
machine learning &

knowledge extraction

Article

Benchmarking Studies Aimed at Clustering and Classification
Tasks Using K-Means, Fuzzy C-Means and Evolutionary
Neural Networks

Adam Pickens and Saptarshi Sengupta *

����������
�������

Citation: Pickens, A.; Sengupta, S.

Benchmarking Studies Aimed at

Clustering and Classification Tasks

Using K-Means, Fuzzy C-Means and

Evolutionary Neural Networks. Mach.

Learn. Knowl. Extr. 2021, 3, 695–719.

https://doi.org/10.3390/make3030035

Academic Editors: Basabi

Chakraborty and Saptarsi Goswami

Received: 26 July 2021

Accepted: 24 August 2021

Published: 31 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science and Information Systems, Murray State University, Murray, KY 42071, USA;
apickens@murraystate.edu
* Correspondence: sengupta.sap@gmail.com; Tel.: +1-270-809-3982

Abstract: Clustering is a widely used unsupervised learning technique across data mining and
machine learning applications and finds frequent use in diverse fields ranging from astronomy,
medical imaging, search and optimization, geology, geophysics, and sentiment analysis, to name a
few. It is therefore important to verify the effectiveness of the clustering algorithm in question and to
make reasonably strong arguments for the acceptance of the end results generated by the validity
indices that measure the compactness and separability of clusters. This work aims to explore the
successes and limitations of two popular clustering mechanisms by comparing their performance
over publicly available benchmarking data sets that capture a variety of data point distributions as
well as the number of attributes, especially from a computational point of view by incorporating
techniques that alleviate some of the issues that plague these algorithms. Sensitivity to initialization
conditions and stagnation to local minima are explored. Further, an implementation of a feedforward
neural network utilizing a fully connected topology in particle swarm optimization is introduced.
This serves to be a guided random search technique for the neural network weight optimization. The
algorithms utilized here are studied and compared, from which their applications are explored. The
study aims to provide a handy reference for practitioners to both learn about and verify benchmarking
results on commonly used real-world data sets from both a supervised and unsupervised point of
view before application in more tailored, complex problems.

Keywords: evolutionary neural networks; particle swarm optimization; k-means; fuzzy c-means;
optimization

1. Introduction

The concept of machine intelligence (M.I.) has been studied and expanded upon
over the course of many years. There are a wide variety of applications that the various
methods and algorithms belonging to the discipline can be applied to, and as technology
grows and improves, more techniques have become feasible to implement given a spurt in
computational capacity. The ability to classify data into groups of interest has a wide range
of applications in many fields from medical imaging to astronomy. In addition to that, it is
particularly important to businesses that rely on field data to make decisions about resource
allocation. It is thus important to verify their effectiveness to ensure the validity of the end
results generated from metrics returned by the algorithms. This work attempts to explore
classification and clustering algorithms, with a focus on the successes and limitations for
each. To do so, a set of benchmarking data sets of varying sizes and complexities are
taken and run through implementations of the algorithms, and the performance indices
are calculated and recorded for later analysis. The algorithms explored in this work are
K-Means and Fuzzy C-Means as well as an evolutionary feed-forward neural network
with a fully connected topology particle swarm optimization (PSO), which serves as the
weight update scheme. K-Means is a widely known algorithm and has been utilized in

Mach. Learn. Knowl. Extr. 2021, 3, 695–719. https://doi.org/10.3390/make3030035 https://www.mdpi.com/journal/make

https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0003-1114-343X
https://doi.org/10.3390/make3030035
https://doi.org/10.3390/make3030035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/make3030035
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make3030035?type=check_update&version=2

Mach. Learn. Knowl. Extr. 2021, 3 696

many different situations. While it is known for being flexible and simple to implement,
it is extremely sensitive to its initialization parameters and tends to become stuck in
local optima [1]. The Fuzzy C-Means (FCM) algorithm takes a soft clustering approach,
utilizing a membership function that allows a data point to belong to multiple clusters at
once. Similar to K-Means however, models can often become stagnant and fall into local
optima [2]. Branching out somewhat from clustering algorithms is the classifier utilizing
a feed-forward neural network with the PSO optimizer instead of traditional gradient
descent. Neural networks can have promising performance for pattern recognition and
classification problems, as they are able to approximate a function that can represent the
patterns found in the input data [3]. Unless adequate care is taken, however, the network
can end up over-fitting or under-fitting the data, and its optimizer may be trapped in local
minima. To remedy this, it is necessary to properly propagate the node weights at the
various iterations of the training process. This is achieved by using a gradient-free swarm
algorithm viz. the PSO, which fine-tunes the network weights. While PSO can be used
in conjunction with other algorithms, it is also able to act as a standalone optimizer. PSO
works well for finding optimization solutions globally, as it can sample a large region of the
search space within a given computational budget, but it must be parametrized properly
to avoid trapping in a local optimum [4]. There are a number of parameters that influence
the functionality of the algorithm, and while this can allow it to be reworked to better
fit an individual data set, incorrect tuning can also cause its performance to suffer. Thus,
hybridizing PSO with another classifier algorithm can help eliminate the weaknesses of
both [1] for computational applications as in [5].

