
machine learning &

knowledge extraction

Article

Surrogate Object Detection Explainer (SODEx) with YOLOv4
and LIME

Jonas Herskind Sejr *, Peter Schneider-Kamp and Naeem Ayoub

����������
�������

Citation: Sejr, J.H.; Schneider-Kamp,

P.; Ayoub, N. Surrogate Object

Detection Explainer (SODEx) with

YOLOv4 and LIME. Mach. Learn.

Knowl. Extr. 2021, 3, 662–671.

https://doi.org/10.3390/make3030033

Academic Editors: Jochen Garcke

and Ribana Roscher

Received: 29 June 2021

Accepted: 3 August 2021

Published: 6 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics & Computer Science, University of Southern Denmark, 5230 Odense, Denmark;
petersk@imada.sdu.dk (P.S.-K.); nomi@imada.sdu.dk (N.A.)
* Correspondence: sejr@imada.sdu.dk; Tel.: +45-52342918

Abstract: Due to impressive performance, deep neural networks for object detection in images
have become a prevalent choice. Given the complexity of the neural network models used, users
of these algorithms are typically given no hint as to how the objects were found. It remains, for
example, unclear whether an object is detected based on what it looks like or based on the context in
which it is located. We have developed an algorithm, Surrogate Object Detection Explainer (SODEx),
that can explain any object detection algorithm using any classification explainer. We evaluate
SODEx qualitatively and quantitatively by detecting objects in the COCO dataset with YOLOv4 and
explaining these detections with LIME. This empirical evaluation does not only demonstrate the value
of explainable object detection, it also provides valuable insights into how YOLOv4 detects objects.

Keywords: object detection; Explainable Artificial Intelligence; YOLO; LIME

1. Introduction

YOLO (you only look once) [1,2] is the most popular object detection algorithm, and
the results from YOLO are quite impressive. After training on a body of labeled images
(labeled with bounding boxes and classes), YOLO precisely detects objects of any kind in
milliseconds and can, thus, even be used for real-time object detection in videos. YOLO,
thereby, processes input similar to human sight, and it is one of the tools that really provide
an impression that Artificial Intelligence (AI) is already among us.

YOLO is not based on a clear theoretical model for object detection but represents the
cumulative result of many incremental versions tested and tuned in practical use. In other
words, YOLO is a fine-tuned aggregation of methods from object detection that has been
demonstrated to work well on real images.

YOLO uses the whole image for object detection, and a user of YOLO is not given any
hint as to how a detection was made, for example, what pixels or areas of the image were
used to detect a given object.

Through experiments, we have seen YOLO detect very blurry objects. Initially, we
found it hard to grasp how YOLO was able to do this and whether something was wrong
with the data or the trained model. We were also interested in using YOLOs class score (an
indication of how much YOLO believes in the detection) to make a statement about the
detected object. Specifically, we wanted to detect broken objects. Assuming broken objects
would not follow the visual patterns of normal objects, we assumed they would get a lower
class score, in other words, a kind of object outlier detection. In both situations, we found
it challenging not to know which pixels YOLO uses to make the detections. We did not
know whether YOLO uses the overall structure of the detected object, a single recognized
pattern within the object, the context of the object (pixels outside the object), or a complex
combination of all of them. These challenges motivated us to look into explaining YOLO.

Since YOLO is a moving target that is continuously changed and improved, we
wanted to develop an explainer for YOLO that is independent of YOLOs internals (i.e., a
model-agnostic, black box, object detection explainer [3]). Our algorithm, Surrogate Object

Mach. Learn. Knowl. Extr. 2021, 3, 662–671. https://doi.org/10.3390/make3030033 https://www.mdpi.com/journal/make

https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0003-4000-5570
https://orcid.org/0000-0002-7387-4441
https://doi.org/10.3390/make3030033
https://doi.org/10.3390/make3030033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/make3030033
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make3030033?type=check_update&version=1

Mach. Learn. Knowl. Extr. 2021, 3 663

Detection Explainer (SODEx), defines a surrogate classifier model from a single object
detection in YOLO and explains an object detection using a black-box classifier explainer
such as LIME [4]. For each detected object, we explain the prediction by determining and
highlighting the regions that contributed the most and the least to the class score.

In this article, we explain YOLOv4 [2] with LIME, but our method is general and
independent of either. The SODEx algorithm can explain any object detection algorithm
that provides a bounding box and a score using any model-agnostic classifier explainer.

