policies for multiple skills,
Berseth et al. [144] proposed Progressive Learning and Integration via Distillation (PLAiD).
Distillation refers to the combination of the policies of one or more experts, thus creating
one controller to perform the tasks of a set of experts. The main blocks are policy transfer
and multi-task policy distillation, evaluated on five different terrains with a 2D PD-biped.
Compared with MultiTasker, PLAiD scales better.

Generally, model-free methods can learn a wide range of robotic skills but require
a large number of samples to achieve good performance. Model-based algorithms can
provide more efficient learning but are challenging to scale up to high-capacity models.
Md-Mf [145] uses deep neural network dynamics models to initialize a model-free learner,
then uses the policy trained by a model-based controller as the initial policy for a TRPO
(model-free) algorithm. Testing locomotion skills on a simulated quadrupedal robot, this
method surpasses the individual model-free and model-based approach.

Duan et al. [146] studied Truncated Natural Policy Gradient (TNPG) and compared it
with TRPO and DDPG. They also provided a benchmark of continuous control problems
for RL.

Following are some examples of different locomotion skills.

Walking/Running

Xie et al. [147] demonstrated DRL on a bipedal robot Cassie, developed by Agility
Robotics. The framework used PPO and PD control on a simulated model of Cassie in the
MuJoCo [115] simulation and is robust to disturbances.

Designing agile locomotion for robots usually requires human expertise and manual
tuning. Tan et al. [148] presented a system to learn quadruped locomotion from scratch
or allow users to guide the learning process. In addition, it narrows the gap between
simulation and the real world, successfully developed two gaits, trotting and galloping.

Haarnoja et al. [140] proposed an extension of the soft actor-critic (SAC) algorithm
with dynamic temperature, based on maximum entropy RL. It was applied to a real-world

Mach. Learn. Knowl. Extr. 2021, 3 569

Minitaur robot without any model or simulation. This sample-efficient and stable algorithm
outperforms standard SAC, DDPG, TD3, and PPO.

Özalp et al. [138] evaluated Double Dueling Q Networks (D3QN) [149] and DQN [7]
for locomotion using a Robotis-op2 humanoid robot.

Hopping

Peng et al. [150] introduced a mixture of actor-critic experts (MACE), constructed of
multiple actor-critic pairs where each specializes in particular aspects of the motion. It can
work with high-dimensional state descriptions for terrain-adaptive dynamic locomotion
skills. With leaps or steps as output actions, the method was tested on seven classes of
terrain and gives excellent results.

Swimming

Heess et al. [151] surveyed a hierarchical motor control architecture that encourages
the low-level controller to focus on reactive motor control. The high-level controller directs
behavior towards the task goal by transmitting a modulatory signal. Evaluated on a
swimming snake, a quadruped, and a humanoid, this method failed in end-to-end learning
but turned out effective in transferring tasks with sparse reward.

To learn stochastic energy-based policies for continuous states and actions, not only
in tabular domains, Haarnoja et al. [152] introduced Soft Q-learning, which expresses
the optimal policy via a Boltzmann distribution. The simulated swimming snake and
quadrupedal robot results show that the method can effectively capture complex multi-
modal behaviors and learn general-purpose stochastic policies.

To narrow the gap between simulation and the real world and generalize from training
to testing, Pinto et al. [153] introduced robust adversarial reinforcement learning (RARL).
The adversary learns to apply destabilizing forces on specific points on the system, en-
couraging the protagonist to retain a strong control policy. This method improves training
stability, and is robust to training/testing conditions, and outperforms the baselines even
without an adversary.

Verma et al. [154] studied that DRL can learn efficient collective swimming in unsteady
and vortical flow fields.

Tensegrity

Tensegrity robots are composed of rigid rods connected by elastic cables, which display
high tolerance to physical damage. With their unique properties, tensegrity robots are
appealing for planetary exploration rovers. The primary locomotion of tensegrity robots is
rolling.

Zhang et al. [155] applied an extension of mirror descent guided policy search
(MDGPS) to periodic locomotion movements on a SUPERball tensegrity robot. The learned
locomotion policies performed well, are more effective, and can generalize better than
open-loop policies. Luo et al. [156] showed that MDGPS could efficiently learn even with
limited sensory inputs.

2.2.3. Robotics Simulators

Robotics simulators are used to simulate and model the structures or actions of a
physical robot without depending on the real-world machine. The use of simulators to
develop robots allows for programs to be written and debugged offline, and the final
versions can then be transferred to the real robot, thus saving cost and time. Table 4
presents the popular robotics simulators nowadays.

Mach. Learn. Knowl. Extr. 2021, 3 570

Table 4. Robotics simulators, adapted from Wikipedia (2021) [157].

Software Developers Main Language Physics Engine Robot Family

Gazabo Open Source
Robotics

Foundation
(OSRF)

C++ ODE/Bullet/Sim-
body/DART

UGV, UAV,
AUV,

humanoid, etc.

RoboDK RoboDK Python Gravity plugin Robot arms
SimSpark [158] C++, Ruby ODE UGV,

humanoid, etc.
Webots Cyberbotics

Ltd.
C++ Fork of ODE UGV, UAV,

AUV,
humanoid, etc.

OpenRAVE OpenRAVE
Community

C++, Python ODE/Bullet UGV,
humanoid, etc.

2.3. Natural Language Processing

Natural language processing (NLP) focuses on the communication between computers
and humans—how to program computers to understand, analyze, and process natural
language, including generation, language grounding, information extraction, dialogue, etc.
Due to the unique features of NLP, DRL has been playing an important role. For more
surveys, see [5,159–163].

2.3.1. Neural Machine Translation

Neural Machine Translation (NMT) refers to using machine learning software to
translate content into another language. RL has been shown as an effective technique for
NMT systems recently. Examples of machine translation providers are Google Translate,
Yandex Translate, Watson Language Translator, etc. Wu et al. [164] provided a literature
review on RL for NMT, in which they compared several vital factors, including baseline
reward and reward shaping, and studied how to train better NMT systems. They also
proposed training with source-side and (or) target-side monolingual data and succeeded
in the Chinese-English translation task.

He et al. [165] proposed dual-NMT for English-French dual translation. The English-
to-French translation (primal) agent and French-to-English translation (dual) agent can
form a closed loop and generate feedback signals to train the models by teaching each
other through the RL process. This system works well on bilingual translation, especially
by learning from monolingual data.

In the traditional NMT setting, the translator has to wait until the user completes the
sentence, then translates. Satija and Pineau [166] presented an approach to interpret in
real-time.

The open-source toolkit OpenNMT was described by Klein et al. [167], that prioritizes
efficiency and modularity; Zhang et al. [168] introduced THUMT that supports minimum
risk training and semi-supervised training.

For generative adversarial net (GAN) in NMT, BR-CSGAN [169] leverages the BLEU
reinforced GAN to improve the NMT, and Wu et al. [170] introduced Adversarial-NMT
with a CNN based adversary.

2.3.2. Dialogue

Dialogue systems generally have two categories—task-oriented dialog agents and
chatbots. Task-oriented dialog agents usually have short Q-and-A conversations to help
complete specific tasks or provide information, while chatbots are usually designed human-
likely and used for entertainment [171].

Cuayáhuitl has done significant research on dialogue systems with RL [172–175]. In
2017, he presented SimpleDS [176], as shown in Figure 7. It’s a publicly available dialogue

Mach. Learn. Knowl. Extr. 2021, 3 571

system trained with DQN, which extends the traditional methods [175] and avoids manual
feature engineering by directly selecting actions from raw text and user responses.

Figure 7. SimpleDS architecture [176].

Cuayáhuitl et al. [177] proposed a two-stage method—the first stage reduces the times
of weight updates, and the second uses limited mini-batches sampled from experience
replay for accelerating the induction of single or multi-domain dialogue policies. The
training turns out five times faster than a baseline. Furthermore, Cuayáhuitl et al. [178]
described an ensemble-based approach applied to value-based DRL chatbots. Actions
are derived from sentence clustering, the training datasets are derived from dialogue
clustering, and the reward function is derived from human–human dialogues without
manual annotations. The ensemble of DRL agents turns out more promising than a single
DRL agent or SEQ2SEQ model.