There have been several studies that have looked at integrating swarm optimizers
within feed-forward neural networks in order to maximize performance gains irrespective
of the nature of the cost function across a variety of swarm intelligence algorithms [6–8].
In general, swarm optimizers are a collection of guided random search techniques that
draw inspiration from natural or physical processes and use multi-agent group dynamics
to formulate laws of motion and convergence [9–14]. These algorithms are distributed in
nature and are well-known for their efficacy in approximately solving real-world engi-
neering problems such as job shop scheduling [15], vehicle routing [16,17], digital filter
design [18,19], portfolio optimization [20,21], and more.

The goal of this work is to explore the performance of these algorithms and comment
on the successes and limitations of each, and by doing so, form a better understanding of
how they can influence the results so that when they are applied to real world problems, the
meaning behind the results is better illuminated. A flowchart representing the organization
of the paper can be found in Figure 1. The subsequent sections are structured as follows:
Section 2.1 details the K-Means algorithm. Section 2.2 does the same for the Fuzzy C-Means
algorithm. Section 2.3.1 describes a feed-forward neural network. Section 2.3.2 describes
the PSO algorithm. Section 3 details the experimental setup. Section 4 covers the results and
discussion of the experimentation, and finally, Section 5 contains the conclusions reached
and possible future work in the area.

Objective of the research: To put the main objective of the experiment; in other words,
the goal is to take a more intimate look at the set of algorithms and attempt to understand
not just how they function, but what that functionality means for the situations to which
they are applied. Every algorithm has strengths and weaknesses that can be studied and
worked around, but by understanding these strengths and weaknesses, a new perspective
can be gained on how they can apply to the results. While it is easy enough to apply the
algorithm and take the results at face value, understanding how those results came about
allows us to make more sense of how the data set is interacting with the algorithm and if
any biases or misrepresentations are influencing our ability to understand the model. This
is not an easy task, however. Not all algorithms can be broken apart easily and making
sense of any information gleaned from doing so can be difficult given the complexity that
goes into these algorithms. Furthermore, the data being analyzed play a large part in
this process, so a decent understanding of the data sets is also incredibly important. It is

Mach. Learn. Knowl. Extr. 2021, 3 697

hoped that this work will serve as a tutorial for practitioners looking at data clustering and
will influence their choice of model selection, parameter choices, and expected results for
certain popular data sets.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 3

Figure 1. Organization of the paper.

Objective of the research: To put the main objective of the experiment; in other words,
the goal is to take a more intimate look at the set of algorithms and attempt to understand
not just how they function, but what that functionality means for the situations to which
they are applied. Every algorithm has strengths and weaknesses that can be studied and
worked around, but by understanding these strengths and weaknesses, a new perspective
can be gained on how they can apply to the results. While it is easy enough to apply the
algorithm and take the results at face value, understanding how those results came about
allows us to make more sense of how the data set is interacting with the algorithm and if
any biases or misrepresentations are influencing our ability to understand the model. This
is not an easy task, however. Not all algorithms can be broken apart easily and making
sense of any information gleaned from doing so can be difficult given the complexity that
goes into these algorithms. Furthermore, the data being analyzed play a large part in this
process, so a decent understanding of the data sets is also incredibly important. It is hoped
that this work will serve as a tutorial for practitioners looking at data clustering and will
influence their choice of model selection, parameter choices, and expected results for cer-
tain popular data sets.

2. Materials and Methods
2.1. K-Means Algorithm

The K-Means algorithm is a well-known clustering algorithm that has been widely
applied in many different computational problems [5,22,23]. It is an iterative algorithm,
which means that it runs continuously from a given starting point and generates new ap-
proximate solutions by adding improvements to the results from previous runs. As K-
Means is a clustering algorithm, its goal is to assign all data points from a given data set
into a predefined number of clusters. To do this, it attempts to minimize the Euclidean
distance between each of the data points belonging to the distinct cluster groups. The Eu-
clidean distance between two points (in Euclidean space) is simply the length of the line
segment between the two chosen points. It can be computed from the Cartesian

Figure 1. Organization of the paper.

2. Materials and Methods
2.1. K-Means Algorithm

The K-Means algorithm is a well-known clustering algorithm that has been widely
applied in many different computational problems [5,22,23]. It is an iterative algorithm,
which means that it runs continuously from a given starting point and generates new
approximate solutions by adding improvements to the results from previous runs. As
K-Means is a clustering algorithm, its goal is to assign all data points from a given data
set into a predefined number of clusters. To do this, it attempts to minimize the Euclidean
distance between each of the data points belonging to the distinct cluster groups. The
Euclidean distance between two points (in Euclidean space) is simply the length of the line
segment between the two chosen points. It can be computed from the Cartesian coordinates
of the chosen points using the Pythagorean theorem and is also the Pythagorean distance.

d(p, q) =

√
n

∑
i=1

(qi − pi)
2 (1)

p, q are two points in the Euclidean n-space, and qi and pi are the Euclidean vectors initiated
at a chosen origin. By minimizing the Euclidean distance between points in the group, a
higher similarity score can be determined from the groupings. Furthermore, the points
in the cluster groups are represented by the cluster centroid, which can be determined by
calculating the average of all of the points in the cluster, much like how the center of mass
is computed in an n-body problem. Given this context, it can be said that the K-Means
algorithm attempts to determine the positions of the centroids that give us the best results
in terms of grouping data points that share similar signatures or that are members of the
same cluster.