Our experiments on YOLOv4 and COCO dataset ([5]) demonstrate how explanations
from SODEx provide valuable insight into both YOLO and the detected objects.

In summary, our contributions are:

• To the best of our knowledge, the first instance of an object detection explainer.
• An abstract algorithm that explains virtually any object detector with any classification

explainer.
• Insights on YOLOs object detection exemplified with explanations for images from

the COCO dataset.

2. Background
2.1. YOLO

Deep Neural Networks (DNNs) are popular for developing object detection algo-
rithms. Object detection algorithms extract important information to solve computer vision
problems such as object classification, localization, and recognition [6]. In the last two
decades, many deep neural network models for object detection have evolved, improving
the intelligence of machine vision systems. Examples of such are faster R-CNN [7], Retina-
Net [8], Single Shot MultiBox Detector (SSD) [9], and You Only Look Once (YOLO) [1].
Among the aforementioned state-of-the-art object detection algorithms, YOLO stands
out regarding its ability to run on low-power devices, its real-time performance, and its
accuracy [10].

At its core, YOLO is based on a Convolution Neural Network (CNN). This layer
predicts a fixed number of boxes and class probabilities. YOLO divides the image into
S× S grid cells. Each grid cell is responsible for detecting a fixed number of objects with
their center inside the grid cell. The output of the core layer of YOLO is a large number of
boxes and class probabilities, each in the form:

[pc, bx, by, bh, bw, c1, c2, ...]

where bx and by are the coordinates of the center of a detected object, bh and bw are the
height and width of the bounding box, c1, c2... are the class probabilities, and pc is the
object probability, YOLOs estimated probability that there is an object in the given position.
The core neural network is trained on images where objects are labeled with bounding
boxes, object probability 1, and class probability 0 for all but for the correct class, which is
labeled by 1. The loss function balances the bounding box precision, the object probability
precision, and the class probability precision.

Having the neural network detect a fixed number of objects, on the one hand, eases
training and allows different parts of the network to specialize in different shapes, etc. On
the other hand, it results in many detected objects, some overlapping and some with very
low object probability.

After predicting a large number of objects, YOLO first filters away objects with a class
cscore score below some pre-set threshold,

cscore = pc · cx

where cx is the class probability for a given class. cscore indicates how likely it is that there
is an object of the specific class in the given position.

In the third part of the algorithm, denoted non-maximum suppression, YOLO first
removes low probability objects. Then, to remove overlapping objects that might detect the

Mach. Learn. Knowl. Extr. 2021, 3 664

same real object in the image, YOLO keeps the objects with the highest object probabilities
pc and removes objects that overlap with an intersection of union (iou) above a pre-set
threshold. iou is defined as follows:

iou(I1, I2) =
|I1 ∩ I2|
|I1 ∪ I2|

where I1 and I2 are images as collections of pixels.
Finally, YOLO returns a list of bounding boxes, each with the predicted class and the

corresponding class score.
The above is a description of YOLOs overall components and structure, but YOLO

comes in multiple versions with variations, particularly in the core neural network.
The YOLO algorithm was first introduced by [1], in which they unify the region

classification proposals into a single neural network for class probabilities and bounding
boxes prediction. To increase robustness of the algorithm, [11] proposed YOLO9000 (also
called YOLOv2). They added features such as a high-resolution classifier, fine gradients,
dimension clustering, and added batch normalization for faster learning and detection.
Ref. [12] introduced a darknet-53 based YOLOv3 model, which increases accuracy and real-
time performance of YOLO-DNN (The Convolutional Neural Network in the core of YOLO).
Finally, and recently, [2] added extra features into the YOLO network and introduced a
CSPdarknet-53 based YOLOv4, which further improves the speed and accuracy of the
network. In this article, we use and explain YOLOv4.

2.2. LIME

Models in supervised learning have become increasingly complex. Consequently,
many users find it hard to explain the predictions of a model, i.e., to understand why a
model predicts as it does. Especially deep learning models have been criticized for their
lack of interpretability.

This has led to a new type of method that seeks to explain previously uninterpretable
models [13]. The primary value propositions of explanations are: Increased trust from
users, ensuring ethical and fair decision making, additional data insight, insight into model
transferability, and model debugging.

A plethora of methods exists that will explain uninterpretable models. Some of these
explanations take their outset in the specific model, while others are model agnostic. Some
explain the whole model while others explain locally, e.g., single predictions.