Most DRL systems perform poorly in exploring online in the environment or learn
effectively from off-policy data. Jaques et al. [179] leveraged models pre-trained on data
with KL-control to penalize divergence. They used uncertainty estimates with dropout to
lower bound the target Q-values. Tested in the real world with humans, the Way Off-policy
algorithm can effectively learn from different reward functions from human interaction
data and outperforms prior methods in off-policy batch RL.

Text Generation

Text generation is the basis of dialogue systems. Ranzato et al. [180] proposed mixed
incremental cross-entropy reinforce (MIXER) with a loss function combining REINFORCE
[181] and cross-entropy. For sequence prediction, Bahdanau et al. [182] proposed an actor-
critic algorithm, inspired by Ranzato et al. [180]. Yu et al. [183] introduced sequence
generative adversarial nets with policy gradient (SeqGAN). Li et al. [184] from Huawei
Technologies proposed a new DL framework for paraphrase generation, consisting of a
generator and an evaluator. The generator is modeled as the SEQ2SEQ learning model for
paraphrase generation. As a deep matching model, the evaluator is trained via supervised
learning or inverse RL in different settings for paraphrase identification.

Sentence Simplification

Sentence simplification is also crucial in dialogue systems, which aims to make sen-
tences easier to read and understand for the agents. Zhang and Lapata [185] addressed
this simplification issue with an encoder-decoder model with a DRL framework, known as
Deep Reinforcement Sentence Simplification (DRESS). Their work succeeded in simplicity,
grammaticality, and semantic fidelity to the input.

Mach. Learn. Knowl. Extr. 2021, 3 572

Coherent Dialogues

Some neural models of dialogue generation tend to be short-sighted, and modeling
the future direction of dialogue is crucial to generating coherent and exciting conversations.
Li et al. [186] applied DRL with policy search and curriculum learning on the SEQ2SEQ
model [187], which can generate utterances that optimize future reward.

Goal-Oriented Dialogues

Dhingra et al. [188] proposed KB-InfoBot, an end-to-end dialogue agent to help people
search Knowledge Bases (KBs). They offered a differentiable probabilistic framework to
compute the posterior distribution (a Soft-KB lookup) to avoid symbolic queries used in
previous works.

To evaluate persuasion strategies and negotiation dialogue, Keizer et al. [189] pre-
sented a comparative evaluation of various negotiation strategies on the game “Settlers of
Catan” online. It outperforms the original rule-based strategy and human players.

Ilievski et al. [190] presented goal-oriented chatbot dialog management bootstrapping
with transfer learning, which helps users achieve a predefined goal. Due to the domain
specificity, the available data is limited to obtain. The transfer learning method is to boost
the performances and mitigate the limitation. They describe that transfer learning improves
performance significantly with a low number of goals or whole target domain data.

For social robot navigation, Ciou et al. [191] presented composite reinforcement
learning (CRL) framework, with which agents learn social navigation with sensor input
and reward update based on human feedback.

2.3.3. Visual Dialogue

Das et al. [192] introduced a goal-driven training for visual question answering (VQA)
and dialogue agents. The experiment contains two cooperative robots, with one giving
descriptions and the other giving answers. The results show that it outperforms supervised
learning agents.

Thanks to the encoder-decoder architectures, End-to-end dialogue systems have
developed rapidly. However, there are some drawbacks in encoder-decoder models when
engaging in task-oriented dialogue. Strub et al. [193] introduced the DRL method to
optimize vision-based task-oriented dialogues with REINFORCE algorithm. It resulted
in significant improvement over a supervised baseline model, which was capable of
generating coherent dialogue.

Visual Captioning

Evaluation metrics are created to evaluate image captioning. Standard syntactic
evaluation metrics, such as BLEU, METEOR, and ROUGE, are usually not well correlated.
SPICE and CIDEr are better correlated but are hard to optimize. Liu et al. [194] used a
policy gradient method to optimize a linear combination of SPICE and CIDEr (SPIDEr).

In reference to visual problems, image captioning is challenging due to the complexity
of understanding the image content and describing it in natural language. Xu et al. [195]
introduced attention-based model for image caption generation. Adaptive encoder-decoder
attention model [196] with an LSTM extension as a visual sentinel decides whether to attend
to the image and where to generate information. Ren et al. [197] introduced a decision-
making framework for image captioning, which has a policy network and a value network.
Both networks are learned using an actor-critic approach with a visual-semantic embedding
reward.

Wang et al. [198] proposed an Adversarial Reward Learning (AREL) framework for
visual storytelling. The model learns a reward function from human demonstrations, then
optimizes policy search with the learned reward function.

Video captioning is to generate a description of the actions in the video automatically.
Wang et al. [199] proposed a hierarchical RL framework for video captioning. A high-level
module learns to create sub-goals, and a low-level module recognizes the actions to fulfill

Mach. Learn. Knowl. Extr. 2021, 3 573

the sub-goal. The HRL model turns out a good performance on MSR-VTT and Charades
Captions datasets. For video captioning, Pasunuru and Bansal [200] presented a mixed-loss
policy gradient approach that allows for metric-based optimization, then improved with
an entailment-corrected CIDEnt reward, successfully achieved on MSR-VTT.

Visual Relationship and Attribute Detection

Apart from generating labels and captioning, understanding relationships among
objects and their attributes in the scene is challenging for computers. Liang et al. [201]
proposed a deep Variation-structured Reinforcement Learning (VRL) framework for visual
relationship and attribute detection. A directed action graph is built to represent semantic
correlations between object categories, predicates, and attributes. Then based on the state
information, a variation-structured traversal over the chart is used to generate an action
set for each step. Predictions are made using DRL and the extracted phrases in the state
vector. This method can significantly achieve better detection results on datasets involving
relationships and attributes.

3. Conclusions
3.1. Summary

In this paper, we have presented the fundamental concepts of Markov Decision Pro-
cesses(MDP), Partially Observable Markov Decision Processes (POMDPs), Reinforcement
Learning (RL), and Deep Reinforcement Learning (DRL). Generally, we have discussed
the representative DRL techniques and algorithms. The core elements of an RL algorithm
are value function, policy, reward, model and planning, exploration, and knowledge. In
DRL applications that were discussed, most of the algorithms applied are extensions of the
representative algorithms, for example, DQN, DPG, A3C, etc., with some optimizations,
respectively. We then discussed the applications of DRL in some popular domains. As DRL
provides optimal policies and strategies, it has been widely utilized in gaming, including
almost all kinds of games. As the leading entertainment among people, a better gaming
experience is always desired. Another popular application of DRL is in Robotics. We
discussed manipulation, locomotion, and other aspects of robotics where DRL can be ap-
plied. Robotics simulators are also discussed, where DRL is used to select the appropriate
simulator when needed. Finally, the application of DRL in natural language processing
(NLP) is presented.

3.2. Final Thoughts

As we witnessed, DRL has been developing fast and on enormous scales. Some groups
pushed forward the development of DRL, like OpenAI, DeepMind, AI research office in
Alberta, and research center led by Rich Sutton, and more. From the research, we have
acknowledged the algorithms; variations and the development of all the optimizations.
Based on the review, we are more familiar with the usability of each method. For example,
model-free methods work better in scaled-up tasks. The value function is key to RL, in
DQN and its many extensions; policy gradient approaches have also been utilized in lots
of applications, such as robotics, dialogue systems, machine translation, etc. New learning
techniques have also been applied, such as transfer, curriculum learning, adversarial
networks, etc. When we select a method or combinations of methods to apply in our
models, the characteristics we need to consider are stability, convergence, generalizing
power, accuracy, efficiency, scalability, robustness, safety, cost, speed, simplicity, etc. For
example, in healthcare, we focus more on stability and security rather than simplicity or
cost. This topic, along with applications in transportation, communications and networking,
and industries, will be discussed in a Part 2 follow-up paper.