Mach. Learn. Knowl. Extr. 2021, 3 698

There are many benefits to using the K-Means algorithm [24]. First off, it is com-
paratively simple to implement and understand. Given that there are only a handful of
calculations needed for the vanilla version of the algorithm and that those calculations
are simple to both understand and implement, the algorithm can be put together in a
functional way much more easily than many other similar algorithms. Second, execution
is fast. As one may expect from the simple design, the iterations of the algorithm can be
run very quickly, leading to quick convergence. K-Means is also a very flexible algorithm.
Its structure makes data sets of all sizes usable for the purpose of clustering, making it
perfect for situations where many data sets of varying sizes and complexities need to be
worked with.

K-Means does have its drawbacks, however [24]. The algorithm does not determine
the optimal set of clusters on its own, relying on the user to provide them. It is also very
sensitive to the initialization of parameters. Changes in how the cluster centroids are
initialized or how the data set is ordered or formatted can end up changing the results put
forward by the algorithm. The algorithm also assumes that the clusters in the data will be
spherical, which means that its effectiveness is much more limited when working with
data sets with varied cluster shapes.

The standard implementation scheme of the K-Means algorithm is structured be-
low [1]:

1. Randomly initialize the k cluster centroids in space.

Z = {z1, z2, . . . , zk} (2)

2. Repeat until a termination condition is satisfied.
Assign each data point in space to the cluster centroids that have the closest distance

to the point. The Euclidean distance of data point yp to the centroid in d-dimensional space
is given as:

D
(
yp.zj

)
=

√√√√ d

∑
i=1

(
ypi − zji

)2 (3)

Recalculate the cluster centroids based on the definition of centroid. As such, the
centroid for cluster j is determined as follows:

zj =
1
nj

∑
∀yp∈Cj

yp (4)

where Cj is the subset of data points belonging to the cluster j, and nj is the number of data
points in this cluster.

The clustering process terminates when one of the following conditions is satisfied:

1. The number of iterations exceeds a predefined maximum.
2. When change in the cluster centroids is negligible.
3. When there is no cluster membership change.

An interested reader may take a look at J. MacQueen’s seminal work on the methods
for the classification and analysis of multivariate observations [5] for a deeper understand-
ing of the foundations of the K-Means algorithm.

2.2. Fuzzy C-Means Algorithm

Similar to the K-Means algorithm, the Fuzzy C-Means (FCM) algorithm attempts
to group a set of N objects into C clusters [25,26]. In other words, the objective is to
divide the object set D = {D1, D2, D3, . . . DN} into C clusters (1 < C < N) with
Ω = {Ω1, Ω2, Ω3, . . . , Ωc} representing the cluster centers. Every data point being in-

Mach. Learn. Knowl. Extr. 2021, 3 699

vestigated is assigned to a cluster, the centroids of which are randomly initialized. This
assignment is done using the membership function µij defined in [2]:

µij =
1

∑C
r=1

(dij
drj

) 2
m−1

(5)

dij = ‖xi − yj‖ represents the distance between the ith center and the jth data point,
drj = ‖xr − yj‖ is the distance between the rth center and the jth data point, and m ε [1, ∞)
is a fuzzifier. The FCM algorithm uses an iterative gradient descent, an optimization
algorithm used to find the extremum of a function, to compute centroids. The centroids, in
turn, are updated using the following equation [27]:

xi =
∑N

j=1 µm
ij yj

∑N
j=1 µm

ij
(6)

The objective function to be minimized by the algorithm can be formulated as the sum
of membership weighted Euclidean distances:

ϕ =
C

∑
i=1

N

∑
j=1

µm
ij
(
‖xi − yj‖

)2 (7)

Through the recursive calculation of Equations (5) and (6), the algorithm can be
stopped once a termination condition is met. Similar to other algorithms that utilize
gradient descent, FCM can stagnate to local optima in a multidimensional search space.
Therefore, the utilization of a stochastic optimization approach to compute cluster centroids
can help mitigate this problem to a great extent [28,29].

2.3. Feed Forward Neural Network with a Particle Swarm Optimization (PSO) Driven Weight
Update Scheme

For this work, an implementation of a neural network using particle swarm optimiza-
tion as the weight optimization function was utilized, and while the two are different
topics, as they are intrinsically linked in this work; this section will contain descriptions
of both.

2.3.1. Feed-Forward Neural Network

A neural network consists of several connected functional units or neurons that
come together as parallel information processing units in order to solve classification and
regression tasks. Working together, these units can separate the input space into a discrete
number of classes, i.e., they can approximate the underlying function that maps inputs
to outputs. For this work, a feed-forward neural network is used. This is a multi-layered
network of neurons consisting of an input and output layer of nodes along with several
hidden layers that link them. The hidden layers learn the intermediate mappings that
eventually are propagated to form the final mapping in the form of the output. Within a
hidden layer, each neuron is connected to the outputs of a subset (or all) of the neurons in
the previous layer each multiplied by a number called a weight. Neural networks learn
by changing their weights to approximate a function representative of the input patterns.
Instead of traditional gradient descent, the PSO algorithm is used as the optimizer to fine
tune the network weights as the neural network learns the optimal decision boundary on
the benchmarking data sets. A simple model of the discussed network utilizing a fully
connected PSO is shown in Figure 2.

Mach. Learn. Knowl. Extr. 2021, 3 700

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 6

hidden layers that link them. The hidden layers learn the intermediate mappings that
eventually are propagated to form the final mapping in the form of the output. Within a
hidden layer, each neuron is connected to the outputs of a subset (or all) of the neurons in
the previous layer each multiplied by a number called a weight. Neural networks learn
by changing their weights to approximate a function representative of the input patterns.
Instead of traditional gradient descent, the PSO algorithm is used as the optimizer to fine
tune the network weights as the neural network learns the optimal decision boundary on
the benchmarking data sets. A simple model of the discussed network utilizing a fully
connected PSO is shown in Figure 2.