A popular type of explanations are local model-agnostic explanations. We use Local
Interpretable Model Explanation (LIME) [4], which is a local model-agnostic method for
explaining single predictions.

One major advantage of model-agnostic explanations is that the users do not need
to understand the model being explained. This makes it possible to explain very complex
models for which it may be impossible to interpret the internals. The advantage with local
models is that the model being explained may globally be very complex but locally (i.e.,
around a single prediction) is simpler and easier to explain. A model may, for instance,
locally be assumed to behave approximately linear. This assumption is at the core of LIME.

LIME explains a single prediction with a linear surrogate model. The surrogate model
is trained with a version of LASSO [14] to enforce sparsity, as sparsity is associated with
higher interpretability. By weighting each sample in training with an exponential kernel on
the L2 (or cosine distance for text) distance to the object under explanation, the surrogate
model is localized.

The linear model coefficients are finally interpreted as feature importance, either in
favor of (positive) or against (negative) the predicted class.

When used for explaining images, LIME first segments the image into superpixels
using a segmentation algorithm of choice, e.g., Quickshift [15]. LIME then defines a set
of superpixel features, each running from 0, meaning the superpixel is greyed out to 1,
meaning the superpixel is untouched. An explanation, therefore, is a weighting of the

Mach. Learn. Knowl. Extr. 2021, 3 665

superpixels and can, e.g., be visualized by showing top and bottom superpixels in green
and red, cf. Figure 1.

(a) Top-Bottom explanatory superpixels. (b) Superpixel explanation weights.

Figure 1. (cscore = 0.91, iratio = 3.914, wdi f f = 0.00554) YOLOv4 has detected a person in a street.
With a class score of 0.91 YOLOv4 is relatively confident that there is a person in this position.
YOLOv4 has primarily used pixels inside the detected box in the detection (iratio = 3.914), and pixels
inside the detected box are on average more positive towards the object than pixels outside the box
(wdi f f = 0.00554). Looking at the explanations we see that YOLOv4 primarily used the upper body,
the visible hand, and the visible leg to detect the person. The visible lower arm and a region close to
the leg can put YOLOv4 in doubt about the detection.

3. Method

We propose an abstract algorithm, Surrogate Object Detection Explainer (SODEx),
which can explain any object detection algorithms with any classifier explainer. In this
article, we instantiate this abstract algorithm to explain YOLOv4 with LIME.

LIME explains image classification as described in Section 2.2, but YOLOv4 detects
objects in an image and not image classes (Section 2.1). To explain a detected object in
YOLOv4 (the object under explanation), we introduce a surrogate binary classifier for the
object under explanation (Algorithm 1).

Algorithm 1 Surrogate Binary Classifier (SBC)

1: function SBCoue(I) . Object under explanation (oue)
2: objects← YOLO.FIND_OBJECTS(I)
3: if objects is empty then
4: return 0
5: end if
6: ioumax ← −1
7: cscore ← 0
8: for all object ∈ objects do
9: iou← IOU(object.bbox, oue.bbox)

10: if iou > IOUMIN ∧ iou > ioumax ∧ object.class = oue.class then
11: ioumax ← iou
12: cscore ← object.score
13: end if
14: end for
15: return cscore
16: end function

3.1. Surrogate Binary Classifier (SBC)

SBC takes in an image and derives a score that indicating how likely it is the image
contains the object under explanation (cscore).

With YOLOv4, the surrogate detects every object in the image. For each detected
object the surrogate classifier calculates the Intersection Over Union (iou) (see Section 2.1).

Mach. Learn. Knowl. Extr. 2021, 3 666

If at least one object was detected that has an iou with the object under explanation above
some threshold IOUMIN (set to 0.4 in our experiments), the object with the highest iou is
assumed to be the object under explanation, and the class score from YOLOv4 is returned
as the class score cscore.

3.2. Surrogate Object Detection Explainer (SODEx)

Explaining a detected object in YOLOv4 is now just constructing and explaining the
surrogate binary classifier for the object under explanation, Algorithm 2.