Author Contributions: Conceptualization, X.X. and S.F.; methodology, X.X.; formal analysis, X.X.; in-
vestigation, X.X. and S.F.; resources, X.X. and S.F.; writing—original draft preparation, X.X.; writing—
review and editing, X.X. and S.F.; visualization, X.X.; supervision, X.X. and S.F.; funding acquisition,
S.F. Both authors have read and agreed to the published version of the manuscript.

Mach. Learn. Knowl. Extr. 2021, 3 574

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to express their appreciation to friends and colleagues
who had assisted in the preparation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sutton, R.S.; Barto, A.G. Reinforcement Learning—An Introduciton, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2018.
2. OpenAI. Part 2: Kinds of RL Algorithms—A Taxonomy of RL Algorithms. 2018. Available online: https://spinningup.openai.

com/en/latest/spinningup/rl_intro2.html (accessed on 1 July 2021).
3. Watkins, C.J.; Dayan, P. Q Learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
4. Rummery, G.A.; Niranjan, M. Q-Learning Using Connectionist Systems; University of Cambridge, Department of Engineering:

Cambridge, UK, 1994
5. Li, Y. Deep Reinforcement Learning: An Overview. arXiv 2018, arXiv:1701.07274.
6. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep

Reinforcement Learning. arXiv 2013, arXiv:1312.5602.
7. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J. Human-level control through deep reinforcement learning. Nature

2015, 518, 529–533. [CrossRef] [PubMed]
8. van Hasselt, H.; Guez, A.; Silver, D. Deep Reinforcement Learning with Double Q-Learning. arXiv 2015, arXiv:1509.06461
9. van Hasselt, H. Double Q-Learning. Adv. Neural Inf. Process. Syst. 2010, 23, 2613–2621.
10. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized Experience Replay. arXiv 2016, arXiv:1511.05952.
11. Wang, Z.; Schaul, T.; Hessel, M.; can Hasselt, H.; Lanctot, M.; de Freitas, N. Dueling Network Architectures for Deep Reinforcement

Learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016
12. Bellemare, M.G.; Dabney, W.; Munos, R. A Distributional Perspective on Reinforcement Learning. In Proceedings of the 34th

International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.
13. Fortunato, M.; Azar, M.G.; Piot, B. Noisy Networks for Exploration. arXiv 2018, arXiv:1706.10295.
14. Hessel, M.; Modayil, J.; van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D.

Rainbow: Combining Improvements in Deep Reinforcement Learning. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, New Orleans, LA, USA, 2–7 February 2018

15. Sutton, R.S. Learning to Predict by the Methods of Temporal Differences. Mach. Learn. 1988, 3, 9–44. [CrossRef]
16. Nair, A.; Srinivasan, P.; Blackwell, S.; Alcicek, C.; Fearon, R.; Maria, A.D.; Panneershelvam, V.; Suleyman, M.; Beattie, C.; Petersen,

S.; et al. Massively Parallel Methods for Deep Reinforcement Learning. arXiv 2015, arXiv:1507.04296.
17. Kulkarni, T.D.; Narasimhan, K.R.; Saeedi, A.; Tenenbaum, J.B. Hierarchical Deep Reinforcement Learning: Integrating Temporal

Abstraction and Intrinsic Motivation. arXiv 2016, arXiv:1604.06057.
18. Schulman, J.; Levine, S.; Moritz, P.; Jordan, M.; Abbeel, P. Trust Region Policy Optimization. In Proceedings of the 32nd

International Conference on Machine Learning, Lille, France, 6–11 July 2015
19. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,

arXiv:1707.06347.
20. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic Policy Gradient Algorithms. In Proceedings

of the 31st International Conference on Machine Learning, Bejing, China, 22–24 June 2014
21. Lillicrap, T.P.; Hunt, J.J.; Alexander Pritzel, N.H.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control with Deep

Reinforcement Learning. arXiv 2016, arXiv:1509.02971.
22. O’Donoghue, B.; Munos, R.; Kavukcuoglu, K.; Mnih, V. Combining policy gradient and Q-learning. arXiv 2017, arXiv:1611.01626.
23. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with

a Stochastic Actor. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018
24. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Harley, T.; Lillicrap, T.P.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for

Deep Reinforcement Learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA,
20–22 June 2016

25. Osband, I.; Blundell, C.; Pritzel, A.; Van Roy, B. Deep Exploration via Bootstrapped DQN. arXiv 2016, arXiv:1602.04621.
26. Fujimoto, S.; van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. arXiv 2018,

arXiv:1802.09477.
27. Tesauro, G. TD-Gammon, a Self-Teaching Backgammon Program, Achieves Master-Level Play. Neural Comput. 1994, 6, 215–219.

[CrossRef]
28. Buro, M. How Machines have Learned to Play Othello. IEEE Intell. Syst. 1999, 14, 12–14
29. Schaeffer, J.; Burch, N.; Bjornsson, Y.; Kishimoto, A.; Muller, M.; Lake, R.; Lu, P.; Sutphen, S. Checkers Is Solved. Science 2007,

317, 1518–1522. [CrossRef]

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
http://doi.org/10.1007/BF00992698
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1007/BF00115009
http://dx.doi.org/10.1162/neco.1994.6.2.215
http://dx.doi.org/10.1126/science.1144079

Mach. Learn. Knowl. Extr. 2021, 3 575

30. Ginsberg, M.L. GIB: Imperfect Information in a Computationally Challenging Game. J. Artif. Intell. Res. 2001, 14, 303–358.
[CrossRef]

31. Huang, S.C.; Arneson, B.; Hayward, R.B.; Müller, M.; Pawlewicz, J. MoHex 2.0: A Pattern-Based MCTS Hex Player. In Computers
and Games; van den Herik, H.J., Iida, H., Plaat, A., Eds.; Series Title: Lecture Notes in Computer Science; Springer International
Publishing: Cham, Switzerland, 2014; Volume 8427, pp. 60–71. [CrossRef]

32. Gao, C.; Hayward, R.; Muller, M. Move Prediction Using Deep Convolutional Neural Networks in Hex. IEEE Trans. Games 2018,
10, 336–343. [CrossRef]

33. Mannen, H.; Wiering, M. Learning To Play Chess Using Reinforcement Learning with Database Games. Master’s Thesis,
Cognitive Artificial Intelligence Utrecht University, Utrecht, The Netherlands, October 2003

34. Block, M.; Bader, M.; Tapia, E.; Ramírez, M.; Gunnarsson, K.; Cuevas, E.; Zaldivar, D.; Rojas, R. Using Reinforcement Learning in
Chess Engines. Res. Comput. Sci. 2008, 35, 31–40.

35. Baxter, J.; Tridgell, A.; Weaver, L. KnightCap: A chess program that learns by combining TD(lambda) with game-tree search.
arXiv 1999, arXiv:cs/9901002

36. Lai, M. Giraffe: Using Deep Reinforcement Learning to Play Chess. arXiv 2008, arXiv:1509.01549.
37. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;

Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature
2016, 529, 484–489. [CrossRef] [PubMed]

38. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.
Mastering the game of Go without human knowledge. Nature 2017, 550, 354–359. [CrossRef]

39. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.
A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 2018, 362, 1140–1144.
[CrossRef] [PubMed]

40. Kimura, T.; Sakamoto, K.; Sogabe, T. Development of AlphaZero-based Reinforcment Learning Algorithm for Solving Partially
Observable Markov Decision Process (POMDP) Problem. Bull. Netw. Comput. Syst. Softw. 2020, 9, 69–73.

41. Davidson, A. Using Artifical Neural Networks to Model Opponents in Texas Hold’em. Department of Computing Science,
University of Alberta, Edmonton, Alberta, Canada, November 1999. Available online: http://www.spaz.ca/aaron/poker/
nnpoker.pdf (accessed on 1 July 2021)

42. Davidson, A.; Billings, D.; Schaeffer, J.; Szafron, D. Improved Opponent Modeling in Poker. Department of Computing Science,
University of Alberta, Edmonton, Alberta, Canada, January 2002. Available online: https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.480.8603&rep=rep1&type=pdf (accessed on 1 July 2021)

43. Felixa, D.; Reis, L.P. An Experimental Approach to Online Opponent Modeling in Texas Hold’em Poker. In Advances in Artificial
Intelligence—SBIA 2008; Zaverucha, G., da Costa, A.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 83–92.