(a)

(b)

Figure 2. (a) A feed-forward neural network with n hidden layers, p input variables, and q output
variables, with weights W; (b) fully connected topology [30] in PSO where each particle is connected
to all other particles in the swarm (shown using 12 particles).

While there are various types of propagation in neural networks, the feed-forward
network only passes the data between nodes in one direction, toward the output nodes.
In this type of algorithm, the first step is to randomly initialize the weights before tuning
the values to minimize the error. This is followed by passing the data forward between
layers, applying the weights and evaluating the predictions. These steps will repeat for
each layer. The output for the layers in the network can be represented by the following
equation [31]:

푋 = 푓 (푊 푋 + 푏) (8)

In this equation 푋 is the input and 푓 is the activation function in layer 푖. The out-
put of said layer, 푋 , becomes the input for the subsequent layer. Once trained, the

Figure 2. (a) A feed-forward neural network with n hidden layers, p input variables, and q output variables, with weights
W; (b) fully connected topology [30] in PSO where each particle is connected to all other particles in the swarm (shown
using 12 particles).

While there are various types of propagation in neural networks, the feed-forward
network only passes the data between nodes in one direction, toward the output nodes. In
this type of algorithm, the first step is to randomly initialize the weights before tuning the
values to minimize the error. This is followed by passing the data forward between layers,
applying the weights and evaluating the predictions. These steps will repeat for each layer.
The output for the layers in the network can be represented by the following equation [31]:

Xi+1 = fi(WiXi + bi) (8)

In this equation Xi is the input and fi is the activation function in layer i. The
output of said layer, Xi+1, becomes the input for the subsequent layer. Once trained, the
network should be able to approximate a function that can fulfil the design goal for the
algorithm [31].

There are several problems that can arise if the network is not properly trained. Things
such as overfitting, results being trapped by local minima, and the vanishing gradient
problem can all affect the results depending on how the algorithm is structured. For this
reason, many techniques such as altering the weight initialization technique have been
used to help mitigate some of these issues [31].

Mach. Learn. Knowl. Extr. 2021, 3 701

2.3.2. Particle Swarm Optimization (PSO)

The particle swarm optimization (PSO) algorithm is a metaheuristic global optimiza-
tion paradigm that has received prominence over the last two decades owing to its easy
implementation with efficient performance over multidimensional problems that cannot be
solved using traditional deterministic algorithms. Its design was inspired by the movement
of a flock of birds [1]. For the scope of the algorithm, each “bird” would be represented
by a particle, while the “flock” is represented by the swarm. To utilize the swarming
mechanisms of the PSO, each particle is initialized by the algorithm and is then placed in
the search space. After this initialization, the program is run iteratively, with each particle
utilizing a velocity calculation to determine how they “fly” through the search space. In
this computation, three different parameters are used. First, the inertial weight of the
particle, which represents how much the previous direction of movement influences the
next. Second, the social weight, which determines how much the global best position
influences the particles’ movement. Finally, the cognitive weight, which determines how
much the location of an individual particle’s personal best location influences its movement.
The equations for calculating the velocity and position after each iteration is as follows [2]:

vij(t + 1) = ωvij(t) + C1r1(t)
(

pij(t)− xij(t)
)
+ C2r2(t)

(
pgj(t)− xij(t)

)
(9)

xij(t + 1) = xij(t) + vij(t + 1) (10)

C1 and C2 are constants representing the social and cognitive weights, r1 and r2
are independent and identically distributed random numbers between 0 and 1. xij and
vij represent the position and velocity, respectively, of the ith particle in ith dimension,
whereas pij(t) and pgj(t) are the personal best (pbest) and global best (gbest) positions.
In the velocity update scheme, ω represents the inertial weight of the ith particle, and
the following two terms add in guided vectors towards areas of attraction (also known
as local attractors) in the particle’s direction of movement. The personal best update
uses a greedy update scheme with regard to a cost minimization goal, modeled using the
following equation:

f (xi(t + 1)) < f (pi(t))⇒ pi(t + 1) = xi(t + 1) else pi(t + 1) = pi(t) (11)

In this equation, set f is the cost, and pi is the personal best of the particle. The global
best

(
pg
)

is the element with the lowest cost result from the set of personal bests of a
particular particle. While PSO can cover a large hyperplane of the search space, finding the
right values of the parameter set that lead to the best outcome is a time-consuming task
that requires careful analysis.

3. Experimental Setup
3.1. Parameter Settings for PSO

In our analysis of the clustering benchmarks using the K-Means implementation,
the centroids were determined through a randomly selected group of points. To ensure
adequate variability in the starting points, each run of the algorithm had its starting points
determined independently, and the mean and standard deviation of the performance
metrics were reported. The K-Means algorithm expects the number of clusters to be set
beforehand, so care was taken to do the same for each of the data sets considered. The
Fuzzy C-Means implementation is similar to K-Means in how starting centroid locations
needs to be determined before the model begins to run. Just as with K-Means, the centroids
were randomly chosen; however, unlike K-Means, the starting centroids were randomly
chosen locations within the search space of the data set instead of from the existing points.
In addition to this, the membership matrix needed to be initialized. Since each data
point has three factors determining membership with all clusters, each point was given
a corresponding list of factors and was randomly assigned one cluster to have a strong
correlation with. The parameters for the feed-forward neural network with particle swarm