Algorithm 2 Surrogate Object Detection Explainer (SODEx)

1: function SODEx(obj)
2: seg_alg← QUICKSHIFT . or another segmentation algorithm
3: classi f ier ← SBCobj
4: explanation← LIME.EXPLAIN(classi f ier, seg_alg, obj)
5: end function

3.3. What Are We Explaining?

Since SODEx explains the surrogate model and not directly the object detection with
YOLOv4, the natural question is, what are we really explaining? When we explain a
classifier with LIME, LIME implicitly defines a measure for how much “influence” each
feature (in this case pixels) locally has on the class probability. Since the SBC retrieves a
class score for the object under explanation from YOLOv4, explaining the SBC is similar
to explaining the class score from YOLOv4. In other words, SODEx explains YOLOv4’s
class score, which indicates how much YOLOv4 considers it likely that the box contains an
object of the predicted class. We believe this is well aligned with how users will perceive
an explanation of an object.

An inherent limitation is that the SBC cannot ensure that the returned object probability
stems from YOLOv4 detecting the same object: YOLOv4 might, for some variations of the
image, not even detect the object, in which case the SBC returns probability 0. This adds to
the uncertainty of the explanation but does not change what SODEx explains.

4. Qualitative Evaluation of Explanations

To demonstrate how explanations from SODEx work, we have trained YOLOv4 to
recognize persons in the COCO dataset and explained with SODEx how YOLOv4 does
the detection.

For our experiments, we filtered all images from the COCO 2017 training and val-
idation dataset referenced from the person-with-keypoints annotation files. We further
kept only those images that contained at least one real (i.e., not annotated with “iscrowd”)
person of reasonable size (here, with an area between 1

3 and 2
3 of the total image area). This

filtering was implemented after the first qualitative evaluations of explanations in order
to ensure a certain quality standard for the images showing persons, as well as for the
stability and quality of the explanations obtained.

We fine-tuned YOLOv4 with the filtered training images to recognize the person class.
Then we applied SODEx on the filtered validation images to explain all detected objects
of the person class. We use the fine-tuned YOLOv4 model for object detection and LIME
for explanations, with Quickshift [15] as the image segmentation algorithm to be used by
LIME. We have experimented with different parameter settings of YOLOv4, LIME and
Quickshift, but to prevent overfitting the results presented in this paper are the result of
the default settings in the implementations we have used (Our implementation of SODEx
is available at https://github.com/JonasSejr/SODEx, accessed on 4 August 2021). SODEx
itself only has one parameter, IOUMIN , which is set to 0.4 in our experiments.

Figures 1–4 show four images explained with SODEx, LIME, and Quickshift.

https://github.com/JonasSejr/SODEx

Mach. Learn. Knowl. Extr. 2021, 3 667

(a) Top-Bottom explanatory superpixels. (b) Superpixel explanation weights.

Figure 2. (cscore = 0.97, iratio = 1.501, wdi f f = 0.00131) YOLOv4 has detected a tennis player and
is very confident about the detection. A hand, arms, and a part of the leg are the most influential
regions when YOLOv4 detects this object. Three regions in the background have a negative effect on
the detection. This could either be the result of random noise or YOLOv4 use of the context of the
detected object.

(a) Top-Bottom explanatory superpixels. (b) Superpixel explanation weights.

Figure 3. (cscore = 0.92, iratio = 1.92, wdi f f = 0.00044) The images show the detection of the leftmost
person. The legs are the most influential when YOLOv4 detects the object. Again, the head has less
importance than the lower body and arms. A region that is part of the person behind the detected
person has the highest negative effect on the detection. It makes sense that YOLOv4 is confused by
the person behind, or, in other words, removing the person would make YOLOv4 more confident.

(a) Top-Bottom explanatory superpixels. (b) Superpixel explanation weights.

Figure 4. (cscore = 0.98, iratio = 0.99, wdi f f = 0.00052) YOLOv4 is very confident in the detection of
the rightmost person. Contrary to the other detections, the head has the highest weight. Arms are
less important even though they are very visible in the image.

The images to the left show the original image with the most important superpixels
highlighted. The superpixels contributing positively are highlighted in green, while those

Mach. Learn. Knowl. Extr. 2021, 3 668

that contribute negatively are highlighted in red. In other words, removing (i.e., greying
out) the green superpixels will make YOLOv4 less sure in its detection of the object under
explanation, while removing the red pixels will make YOLOv4 more sure in its detection.

The images to the right are heat maps visualizing the weight of each pixel in the
explanation from LIME. The heat map also shows the detected bounding box. The in–out
importance ratios (iratio) and in–out weight differences wdi f f (Section 5), as well as class
scores (cscore) are given in the caption.