44. Southey, F.; Bowling, M.; Larson, B.; Piccione, C.; Burch, N.; Billings, D.; Rayner, D.C. Bayes’ Bluff: Opponent Modelling in Poker.
arXiv 2012, arXiv:1207.1411

45. Zinkevich, M.; Johanson, M.; Bowling, M.; Piccione, C. Regret Minimization in Games with Incomplete Information. In Advances
in Neural Information Processing Systems 20; Platt, J.C., Koller, D., Singer, Y., Roweis, S.T., Eds.; Curran Associates, Inc.: Red Hook,
NY, USA, 2008; pp. 1729–1736.

46. Bowling, M.; Burch, N.; Johanson, M.; Tammelin, O. Heads-up limit hold’em poker is solved. Science 2015, 347, 145–149.
[CrossRef] [PubMed]

47. Brown, N.; Lerer, A.; Gross, S.; Sandholm, T. Deep Counterfactual Regret Minimization. arXiv 2018, arXiv:1811.00164.
48. Moravčík, M.; Schmid, M.; Burch, N.; Lisý, V.; Morrill, D.; Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; Bowling, M. DeepStack:

Expert-level artificial intelligence in heads-up no-limit poker. Science 2017, 356, 508–513. [CrossRef] [PubMed]
49. Brown, N.; Sandholm, T. Superhuman AI for multiplayer poker. Science 2019, 365, 885–890. [CrossRef]
50. Ishii, S.; Fujita, H.; Mitsutake, M.; Yamazaki, T.; Matsuda, J.; Matsuno, Y. A Reinforcement Learning Scheme for a Partially-

Observable Multi-Agent Game. Mach. Learn. 2005, 59, 31–54. [CrossRef]
51. Fujita, H.; Ishii, S. Model-based Reinforcement Learning for Partially Observable Games with Sampling-based State Estimation.

Neural Comput. 2007, 19, 3051–3087. doi:10.1162/neco.2007.19.11.3051. [CrossRef]
52. Sturtevant, N.R.; White, A.M. Feature Construction for Reinforcement Learning in Hearts. In International Conference on Computers

and Games; Springer: Berlin/Heidelberg, Germany, 2006; pp. 122–134.
53. Wagenaar, M.; Wiering, D.M. Learning to Play the Game of Hearts Using Reinforcement Learning and a Multi-Layer Perceptron.

Bachelor’s Thesis, University of Groningen, Groningen, The Netherlands, 2017. Available online: http://fse.studenttheses.ub.rug.
nl/id/eprint/15440 (accessed on 11 July 2021).

54. Backhus, J.C.; Nonaka, H.; Yoshikawa, T.; Sugimoto, M. Application of reinforcement learning to the card game Wizard.
In Proceedings of the 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE), Tokyo, Japan, 1–4 October 2013; pp.
329–333.

55. Heinrich, J.; Lanctot, M. Fictitious Self-Play in Extensive-Form Games. In Proceedings of the 32nd International Conference on
Machine Learning, Lille, France, 6–11 July 2015; pp. 805–813

56. Heinrich, J.; Silver, D. Deep Reinforcement Learning from Self-Play in Imperfect-Information Games. arXiv 2016, arXiv:1603.01121

http://dx.doi.org/10.1613/jair.820
http://dx.doi.org/10.1007/978-3-319-09165-5_6
http://dx.doi.org/10.1109/TG.2017.2785042
http://dx.doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1126/science.aar6404
http://www.ncbi.nlm.nih.gov/pubmed/30523106
http://www.spaz.ca/aaron/poker/nnpoker.pdf
http://www.spaz.ca/aaron/poker/nnpoker.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.480.8603&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.480.8603&rep=rep1&type=pdf
http://dx.doi.org/10.1126/science.1259433
http://www.ncbi.nlm.nih.gov/pubmed/25574016
http://dx.doi.org/10.1126/science.aam6960
http://www.ncbi.nlm.nih.gov/pubmed/28254783
http://xxx.lanl.gov/abs/https://science.sciencemag.org/content/365/6456/885.full.pdf
http://dx.doi.org/10.1126/science.aay2400
http://dx.doi.org/10.1007/s10994-005-0461-8
https://doi.org/10.1162/neco.2007.19.11.3051.
http://dx.doi.org/10.1162/neco.2007.19.11.3051
http://fse.studenttheses.ub.rug.nl/id/eprint/15440
http://fse.studenttheses.ub.rug.nl/id/eprint/15440

Mach. Learn. Knowl. Extr. 2021, 3 576

57. Lanctot, M.; Zambaldi, V.; Gruslys, A.; Lazaridou, A.; Tuyls, K.; Perolat, J.; Silver, D.; Graepel, T. A Unified Game-Theoretic
Approach to Multiagent Reinforcement Learning. In Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017;
pp. 4190–4203.

58. Zha, D.; Lai, K.H.; Cao, Y.; Huang, S.; Wei, R.; Guo, J.; Hu, X. RLCard: A Toolkit for Reinforcement Learning in Card Games.
arXiv 2019, arXiv:1910.04376

59. Shao, K.; Tang, Z.; Zhu, Y.; Li, N.; Zhao, D. A Survey of Deep Reinforcement Learning in Video Games. arXiv 2019,
arXiv:1912.10944

60. Bellemare, M.G.; Naddaf, Y.; Veness, J.; Bowling, M. The Arcade Learning Environment: An Evaluation Platform for General
Agents. J. Artif. Intell. Res. 2013, 47, 253–279. [CrossRef]

61. Hausknecht, M.; Stone, P. Deep Recurrent Q-Learning for Partially Observable MDPs. arXiv 2017, arXiv:1507.06527.
62. Zhu, P.; Li, X.; Poupart, P.; Miao, G. On Improving Deep Reinforcement Learning for POMDPs. arXiv 2018, arXiv:1704.07978.
63. Aytar, Y.; Pfaff, T.; Budden, D.; Paine, T.; Wang, Z.; de Freitas, N. Playing hard exploration games by watching YouTube. In

Advances in Neural Information Processing Systems 31; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2018; pp. 2930–2941.

64. Kempka, M.; Wydmuch, M.; Runc, G.; Toczek, J.; Jaskowski, W. ViZDoom: A Doom-based AI Research Platform for Visual
Reinforcement Learning. In Proceedings of the 2016 IEEE Conference on Computational Intelligence and Games (CIG), Santorini,
Greece, 20–23 September 2016.

65. Lample, G.; Chaplot, D.S. Playing FPS Games with Deep Reinforcement Learning. arXiv 2016, arXiv:1609.05521.
66. Papoudakis, G.; Chatzidimitriou, K.C.; Mitkas, P.A. Deep Reinforcement Learning for Doom using Unsupervised Auxiliary Tasks.

arXiv 2018, arXiv:1807.01960.
67. Akimov, D.; Makarov, I. Deep Reinforcement Learning with VizDoom First-Person Shooter. CEUR Workshop Proc. 2019, 2479, 3–17.
68. Wu, Y.; Tian, Y. Training Agent for First-Person Shooter Game with Actor-Critic Curriculum Learning. In Proceedings of the

International Conference on Learning Representations, Toulon, France, 24–26 April 2017.
69. Bengio, Y.; Louradour, J.; Collobert, R.; Weston, J. Curriculum Learning. In Proceedings of the 26th Annual International

Conference on Machine Learning, ICML ’09, Montreal, QC, Canada, 14–18 June 2009; Association for Computing Machinery:
New York, NY, USA, 2009; pp. 41–48. [CrossRef]

70. Parisotto, E.; Salakhutdinov, R. Neural Map: Structured Memory for Deep Reinforcement Learning. arXiv 2017, arXiv:1702.08360.
71. Shao, K.; Zhao, D.; Li, N.; Zhu, Y. Learning Battles in ViZDoom via Deep Reinforcement Learning. In Proceedings of the 2018