Mach. Learn. Knowl. Extr. 2021, 3 702

optimization (FNN-PSO) for the experiments were the inertia weight ω and the cognitive
and social parameters C0 and C1. For the inertia weight, an upper bound and a lower
bound were chosen to be the range determinants, and during execution, a randomly
generated value inside this range was chosen. This was repeated for each particle in the
swarm during the optimization phase of the neural network. To ensure optimal results for
all benchmarking data sets, the inertia weight range and the social and cognitive parameters
were tailored to each individual data set. Table 1 contains the values used for each data set.
The parameter selection was conducted by linearly decreasing the inertia weight between
the stated ranges in Table 1 and by conducting a grid search with increments of 0.1 between
0 and 1 to determine the optimum cognitive and social factor values. The neural network
parameters also needed to be initialized for each run. To ensure that the data set could be
properly processed, the number of input nodes was set to the number of attributes for each
individual data set, and to compliment this, the number of output nodes was set to one
less than the number of input nodes. As for the number hidden layers, a static 20 was used
for all of the data sets. This was done to add a bit more consistency to the repeated runs of
each data set.

Table 1. Neural network with PSO parameter information.

Data Set Inertia Weight Range Cognitive Factor Social Factor

Iris 0.7–0.9 0.5 0.7
Breast Cancer 0.9–0.9 0.4 0.1

Seeds 0.7–0.9 0.9 0.1
Mammographic Mass 0.6–0.9 0.1 0.9

Sonar 0.9–0.9 0.2 0.1

While there is overlap between many of the factors utilized for this experiment, given
how sensitive the implementation was to each of them, adequate fine tuning was needed
to ensure that the algorithm generated the best results. The best example for this collection
is the Seeds data set. Unlike K-Means, the neural network with PSO did not have the
number of categories/clusters initialized at the start, so the algorithm needed to generate
the categories for each run. The Seeds data set contains three categories, and while the
outside of this the data itself does not appear to be much more complex than the other
sets, obtaining a properly usable set of models from the initialization was much harder for
this data set than it was for the other data sets. The Seeds data set took longer than any
other data set to find the proper parameters for, and it still was the data set that the model
struggled the most with to obtain accurate results. The further the initialization parameters
strayed from their optimal values, the more difficult it was to obtain accurate results from
the model. At times, the model would end up with a prediction of the incorrect number of
categories, usually ending up stagnated on one prediction category.

3.2. Data Sets

The data sets utilized for the benchmarking are five well known ones. All but the Iris
data are taken from the UCI Machine Learning Repository [32], with the Iris data set being
taken from the scikit-learn library [33]. These are described below:

1. R. A. Fisher’s Iris data set covering three species of Iris flowers (Setosa, Versicolor,
and Virginica) containing a total of 150 instances with 4 attributes each. The attributes
are as follows: sepal length, sepal width, petal length and petal width. The first two
attributes i.e. Sepal Length and Sepal Width are shown in Figure 3.

Mach. Learn. Knowl. Extr. 2021, 3 703

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 9

3.2. Data Sets
The data sets utilized for the benchmarking are five well known ones. All but the Iris

data are taken from the UCI Machine Learning Repository [32], with the Iris data set being
taken from the scikit-learn library [33]. These are described below:
1. R. A. Fisher’s Iris data set covering three species of Iris flowers (Setosa, Versicolor,

and Virginica) containing a total of 150 instances with 4 attributes each. The attributes
are as follows: sepal length, sepal width, petal length and petal width. The first two
attributes i.e. Sepal Length and Sepal Width are shown in Figure 3.

Figure 3. Illustration of the first two attributes of the Iris data set.

2. Breast Cancer Wisconsin (Original) data set consisting of 699 instances and contain-
ing 10 attributes. Instances are classified into one of two categories, benign or malig-
nant. The attributes are as follows: clump thickness, uniformity of cell size, uni-
formity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland
chromatin, normal nucleoli, and mitoses. The first two attributes i.e. Clump Thick-
ness and Uniformity of Cell Size are shown in Figure 4.

Figure 4. Illustration of the first two attributes of the Breast Cancer data set.

3. Seeds data set, which is used to identify 3 different varieties of wheat: Kama, Rosa,
and Canadian. The data set contains 210 instances with 7 attributes each. The attrib-
utes are as follows: area, perimeter, compactness, length of kernel, width of kernel,
asymmetry coefficient, and length of kernel groove. The first two attributes i.e. Area
and Perimeter are shown in Figure 5.

Figure 5. Illustration of the first two attributes of the Seeds data set.

Figure 3. Illustration of the first two attributes of the Iris data set.

2. Breast Cancer Wisconsin (Original) data set consisting of 699 instances and containing
10 attributes. Instances are classified into one of two categories, benign or malignant.
The attributes are as follows: clump thickness, uniformity of cell size, uniformity of
cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin,
normal nucleoli, and mitoses. The first two attributes i.e. Clump Thickness and
Uniformity of Cell Size are shown in Figure 4.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 9

3.2. Data Sets
The data sets utilized for the benchmarking are five well known ones. All but the Iris

data are taken from the UCI Machine Learning Repository [32], with the Iris data set being
taken from the scikit-learn library [33]. These are described below:
1. R. A. Fisher’s Iris data set covering three species of Iris flowers (Setosa, Versicolor,

and Virginica) containing a total of 150 instances with 4 attributes each. The attributes
are as follows: sepal length, sepal width, petal length and petal width. The first two
attributes i.e. Sepal Length and Sepal Width are shown in Figure 3.