The general impression when qualitatively evaluating the explanations for the top-
ranked (w.r.t. class score) 200 objects is that most objects are detected based on positively
contributing superpixels inside the detected bounding boxes and, typically, on the people
detected. This is the case in Figures 1–4 with the exception of a few superpixels. In many
cases, some superpixels close to the person are also relevant. These, however, typically
affect the detection negatively. This is, for example, the case in Figure 3, where another
person behind the detected person affects the detection negatively, i.e., it confuses YOLOv4
that there is another person in such proximity. We see the same issue in Figure 1, where a
superpixel close to the leg of the person contributes negatively to the detection.

In general, we can conclude from the qualitative review of the explanations that
extremities (arms and legs) seem to play an important role when YOLOv4 detects people.
This could be because these are large recognizable structures that most images in the
training set feature. The head and face seem to be used less frequently, even though it is,
e.g., the most important factor in Figure 4.

In quite a few images, we also have observed superpixels with negative contributions
in regions we cannot relate to the detected object. This hints at a certain amount of context-
dependency of the object detection.

Before evaluating the explanations of the images, we expected that YOLOv4 would
not only use superpixels on the detected object but also superpixels outside such that, e.g.,
if there were a bicycle, the probability to detect a person might increase. This does not
seem to be the case.

5. Quantitative Evaluation of Explanations

With the impression from the qualitative evaluation in mind, we set out to look at the
general tendencies when YOLOv4 detects objects. To do this, we defined two statistics:
the in–out importance ratio (iratio) and the in–out weight difference wdi f f . The in–out
importance ratio (iratio) denotes how important (in either negative or positive direction)
pixels inside the bounding box are (the internal causes) compared to the pixels outside (the
context causes).

The in–out importance ratio defines the ratio between the sum of absolute weights of
the pixels inside the box divided by the sum of absolute weights of the pixels outside, i.e.,
how much more important is the bounding box versus the context in determining if there
is an object.

iratio =
∑p∈box |weight(p)|

|box| /
∑p/∈box |weight(p)|

|boxc|
The in–out weight difference is defined as the difference in the average weight inside

minus outside and tells us if the bounding box is determined from inbox pixels or from
out-of-box pixels.

wdi f f =
∑p∈box weight(p)

|box| −
∑p/∈box weight(p)

|boxc|
Figure 5 visualizes the distribution of the in–out importance ratio in our test dataset. It

is clear that, in this dataset, YOLOv4 primarily uses the inbox pixels in detecting the objects.
None of the bounding boxes detected in the test set have higher average importance of
pixels outside the box. The image with the highest score is the image presented in Figure 1
with nearly four times more weight of the pixel inside the detected box.

Mach. Learn. Knowl. Extr. 2021, 3 669

Furthermore, when we look at the real values of the weights (Figure 6), the average
weight inside the bounding boxes is higher than outside, i.e., not only are the pixels inside
the bounding box more important, but they also in general, affect YOLOs trust in its
prediction positively compared to out of box pixels. This emphasizes that for this dataset,
YOLO primarily detects base on the looks of the object. In a few cases, though, the context
is more important. This can be attributed to the fact that superpixels sometimes cross the
boundaries of the bounding box and, in some cases, especially for low class scores, we
have seen somewhat random explanations.

Figure 5. in–out importance ratio measures the importance (absolute weight) inside the detected
bounding box relative to the importance of pixels outside the detected box. The figure show that
for every detected object in the test set, the pixels inside the bounding box contribute more to
the decision.

Figure 6. in–out weight difference is the average explanatory weight inside the detected bounding
box minus the average explanatory weight of pixels outside the detected bounding box. The figure
shows that pixels inside the detected box in general contribute more in favor of there being an object
of the specific type in the specific position.

6. Conclusions and Outlook

We have developed an algorithm, SODEx, that can provide black box explanations to
object detection algorithms. We do not have a way to evaluate explanations quantitatively,
but our experiments with SODEx, YOLOv4, LIME, and QuickShift on selected images from
the COCO dataset show explanations that correlate with our intuition. The most important
pixels are typically legs, arms, and heads. Quantitatively, we have seen that when we
look at absolute pixel importance and pixel weight on the given dataset, pixels inside the
detected box are more important in detecting the object and, in general, are more in favor
of the detected object than pixels outside the box.