IEEE Conference on Computational Intelligence and Games (CIG), Maastricht, The Netherlands, 14–17 August 2018; pp. 1–4
72. Koutník, J.; Schmidhuber, J.; Gomez, F. Online Evolution of Deep Convolutional Network for Vision-Based Reinforcement

Learning. In Proceedings of the International Conference on Simulation of Adaptive Behavior, Aberystwyth, UK, 23–26 August
2014; pp. 260–269. [CrossRef]

73. Koutník, J.; Schmidhuber, J.; Gomez, F. Evolving deep unsupervised convolutional networks for vision-based reinforcement
learning. In Proceedings of the 2014 Conference on Genetic and Evolutionary Computation—GECCO ’14, Vancouver, BC, Canada,
12–16 July 2014; ACM Press: Vancouver, BC, Canada, 2014; pp. 541–548. [CrossRef]

74. Wang, S.; Jia, D.; Weng, X. Deep Reinforcement Learning for Autonomous Driving. arXiv 2019, arXiv:1811.11329.
75. Sallab, A.E.; Abdou, M.; Perot, E.; Yogamani, S. End-to-End Deep Reinforcement Learning for Lane Keeping Assist. arXiv 2016,

arXiv:1612.04340.
76. Liu, K.; Wan, Q.; Li, Y. A Deep Reinforcement Learning Algorithm with Expert Demonstrations and Supervised Loss and its

application in Autonomous Driving. In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27
July 2018; pp. 2944–2949.

77. Verma, A.; Murali, V.; Singh, R.; Kohli, P.; Chaudhuri, S. Programmatically Interpretable Reinforcement Learning. arXiv 2019,
arXiv:1804.02477.

78. Sharma, S.; Lakshminarayanan, A.S.; Ravindran, B. Fine grained action repetition for deep reinforcement learning. arXiv 2017,
arXiv:1702.06054.

79. Gao, Y.; Xu, H.; Lin, J.; Yu, F.; Levine, S.; Darrell, T. Reinforcement Learning from Imperfect Demonstrations. arXiv 2018,
arXiv:1802.05313.

80. Mazumder, S.; Liu, B.; Wang, S.; Zhu, Y.; Liu, L.; Li, J. Action Permissibility in Deep Reinforcement Learning and Application to
Autonomous Driving. In KDD’18 Deep Learning Day; ACM: London, UK, 2018.

81. Li, D.; Zhao, D.; Zhang, Q.; Chen, Y. Reinforcement Learning and Deep Learning based Lateral Control for Autonomous Driving.
arXiv 2018, arXiv:1810.12778

82. Zhu, Y.; Zhao, D. Driving Control with Deep and Reinforcement Learning in The Open Racing Car Simulator. In Neural
Information Processing; Cheng, L., Leung, A.C.S., Ozawa, S., Eds.; Springer International Publishing: Cham, Switzerland, 2018;
pp. 326–334.

83. Johnson, M.; Hofmann, K.; Hutton, T.; Bignell, D. The Malmo Platform for Artificial Intelligence Experimentation. IJCAI. 2016.
pp. 4246–4247. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1045.1281&rep=rep1&type=pdf
(accessed on 1 July 2021).

http://dx.doi.org/10.1613/jair.3912
http://dx.doi.org/10.1145/1553374.1553380
http://dx.doi.org/10.1007/978-3-319-08864-8_25
http://dx.doi.org/10.1145/2576768.2598358
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1045.1281&rep=rep1&type=pdf

Mach. Learn. Knowl. Extr. 2021, 3 577

84. Guss, W.H.; Houghton, B.; Topin, N.; Wang, P.; Codel, C.; Veloso, M.; Salakhutdinov, R. MineRL: A Large-Scale Dataset of
Minecraft Demonstrations. arXiv 2019, arXiv:1907.13440.

85. Liu, L.T.; Dogan, U.; Hofmann, K. Decoding multitask DQN in the world of Minecraft. In Proceedings of the 13th European
Workshop on Reinforcement Learning (EWRL), Barcelona, Spain, 3–4 December 2016; p. 11

86. Oh, J.; Chockalingam, V.; Singh, S.P.; Lee, H. Control of Memory, Active Perception, and Action in Minecraft. arXiv 2016,
arXiv:1605.09128

87. Frazier, S. Improving Deep Reinforcement Learning in Minecraft with Action Advice. arXiv 2019, arXiv:1908.01007.
88. Xiong, Y.; Chen, H.; Zhao, M.; An, B. HogRider: Champion Agent of Microsoft Malmo Collaborative AI Challenge. In Proceedings

of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.
89. Tessler, C.; Givony, S.; Zahavy, T.; Mankowitz, D.J.; Mannor, S. A Deep Hierarchical Approach to Lifelong Learning in Minecraft.

arXiv 2016, arXiv:1604.07255
90. Jin, P.H.; Levine, S.; Keutzer, K. Regret Minimization for Partially Observable Deep Reinforcement Learning. arXiv 2017,

arXiv:1710.11424
91. Beattie, C.; Leibo, J.Z.; Teplyashin, D.; Ward, T.; Wainwright, M.; Küttler, H.; Lefrancq, A.; Green, S.; Valdés, V.; Sadik, A.; et al.

DeepMind Lab. arXiv 2016, arXiv:1612.03801.
92. Johnston, L. Surprise Pursuit Auxiliary Task for Deepmind Lab Maze. n.d. p. 7. Available online: http://cs231n.stanford.edu/

reports/2017/pdfs/610.pdf (accessed on 1 July 2021).
93. Mankowitz, D.J.; Zídek, A.; Barreto, A.; Horgan, D.; Hessel, M.; Quan, J.; Oh, J.; van Hasselt, H.; Silver, D.; Schaul, T. Unicorn:

Continual Learning with a Universal, Off-policy Agent. arXiv 2018, arXiv:1802.08294
94. Schmitt, S.; Hudson, J.J.; Zídek, A.; Osindero, S.; Doersch, C.; Czarnecki, W.M.; Leibo, J.Z.; Küttler, H.; Zisserman, A.; Simonyan,

K.; et al. Kickstarting Deep Reinforcement Learning. arXiv 2018, arXiv:1803.03835.
95. Jaderberg, M.; Czarnecki, W.M.; Dunning, I.; Marris, L.; Lever, G.; Castañeda, A.G.; Beattie, C.; Rabinowitz, N.C.; Morcos, A.S.;

Ruderman, A.; et al. Human-level performance in first-person multiplayer games with population-based deep reinforcement
learning. arXiv 2018, arXiv:1807.01281.

96. Leibo, J.Z.; de Masson d’Autume, C.; Zoran, D.; Amos, D.; Beattie, C.; Anderson, K.; Castañeda, A.G.; Sanchez, M.; Green, S.;
Gruslys, A.; et al. Psychlab: A Psychology Laboratory for Deep Reinforcement Learning Agents. arXiv 2018, arXiv:1801.08116.

97. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev, P.;
et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [CrossRef]

98. Open, A.I.; Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Dębiak, P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; et al. Dota
2 with Large Scale Deep Reinforcement Learning. arXiv 2019, arXiv:1912.06680.

99. Usunier, N.; Synnaeve, G.; Lin, Z.; Chintala, S. Episodic Exploration for Deep Deterministic Policies: An Application to StarCraft
Micromanagement Tasks. arXiv 2016, arXiv:1609.02993.

100. Peng, P.; Yuan, Q.; Wen, Y.; Yang, Y.; Tang, Z.; Long, H.; Wang, J. Multiagent Bidirectionally-Coordinated Nets for Learning to
Play StarCraft Combat Games. arXiv 2017, arXiv:1703.10069.

101. Foerster, J.N.; Nardelli, N.; Farquhar, G.; Torr, P.H.S.; Kohli, P.; Whiteson, S. Stabilising Experience Replay for Deep Multi-Agent
Reinforcement Learning. arXiv 2017, arXiv:1702.08887.

102. Shao, K.; Zhu, Y.; Zhao, D. StarCraft Micromanagement With Reinforcement Learning and Curriculum Transfer Learning. IEEE
Trans. Emerg. Top. Comput. Intell. 2019, 3, 73–84. [CrossRef]

103. Kong, X.; Xin, B.; Liu, F.; Wang, Y. Revisiting the Master-Slave Architecture in Multi-Agent Deep Reinforcement Learning. arXiv
2017, arXiv:1712.07305.