Figure 3. Illustration of the first two attributes of the Iris data set.

2. Breast Cancer Wisconsin (Original) data set consisting of 699 instances and contain-
ing 10 attributes. Instances are classified into one of two categories, benign or malig-
nant. The attributes are as follows: clump thickness, uniformity of cell size, uni-
formity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland
chromatin, normal nucleoli, and mitoses. The first two attributes i.e. Clump Thick-
ness and Uniformity of Cell Size are shown in Figure 4.

Figure 4. Illustration of the first two attributes of the Breast Cancer data set.

3. Seeds data set, which is used to identify 3 different varieties of wheat: Kama, Rosa,
and Canadian. The data set contains 210 instances with 7 attributes each. The attrib-
utes are as follows: area, perimeter, compactness, length of kernel, width of kernel,
asymmetry coefficient, and length of kernel groove. The first two attributes i.e. Area
and Perimeter are shown in Figure 5.

Figure 5. Illustration of the first two attributes of the Seeds data set.

Figure 4. Illustration of the first two attributes of the Breast Cancer data set.

3. Seeds data set, which is used to identify 3 different varieties of wheat: Kama, Rosa,
and Canadian. The data set contains 210 instances with 7 attributes each. The
attributes are as follows: area, perimeter, compactness, length of kernel, width of
kernel, asymmetry coefficient, and length of kernel groove. The first two attributes i.e.
Area and Perimeter are shown in Figure 5.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 9

3.2. Data Sets
The data sets utilized for the benchmarking are five well known ones. All but the Iris

data are taken from the UCI Machine Learning Repository [32], with the Iris data set being
taken from the scikit-learn library [33]. These are described below:
1. R. A. Fisher’s Iris data set covering three species of Iris flowers (Setosa, Versicolor,

and Virginica) containing a total of 150 instances with 4 attributes each. The attributes
are as follows: sepal length, sepal width, petal length and petal width. The first two
attributes i.e. Sepal Length and Sepal Width are shown in Figure 3.

Figure 3. Illustration of the first two attributes of the Iris data set.

2. Breast Cancer Wisconsin (Original) data set consisting of 699 instances and contain-
ing 10 attributes. Instances are classified into one of two categories, benign or malig-
nant. The attributes are as follows: clump thickness, uniformity of cell size, uni-
formity of cell shape, marginal adhesion, single epithelial cell size, bare nuclei, bland
chromatin, normal nucleoli, and mitoses. The first two attributes i.e. Clump Thick-
ness and Uniformity of Cell Size are shown in Figure 4.

Figure 4. Illustration of the first two attributes of the Breast Cancer data set.

3. Seeds data set, which is used to identify 3 different varieties of wheat: Kama, Rosa,
and Canadian. The data set contains 210 instances with 7 attributes each. The attrib-
utes are as follows: area, perimeter, compactness, length of kernel, width of kernel,
asymmetry coefficient, and length of kernel groove. The first two attributes i.e. Area
and Perimeter are shown in Figure 5.

Figure 5. Illustration of the first two attributes of the Seeds data set. Figure 5. Illustration of the first two attributes of the Seeds data set.

4. Mammographic Mass data set containing 961 instances and is used to classify data
into two categories, benign and malignant. Each instance contains 6 attributes based
on BI-RADS data and the patient’s age. The attributes are as follows: BI-RADS
assessment, age, shape, margin, density, and severity. The first two attributes i.e.,
BI-RADS Assessment and Age are shown in Figure 6.

Mach. Learn. Knowl. Extr. 2021, 3 704

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 10

4. Mammographic Mass data set containing 961 instances and is used to classify data
into two categories, benign and malignant. Each instance contains 6 attributes based
on BI-RADS data and the patient’s age. The attributes are as follows: BI-RADS as-
sessment, age, shape, margin, density, and severity. The first two attributes i.e. BI-
RADS Assessment and Age are shown in Figure 6.

Figure 6. Illustration of the first two attributes of the Mammographic Mass data set.

5. Sonar Data set, which consists of 208 instances with 60 attributes each. The instances
are classified into either mines or rocks. The attributes represent the energy within a
specific frequency band. The first two attributes i.e. Frequency Band 1 and Frequency
Band 2 are shown in Figure 7.

Figure 7. Illustration of the first two attributes of the Sonar data set.

Missing Value Replacement: In the cases of the Breast Cancer data set and the Mam-
mographic Mass data set, the data contained instances where some attribute values were
missing and thus needed to be dealt with for the algorithms to function. To this end, the
average value for each attribute was calculated, and any missing values were replaced
with that average.

3.3. Performance Indices
Measuring the performance indices allows us to determine the effectiveness of a

given model to correctly classify instances in each data set. The clustering indices are as
follows:
 Accuracy: This is also known as the Rand index. The accuracy is described as the per-

centage of correct decisions made by the algorithm. The formula for accuracy is as
follows:

퐴푐푐푢푟푎푐푦 =
푇푃 + 푇푁

푇푃 + 퐹푃 + 퐹푁 + 푇푁
 (12)

In this equation, TP is the number of true positives, TN is the number of true nega-
tives, FP is the number of false positives, and finally, FN is the number of false negatives.
A true positive is the outcome in binary classification when the model under test correctly
predicts the existence of a condition. A true negative is the outcome when the same model
correctly predicts the absence of a condition. A false positive represents an error in binary
classification tasks such that the result falsely indicates the presence of a certain condition.