Mach. Learn. Knowl. Extr. 2021, 3 670

We chose to explain object detection based on the YOLOv4s class score, which is a
number that indicates how much YOLOv4 believes the object is located in the specific
position and belongs to the predicted class. Using SODEx for other object detectors, the
user will have to determine a score that will indicate the confidence of the detection.

Our experiments show that the explanations using YOLOv4s class score seem reason-
able. However, other aspects could have been used, e.g., the deviation of the box could
be taken into account in the surrogate classifier. The advantage of using a single statistic
variable is that it is simple and concise, and there is no need for parameter tuning. Future
research could look into explaining other aspects of object detectors and YOLOv4.

Our experiments use LIME and Quickshift for explaining, and, therefore, the expla-
nation’s semantics has to be interpreted relative to how LIME sees an explanation and
how Quickshift divides the image. Other explainers will provide different results. When
we explain YOLOv4 trained on the COCO dataset, it is a philosophical question whether
we explain YOLOv4 or the COCO dataset. Therefore, it would be interesting to see re-
search that includes experiments with SODEx using a different explainer, a different object
detector or a different dataset.

As an example, it is conceivable that, while YOLOv4 was found to rely mostly on
pixels inside the bounding box for the COCO dataset, it might be that YOLOv4 on another
dataset would pay more attention to the context of the objects.

Our contribution initiates and enables such types of experiments, as it provides an
easy approach to explaining object detectors. We look forward to seeing future research in
explainable object detection.

Author Contributions: Conceptualization, J.H.S. and N.A.; methodology, J.H.S., P.S.-K. and N.A.;
software, J.H.S., P.S.-K. and N.A.; validation, J.H.S., P.S.-K. and N.A.; formal analysis, J.H.S., P.S.-K.
and N.A.; investigation, J.H.S., P.S.-K. and N.A.; resources, J.H.S., P.S.-K. and N.A.; data curation,
J.H.S., P.S.-K. and N.A.; writing—original draft preparation, J.H.S., N.A.; writing—review and editing,
P.S.-K.; visualization, J.H.S. and N.A.; supervision, P.S.-K.; project administration, J.H.S., P.S.-K. and
N.A.; funding acquisition, P.S.-K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Drones4Energy.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://cocodataset.org/ (accessed on 1 August 2021).

Acknowledgments: The authors would like to acknowledge Department of Mathematics & Com-
puter Science, University of Southern Denmark.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
2. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
3. Barredo Arrieta, A.; Diaz Rodriguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado González, A.; Garcia, S.; Gil-Lopez, S.; Molina,

D.; Benjamins, V.R.; et al. Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward
Responsible AI. Inf. Fusion 2019, 58. [CrossRef]

4. Ribeiro, M.T.; Singh, S.; Guestrin, C. Why Should I Trust You? Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, 13–17 August 2016.

5. Lin, T.; Maire, M.; Belongie, S.J.; Bourdev, L.D.; Girshick, R.B.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft
COCO: Common Objects in Context. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 740–755.

6. Ayoub, N.; Gao, Z.; Chen, B.; Jian, M. A synthetic fusion rule for salient region detection under the framework of DS-evidence
theory. Symmetry 2018, 10, 183. [CrossRef]

7. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]

https://cocodataset.org/
http://doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.3390/sym10060183
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650

Mach. Learn. Knowl. Extr. 2021, 3 671

8. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 7 August 2017; pp. 2980–2988.

9. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In European
Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37.

10. Ayoub, N.; Schneider-Kamp, P. Real-Time On-Board Deep Learning Fault Detection for Autonomous UAV Inspections. Electronics
2021, 10, 1091. [CrossRef]

11. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

12. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
13. Burkart, N.; Huber, M.F. A Survey on the Explainability of Supervised Machine Learning. J. Artif. Intell. Res. 2021, 70, 245–317.

[CrossRef]
14. Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [CrossRef]
15. Vedaldi, A.; Soatto, S. Quick Shift and Kernel Methods for Mode Seeking. In Computer Vision—ECCV 2008; Forsyth, D., Torr, P.,

Zisserman, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2008.

http://dx.doi.org/10.3390/electronics10091091
http://dx.doi.org/10.1613/jair.1.12228
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x

	Introduction
	Background
	YOLO
	LIME

	Method
	Surrogate Binary Classifier (SBC)
	Surrogate Object Detection Explainer (SODEx)
	What Are We Explaining?

	Qualitative Evaluation of Explanations
	Quantitative Evaluation of Explanations
	Conclusions and Outlook
	References