104. Rashid, T.; Samvelyan, M.; de Witt, C.S.; Farquhar, G.; Foerster, J.N.; Whiteson, S. QMIX: Monotonic Value Function Factorisation
for Deep Multi-Agent Reinforcement Learning. arXiv 2018, arXiv:1803.11485.

105. Tang, Z.; Zhao, D.; Zhu, Y.; Guo, P. Reinforcement Learning for Build-Order Production in StarCraft II. In Proceedings of the 2018
Eighth International Conference on Information Science and Technology (ICIST), Cordoba/Granada/Seville, Spain, 30 June–6
July 2018; pp. 153–158.

106. Vinyals, O.; Ewalds, T.; Bartunov, S.; Georgiev, P.; Vezhnevets, A.S.; Yeo, M.; Makhzani, A.; Küttler, H.; Agapiou, J.P.; Schrittwieser,
J.; et al. StarCraft II: A New Challenge for Reinforcement Learning. arXiv 2017, arXiv:1708.04782.

107. Zambaldi, V.F.; Raposo, D.; Santoro, A.; Bapst, V.; Li, Y.; Babuschkin, I.; Tuyls, K.; Reichert, D.P.; Lillicrap, T.P.; Lockhart, E.; et al.
Relational Deep Reinforcement Learning. arXiv 2018, arXiv:1806.01830.

108. Sun, P.; Sun, X.; Han, L.; Xiong, J.; Wang, Q.; Li, B.; Zheng, Y.; Liu, J.; Liu, Y.; Liu, H.; et al. TStarBots: Defeating the Cheating
Level Builtin AI in StarCraft II in the Full Game. arXiv 2018, arXiv:1809.07193.

109. Lee, D.; Tang, H.; Zhang, J.O.; Xu, H.; Darrell, T.; Abbeel, P. Modular Architecture for StarCraft II with Deep Reinforcement
Learning. arXiv 2018, arXiv:1811.03555.

110. Pang, Z.J.; Liu, R.Z.; Meng, Z.Y.; Zhang, Y.; Yu, Y.; Lu, T. On reinforcement learning for full-length game of starcraft. In
Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33,
pp. 4691–4698.

111. Argall, B.D.; Chernova, S.; Veloso, M.; Browning, B. A survey of robot learning from demonstration. Robot. Auton. Syst. 2009,
57, 469–483. [CrossRef]

112. Deisenroth, M.P. A Survey on Policy Search for Robotics. Found. Trends Robot. 2013, 2, 1–142. [CrossRef]

http://cs231n.stanford.edu/reports/2017/pdfs/610.pdf
http://cs231n.stanford.edu/reports/2017/pdfs/610.pdf
http://dx.doi.org/10.1038/s41586-019-1724-z
http://dx.doi.org/10.1109/TETCI.2018.2823329
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1561/2300000021

Mach. Learn. Knowl. Extr. 2021, 3 578

113. Kober, J.; Peters, J. Reinforcement Learning in Robotics: A Survey. In Learning Motor Skills: From Algorithms to Robot Experiments;
Springer International Publishing: Cham, Switzerland, 2014; pp. 9–67. [CrossRef]

114. Tai, L.; Zhang, J.; Liu, M.; Boedecker, J.; Burgard, W. A Survey of Deep Network Solutions for Learning Control in Robotics: From
Reinforcement to Imitation. arXiv 2015, arXiv:1612.07139.

115. Todorov, E.; Erez, T.; Tassa, Y. Mujoco: A physics engine for model-based control. In Proceedings of the 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,Vilamoura/Algarve, Portugal, 7–12 October 2012; pp. 5026–5033.

116. Nguyen, H.; La, H. Review of Deep Reinforcement Learning for Robot Manipulation. In Proceedings of the 2019 Third IEEE
International Conference on Robotic Computing (IRC), Naples, Italy, 25–27 February 2019; pp. 590–595.

117. Peters, J.; Schaal, S. Reinforcement learning of motor skills with policy gradients. Neural Netw. 2008, 21, 682–697. [CrossRef]
118. Peters, J.; Schaal, S. Natural actor-critic. Neurocomputing 2008, 71, 1180–1190. [CrossRef]
119. Theodorou, E.; Buchli, J.; Schaal, S. Reinforcement learning of motor skills in high dimensions: A path integral approach.

In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010;
pp. 2397–2403.

120. Peters, J.; Mülling, K.; Altun, Y. Relative entropy policy search. In Proceedings of the AAAI Conference on Artificial Intelligence,
Atlanta, GA, USA, 11–15 July 2010; Volume 10, pp. 1607–1612.

121. Kalakrishnan, M.; Righetti, L.; Pastor, P.; Schaal, S. Learning force control policies for compliant manipulation. In Proceedings of
the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011;
pp. 4639–4644.

122. Nair, A.; McGrew, B.; Andrychowicz, M.; Zaremba, W.; Abbeel, P. Overcoming Exploration in Reinforcement Learning with
Demonstrations. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
Australia, 21–25 May 2018; pp. 6292–6299.

123. Kumar, V.; Tassa, Y.; Erez, T.; Todorov, E. Real-time behaviour synthesis for dynamic hand-manipulation. In Proceedings of the
2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 6808–6815.

124. Kumar, V.; Todorov, E.; Levine, S. Optimal control with learned local models: Application to dexterous manipulation. In Pro-
ceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016;
pp. 378–383.

125. Rajeswaran, A.; Kumar, V.; Gupta, A.; Schulman, J.; Todorov, E.; Levine, S. Learning Complex Dexterous Manipulation with Deep
Reinforcement Learning and Demonstrations. arXiv 2017, arXiv:1709.10087.

126. Haarnoja, T.; Pong, V.; Zhou, A.; Dalal, M.; Abbeel, P.; Levine, S. Composable Deep Reinforcement Learning for Robotic
Manipulation. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
21–25 May 2018; pp. 6244–6251.

127. Zhu, H.; Gupta, A.; Rajeswaran, A.; Levine, S.; Kumar, V. Dexterous Manipulation with Deep Reinforcement Learning: Efficient,
General, and Low-Cost. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC,
Canada, 20–24 May 2019; pp. 3651–3657.

128. Huang, S.H.; Zambelli, M.; Kay, J.; Martins, M.F.; Tassa, Y.; Pilarski, P.M.; Hadsell, R. Learning Gentle Object Manipulation with
Curiosity-Driven Deep Reinforcement Learning. arXiv 2019, arXiv:1903.08542.

129. Levine, S.; Finn, C.; Darrell, T.; Abbeel, P. End-to-End Training of Deep Visuomotor Policies. arXiv 2015, arXiv:1504.00702.
130. Pinto, L.; Gupta, A. Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700 Robot Hours. arXiv 2015,

arXiv:1509.06825.
131. Levine, S.; Pastor, P.; Krizhevsky, A.; Quillen, D. Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and

Large-Scale Data Collection. arXiv 2016, arXiv:1603.02199.
132. Popov, I.; Heess, N.; Lillicrap, T.P.; Hafner, R.; Barth-Maron, G.; Vecerík, M.; Lampe, T.; Tassa, Y.; Erez, T.; Riedmiller, M.A.

Data-efficient Deep Reinforcement Learning for Dexterous Manipulation. arXiv 2017, arXiv:1704.03073.
133. Kalashnikov, D.; Irpan, A.; Pastor, P.; Ibarz, J.; Herzog, A.; Jang, E.; Quillen, D.; Holly, E.; Kalakrishnan, M.; Vanhoucke, V.; et al.

QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. arXiv 2018, arXiv:1806.10293.
134. Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement learning for robotic manipulation with asynchronous off-policy

updates. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Marina Bay Sands,
Singapore, 29 May–3 June 2017; pp. 3389–3396.