Figure 6. Illustration of the first two attributes of the Mammographic Mass data set.

5. Sonar Data set, which consists of 208 instances with 60 attributes each. The instances
are classified into either mines or rocks. The attributes represent the energy within a
specific frequency band. The first two attributes i.e. Frequency Band 1 and Frequency
Band 2 are shown in Figure 7.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 10

4. Mammographic Mass data set containing 961 instances and is used to classify data
into two categories, benign and malignant. Each instance contains 6 attributes based
on BI-RADS data and the patient’s age. The attributes are as follows: BI-RADS as-
sessment, age, shape, margin, density, and severity. The first two attributes i.e. BI-
RADS Assessment and Age are shown in Figure 6.

Figure 6. Illustration of the first two attributes of the Mammographic Mass data set.

5. Sonar Data set, which consists of 208 instances with 60 attributes each. The instances
are classified into either mines or rocks. The attributes represent the energy within a
specific frequency band. The first two attributes i.e. Frequency Band 1 and Frequency
Band 2 are shown in Figure 7.

Figure 7. Illustration of the first two attributes of the Sonar data set.

Missing Value Replacement: In the cases of the Breast Cancer data set and the Mam-
mographic Mass data set, the data contained instances where some attribute values were
missing and thus needed to be dealt with for the algorithms to function. To this end, the
average value for each attribute was calculated, and any missing values were replaced
with that average.

3.3. Performance Indices
Measuring the performance indices allows us to determine the effectiveness of a

given model to correctly classify instances in each data set. The clustering indices are as
follows:
 Accuracy: This is also known as the Rand index. The accuracy is described as the per-

centage of correct decisions made by the algorithm. The formula for accuracy is as
follows:

퐴푐푐푢푟푎푐푦 =
푇푃 + 푇푁

푇푃 + 퐹푃 + 퐹푁 + 푇푁
 (12)

In this equation, TP is the number of true positives, TN is the number of true nega-
tives, FP is the number of false positives, and finally, FN is the number of false negatives.
A true positive is the outcome in binary classification when the model under test correctly
predicts the existence of a condition. A true negative is the outcome when the same model
correctly predicts the absence of a condition. A false positive represents an error in binary
classification tasks such that the result falsely indicates the presence of a certain condition.

Figure 7. Illustration of the first two attributes of the Sonar data set.

Missing Value Replacement: In the cases of the Breast Cancer data set and the
Mammographic Mass data set, the data contained instances where some attribute values
were missing and thus needed to be dealt with for the algorithms to function. To this end,
the average value for each attribute was calculated, and any missing values were replaced
with that average.

3.3. Performance Indices

Measuring the performance indices allows us to determine the effectiveness of a given
model to correctly classify instances in each data set. The clustering indices are as follows:

• Accuracy: This is also known as the Rand index. The accuracy is described as the
percentage of correct decisions made by the algorithm. The formula for accuracy is
as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(12)

In this equation, TP is the number of true positives, TN is the number of true negatives,
FP is the number of false positives, and finally, FN is the number of false negatives. A
true positive is the outcome in binary classification when the model under test correctly
predicts the existence of a condition. A true negative is the outcome when the same model
correctly predicts the absence of a condition. A false positive represents an error in binary
classification tasks such that the result falsely indicates the presence of a certain condition.
On the other hand, a false negative is an error that implies that the result incorrectly fails to
indicate the presence of some condition, but it is indeed present.

• F-Score: Another means of calculating accuracy. It is calculated using the precision
and recall of a model the formula for F-Score is as follows:

F =
TP

TP + 1
2 (FP + FN)

(13)

Mach. Learn. Knowl. Extr. 2021, 3 705

• Inter-Cluster Distance: The sum of the distances between each cluster centroid. Larger
values indicate a greater separation between clusters, meaning less overlap between
the clusters in the model. The formula for inter-cluster distance is as follows [34]:

Inter− cluster dist = min
(
‖ci − cj‖

)2 (14)

where cj represents the centroid of cluster j.
• Intra-Cluster Distance: The sum of the distances between individual data points and

their respective parent centroid. Smaller values indicate more compact clusters and
are therefore desired. The formula for intra-cluster distance is as follows [34]:

Intra− cluster dist =
1
n

k

∑
j=1

∣∣∣∣xi − cj
∣∣∣∣2 (15)

k is the number of clusters, cj represents the centroid j, and n refers to the number of

data instances. The section
∣∣∣∣xi − cj

∣∣∣∣2 represents the distance between data instances
and their respective centroid.

• Quantization Error: The sum of the distances between data points and their parent
centroid divided by the total number of data points belonging to the cluster and then
summed over all clusters and averaged for all of the clusters in the model. The formula
for quantization error is as follows [34]:

Quantization error =

∑k
j=1

{
∑

Nj
i=1||xi−cj||2

Nj

}
k

(16)

In this equation, k is the number of clusters, cj is the centroid of cluster j, Nj represents

the number of data points in cluster j, and finally, the section
∣∣∣∣xi − cj

∣∣∣∣2 represents the
distance between data instances and their respective centroid.

As the PSO neural network is not a clustering algorithm and rather performs a
classification task; it uses different indicators to measure performance. As discussed before,
these include the global best loss and indices such as F-score and accuracy.