135. Tsurumine, Y.; Cui, Y.; Uchibe, E.; Matsubara, T. Deep reinforcement learning with smooth policy update: Application to robotic
cloth manipulation. Robot. Auton. Syst. 2019, 112, 72–83. [CrossRef]

136. Jangir, R.; Alenya, G.; Torras, C. Dynamic Cloth Manipulation with Deep Reinforcement Learning. arXiv 2019, arXiv:1910.14475.
137. de Bruin, T.; Kober, J.; Tuyls, K.; Babuška, R. Improved deep reinforcement learning for robotics through distribution-based

experience retention. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Daejeon, Korea, 9–14 October 2016; pp. 3947–3952.

138. Özalp, R.; Kaymak, C.; Yildirum, Ö.; Ucar, A.; Demir, Y.; Güzeliş, C. An Implementation of Vision Based Deep Reinforcement
Learning for Humanoid Robot Locomotion. In Proceedings of the 2019 IEEE International Symposium on INnovations in
Intelligent SysTems and Applications (INISTA), Sofia, Bulgaria, 3–5 July 2019; pp. 1–5.

139. Danel, M. Reinforcement learning for humanoid robot control. POSTER May 2017.

http://dx.doi.org/10.1007/978-3-319-03194-1_2
http://dx.doi.org/10.1016/j.neunet.2008.02.003
http://dx.doi.org/10.1016/j.neucom.2007.11.026
http://dx.doi.org/10.1016/j.robot.2018.11.004

Mach. Learn. Knowl. Extr. 2021, 3 579

140. Haarnoja, T.; Zhou, A.; Ha, S.; Tan, J.; Tucker, G.; Levine, S. Learning to Walk via Deep Reinforcement Learning. arXiv 2018,
arXiv:1812.11103.

141. Christiano, P.F.; Leike, J.; Brown, T.; Martic, M.; Legg, S.; Amodei, D. Deep Reinforcement Learning from Human Preferences. In
Advances in Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; pp. 4299–4307.

142. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. Openai gym. arXiv 2016,
arXiv:1606.01540.

143. Peng, X.B.; Berseth, G.; Yin, K.; Van De Panne, M. DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement
Learning. ACM Trans. Graph. 2017, 36. [CrossRef]

144. Berseth, G.; Xie, C.; Cernek, P.; Van de Panne, M. Progressive reinforcement learning with distillation for multi-skilled motion
control. arXiv 2018, arXiv:1802.04765.

145. Nagabandi, A.; Kahn, G.; Fearing, R.S.; Levine, S. Neural Network Dynamics for Model-Based Deep Reinforcement Learning
with Model-Free Fine-Tuning. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA),
Brisbane, Australia, 21–25 May 2018; pp. 7559–7566.

146. Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; Abbeel, P. Benchmarking deep reinforcement learning for continuous control.
In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 1329–1338.

147. Xie, Z.; Berseth, G.; Clary, P.; Hurst, J.; van de Panne, M. Feedback Control For Cassie With Deep Reinforcement Learning.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 1241–1246.

148. Tan, J.; Zhang, T.; Coumans, E.; Iscen, A.; Bai, Y.; Hafner, D.; Bohez, S.; Vanhoucke, V. Sim-to-Real: Learning Agile Locomotion
For Quadruped Robots. arXiv 2018, arXiv:1804.10332

149. Huang, Y.; Wei, G.; Wang, Y. V-D D3QN: The Variant of Double Deep Q-Learning Network with Dueling Architecture.
In Proceedings of the 2018 37th Chinese Control Conference (CCC), Wuhan, China, 25–27 July 2018; pp. 9130–9135.

150. Peng, X.B.; Berseth, G.; Van de Panne, M. Terrain-adaptive locomotion skills using deep reinforcement learning. ACM Trans.
Graph. (TOG) 2016, 35, 1–12 [CrossRef]

151. Heess, N.; Wayne, G.; Tassa, Y.; Lillicrap, T.P.; Riedmiller, M.A.; Silver, D. Learning and Transfer of Modulated Locomotor
Controllers. arXiv 2016, arXiv:1610.05182.

152. Haarnoja, T.; Tang, H.; Abbeel, P.; Levine, S. Reinforcement Learning with Deep Energy-Based Policies. arXiv 2017,
arXiv:1702.08165.

153. Pinto, L.; Davidson, J.; Sukthankar, R.; Gupta, A. Robust Adversarial Reinforcement Learning. arXiv 2017, arXiv:1703.02702.
154. Verma, S.; Novati, G.; Koumoutsakos, P. Efficient collective swimming by harnessing vortices through deep reinforcement

learning. Proc. Natl. Acad. Sci. USA 2018, 115, 5849–5854. [CrossRef]
155. Zhang, M.; Geng, X.; Bruce, J.; Caluwaerts, K.; Vespignani, M.; SunSpiral, V.; Abbeel, P.; Levine, S. Deep reinforcement learning

for tensegrity robot locomotion. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA),
Singapore, 29 May–3 June 2017; pp. 634–641.

156. Luo, J.; Edmunds, R.; Rice, F.; Agogino, A.M. Tensegrity Robot Locomotion Under Limited Sensory Inputs via Deep Reinforcement
Learning. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
21–25 May 2018; pp. 6260–6267.

157. Wikipedia. Robotics Simulator. Available online: https://en.wikipedia.org/wiki/Robotics_simulator (accessed on 1 July 2021).
158. Obst, O.; Rollmann, M. Spark—A Generic Simulator for Physical Multi-Agent Simulations. In Multiagent System Technologies.

MATES 2004; Lecture Notes in Computer Science; Springer: Berlin, Heidelberg, 2004; Volume 3187. [CrossRef]
159. Wang, W.Y.; Li, J.; He, X. Deep reinforcement learning for NLP. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics: Tutorial Abstracts, Melbourne, Australia, 15–20 July 2018; pp. 19–21.
160. Sharma, A.R.; Kaushik, P. Literature survey of statistical, deep and reinforcement learning in natural language processing.

In Proceedings of the 2017 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida,
India, 5–6 May 2017; pp. 350–354.

161. Xiong, C. Recent Progress in Deep Reinforcement Learning for Computer Vision and NLP. In Proceedings of the 2017 Workshop
on Recognizing Families in the Wild, RFIW ’17, New York, NY, USA, 27 October 2017; Association for Computing Machinery;
p. 1. [CrossRef]

162. Lapan, M. Deep Reinforcement Learning Hands-On: Apply Modern RL Methods, with Deep Q-Networks, Value Iteration, Policy Gradients,
TRPO, AlphaGo Zero and More; Packt Publishing Ltd.: Birmingham, UK, 2018.

163. Gao, J.; Galley, M.; Li, L. Neural approaches to conversational AI. In Proceedings of the 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 1371–1374.

164. Wu, L.; Tian, F.; Qin, T.; Lai, J.; Liu, T. A Study of Reinforcement Learning for Neural Machine Translation. arXiv 2018,
arXiv:1808.08866.

165. He, D.; Xia, Y.; Qin, T.; Wang, L.; Yu, N.; Liu, T.Y.; Ma, W.Y. Dual Learning for Machine Translation. In Advances in Neural
Information Processing Systems 29; Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.:
Red Hook, NY, USA, 2016; pp. 820–828.

http://dx.doi.org/10.1145/3072959.3073602
http://dx.doi.org/10.1145/2897824.2925881
http://dx.doi.org/10.1073/pnas.1800923115
https://en.wikipedia.org/wiki/Robotics_simulator
http://dx.doi.org/10.1007/978-3-540-30082-3_18
http://dx.doi.org/10.1145/3134421.3137039

Mach. Learn. Knowl. Extr. 2021, 3 580

166. Satija, H.; Pineau, J. Simultaneous machine translation using deep reinforcement learning. In Proceedings of the ICML 2016
Workshop on Abstraction in Reinforcement Learning, International Conference on Machine Learning, New York, NY, USA, 19–24
June 2016.

167. Klein, G.; Kim, Y.; Deng, Y.; Senellart, J.; Rush, A.M. OpenNMT: Open-Source Toolkit for Neural Machine Translation. arXiv 2017,
arXiv:1701.02810.

168. Zhang, J.; Ding, Y.; Shen, S.; Cheng, Y.; Sun, M.; Luan, H.; Liu, Y. THUMT: An Open Source Toolkit for Neural Machine Translation.
arXiv 2017, arXiv:1706.06415.

169. Yang, Z.; Chen, W.; Wang, F.; Xu, B. Improving Neural Machine Translation with Conditional Sequence Generative Adversarial
Nets. arXiv 2017, arXiv:1703.04887.

170. Wu, L.; Xia, Y.; Tian, F.; Zhao, L.; Qin, T.; Lai, J.; Liu, T.Y. Adversarial neural machine translation. In Proceedings of the 10th
Asian Conference on Machine Learning, PMLR, Beijing, China, 14–16 November 2018; pp. 534–549.

171. Jurafsky, D.; Martin, J.H. Speech & Language Processing—Third Edition Draft; Pearson Education India: New Delhi, India, 2019.
172. Cuayáhuitl, H.; Renals, S.; Lemon, O.; Shimodaira, H. Evaluation of a hierarchical reinforcement learning spoken dialogue

system. Comput. Speech Lang. 2010, 24, 395–429. [CrossRef]
173. Cuayáhuitl, H.; Dethlefs, N. Spatially-aware dialogue control using hierarchical reinforcement learning. Acm Trans. Speech Lang.

Process. (TSLP) 2011, 7, 1–26. [CrossRef]
174. Cuayáhuitl, H.; Kruijff-Korbayová, I.; Dethlefs, N. Nonstrict hierarchical reinforcement learning for interactive systems and

robots. Acm Trans. Interact. Intell. Syst. (TiiS) 2014, 4, 1–30. [CrossRef]
175. Cuayáhuitl, H.; Keizer, S.; Lemon, O. Strategic Dialogue Management via Deep Reinforcement Learning. arXiv 2015,

arXiv:1511.08099.
176. Cuayáhuitl, H. SimpleDS: A Simple Deep Reinforcement Learning Dialogue System. In Dialogues with Social Robots: Enablements,

Analyses, and Evaluation; Jokinen, K., Wilcock, G., Eds.; Springer Singapore: Singapore, 2017; pp. 109–118. [CrossRef]
177. Cuayáhuitl, H.; Yu, S. Deep reinforcement learning of dialogue policies with less weight updates. In Poceedings of the Interspeech

2017, Stockholm, Sweden, 20–24 August 2017.
178. Cuayáhuitl, H.; Lee, D.; Ryu, S.; Cho, Y.; Choi, S.; Indurthi, S.; Yu, S.; Choi, H.; Hwang, I.; Kim, J. Ensemble-based deep

reinforcement learning for chatbots. Neurocomputing 2019, 366, 118–130. [CrossRef]
179. Jaques, N.; Ghandeharioun, A.; Shen, J.H.; Ferguson, C.; Lapedriza, À.; Jones, N.; Gu, S.; Picard, R.W. Way Off-Policy Batch Deep

Reinforcement Learning of Implicit Human Preferences in Dialog. arXiv 2019, arXiv:1907.00456.
180. Ranzato, M.; Chopra, S.; Auli, M.; Zaremba, W. Sequence level training with recurrent neural networks. arXiv 2015,

arXiv:1511.06732.
181. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992,

8, 229–256. [CrossRef]
182. Bahdanau, D.; Brakel, P.; Xu, K.; Goyal, A.; Lowe, R.; Pineau, J.; Courville, A.; Bengio, Y. An actor-critic algorithm for sequence

prediction. arXiv 2016, arXiv:1607.07086.
183. Yu, L.; Zhang, W.; Wang, J.; Yu, Y. Seqgan: Sequence generative adversarial nets with policy gradient. In Proceedings of the

Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.
184. Li, Z.; Jiang, X.; Shang, L.; Li, H. Paraphrase Generation with Deep Reinforcement Learning. arXiv 2017, arXiv:1711.00279.
185. Zhang, X.; Lapata, M. Sentence simplification with deep reinforcement learning. arXiv 2017, arXiv:1703.10931.
186. Li, J.; Monroe, W.; Ritter, A.; Jurafsky, D.; Galley, M.; Gao, J. Deep Reinforcement Learning for Dialogue Generation.

In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–4 November
2016. [CrossRef]

187. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. arXiv 2014, arXiv:1409.3215.
188. Dhingra, B.; Li, L.; Li, X.; Gao, J.; Chen, Y.; Ahmed, F.; Deng, L. End-to-End Reinforcement Learning of Dialogue Agents for

Information Access. arXiv 2016, arXiv:1609.00777.
189. Keizer, S.; Guhe, M.; Cuayáhuitl, H.; Efstathiou, I.; Engelbrecht, K.P.; Dobre, M.; Lascarides, A.; Lemon, O. Evaluating Persuasion

Strategies and Deep Reinforcement Learning Methods for Negotiation Dialogue Agents. ACL. In Proceedings of the 15th
Conference of the European chapter of the Association for Computational Linguistics, Valencia, Spain, 3–7 April 2017.

190. Ilievski, V.; Musat, C.; Hossmann, A.; Baeriswyl, M. Goal-Oriented Chatbot Dialog Management Bootstrapping with Transfer
Learning. arXiv 2018, arXiv:1802.00500.

191. Ciou, P.H.; Hsiao, Y.T.; Wu, Z.Z.; Tseng, S.H.; Fu, L.C. Composite reinforcement learning for social robot navigation.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5

October 2018; pp. 2553–2558.
192. Das, A.; Kottur, S.; Moura, J.M.; Lee, S.; Batra, D. Learning cooperative visual dialog agents with deep reinforcement learning.

In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2951–2960.
193. Strub, F.; De Vries, H.; Mary, J.; Piot, B.; Courville, A.; Pietquin, O. End-to-end optimization of goal-driven and visually grounded

dialogue systems. arXiv 2017, arXiv:1703.05423.
194. Liu, S.; Zhu, Z.; Ye, N.; Guadarrama, S.; Murphy, K. Improved Image Captioning via Policy Gradient Optimization of SPIDEr.

In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

http://dx.doi.org/10.1016/j.csl.2009.07.001
http://dx.doi.org/10.1145/1966407.1966410
http://dx.doi.org/10.1145/2659003
http://dx.doi.org/10.1007/978-981-10-2585-3_8
http://dx.doi.org/10.1016/j.neucom.2019.08.007
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.18653/v1/d16-1127

Mach. Learn. Knowl. Extr. 2021, 3 581

195. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image caption
generation with visual attention. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July
2015; pp. 2048–2057.

196. Lu, J.; Xiong, C.; Parikh, D.; Socher, R. Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning.
arXiv 2016, arXiv:1612.01887.

197. Ren, Z.; Wang, X.; Zhang, N.; Lv, X.; Li, L.J. Deep Reinforcement Learning-Based Image Captioning With Embedding Reward.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017.

198. Wang, X.; Chen, W.; Wang, Y.; Wang, W.Y. No Metrics Are Perfect: Adversarial Reward Learning for Visual Storytelling. arXiv
2018, arXiv:1804.09160.

199. Wang, X.; Chen, W.; Wu, J.; Wang, Y.F.; Wang, W.Y. Video Captioning via Hierarchical Reinforcement Learning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018.

200. Pasunuru, R.; Bansal, M. Reinforced video captioning with entailment rewards. arXiv 2017, arXiv:1708.02300.
201. Liang, X.; Lee, L.; Xing, E.P. Deep variation-structured reinforcement learning for visual relationship and attribute detec-

tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July
2017; pp. 848–857.

	Introduction
	Markov Decision Processes
	Partially Observable Markov Decision Processes
	Reinforcement Learning
	RL Algorithms

	Deep Reinforcement Learning
	Value-Based Algorithms
	Policy-Based Algorithms
	Actor-Critic Algorithms

	Applications
	Games
	Board Games
	Card Games
	Video Games

	Robotics
	Manipulation
	Locomotion
	Robotics Simulators

	Natural Language Processing
	Neural Machine Translation
	Dialogue
	Visual Dialogue

	Conclusions
	Summary
	Final Thoughts

	References