The algorithms were implemented in Python 3.9.1 and were executed with an AMD
Ryzen 5 3600 6-Core Processor at 3.6 GHz. The experimental results for 50 trials are
tabulated and are then analyzed. Table 2 details the data sets used in this work.

Table 2. Data Set Information.

Number of
Instances

Number of
Attributes

Number of
Categories

Iris 150 4 3
Breast Cancer 699 10 2

Seeds 210 7 3
Mammographic Mass 961 6 2

Sonar 208 60 2

3.4. K-Means Implementation

For the K-Means implementation, the vanilla version of the algorithm was not altered.
Before the start of the algorithm, the data set needed to be split into the base data and the
classifications associated with each data point. To achieve this, two containers were set,
with the first containing a list of the attribute values for each data point with any missing
values replaced, and the second containing a list of the corresponding classifications. From
this point, the centroids were determined. Originally, the centroids were statically chosen
from the data set, but this method was replaced with a randomly selected set of points.
While the original method was able to return predictable results, the goal of the experiment

Mach. Learn. Knowl. Extr. 2021, 3 706

was to study the algorithm’s overall performance across a range of choices, and by varying
the initialization of the centroids, a much larger range of the attribute space was available
to be investigated. The algorithm was set to terminate after a set number of iterations were
completed if there were no significant performance gains.

After the algorithm finished each of its runs, the final positions of the centroids were
utilized to calculate the performance indices for the run. Once calculated, the results were
stored in a separate table to later be collected and averaged. The mean value and the
standard deviation over 50 runs were calculated and stored for comparison. The results for
the K-Means runs can be found in Table 3.

Table 3. Results from the K-Means Algorithm.

Data Accuracy Inter Cluster Distance Intra Cluster Distance Quantization Error F-Score

Iris 84.3467 ± 11.5433% 9.9448 ± 0.5077 100.9036 ± 9.1452 0.6525 ± 0.0174 0.8435 ± 0.1154
Breast Cancer 95.9484 ± 0.1393% 27.5215 ± 0.0287 3050.4339 ± 1.2969 5.2425 ± 0.0069 0.9595 ± 0.0014
Seeds 89.2952 ± 0.2379% 15.9245 ± 0.1182 313.4652 ± 0.2585 1.4967 ± 0.0003 0.893 ± 0.0024
Mammographic Mass 66.2042 ± 0.7268% 47.8242 ± 0.2174 6993.7479 ± 10.2771 7.2945 ± 0.0048 0.662 ± 0.0073
Sonar 52.6442 ± 3.7956% 2.5068 ± 0.0124 235.1373 ± 0.4677 1.127 ± 0.0056 0.5264 ± 0.038

Trapping in Local Optima

For the K-Means algorithm and many other clustering algorithms, the starting points
can have a strong influence on the performance of the model. Just as there are good starting
points that allow the algorithm to find appropriate centroids to represent the clusters, there
are also starting points that cause the algorithm to incorrectly model the data. The Iris data,
as an example, is quite susceptible to poorly initialized centroids. Figure 8 shows a model
with centroids that correctly represent the data, and Figure 9 shows a model where the
starting centroids cause the model to incorrectly model the data.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 12

3.4. K-Means Implementation
For the K-Means implementation, the vanilla version of the algorithm was not al-

tered. Before the start of the algorithm, the data set needed to be split into the base data
and the classifications associated with each data point. To achieve this, two containers
were set, with the first containing a list of the attribute values for each data point with any
missing values replaced, and the second containing a list of the corresponding classifica-
tions. From this point, the centroids were determined. Originally, the centroids were stat-
ically chosen from the data set, but this method was replaced with a randomly selected
set of points. While the original method was able to return predictable results, the goal of
the experiment was to study the algorithm’s overall performance across a range of choices,
and by varying the initialization of the centroids, a much larger range of the attribute
space was available to be investigated. The algorithm was set to terminate after a set num-
ber of iterations were completed if there were no significant performance gains.

After the algorithm finished each of its runs, the final positions of the centroids were
utilized to calculate the performance indices for the run. Once calculated, the results were
stored in a separate table to later be collected and averaged. The mean value and the stand-
ard deviation over 50 runs were calculated and stored for comparison. The results for the
K-Means runs can be found in Table 3.

Table 3. Results from the K-Means Algorithm.

Data Accuracy Inter Cluster Distance
Intra Cluster
Distance

Quantization
Error

F-Score

Iris 84.3467 ± 11.5433% 9.9448 ± 0.5077 100.9036 ± 9.1452 0.6525 ± 0.0174 0.8435 ± 0.1154
Breast Cancer 95.9484 ± 0.1393% 27.5215 ± 0.0287 3050.4339 ± 1.2969 5.2425 ± 0.0069 0.9595 ± 0.0014
Seeds 89.2952 ± 0.2379% 15.9245 ± 0.1182 313.4652 ± 0.2585 1.4967 ± 0.0003 0.893 ± 0.0024
Mammographic
Mass

66.2042 ± 0.7268% 47.8242 ± 0.2174 6993.7479 ± 10.2771 7.2945 ± 0.0048 0.662 ± 0.0073

Sonar 52.6442 ± 3.7956% 2.5068 ± 0.0124 235.1373 ± 0.4677 1.127 ± 0.0056 0.5264 ± 0.038

Trapping in Local Optima
For the K-Means algorithm and many other clustering algorithms, the starting points

can have a strong influence on the performance of the model. Just as there are good start-
ing points that allow the algorithm to find appropriate centroids to represent the clusters,
there are also starting points that cause the algorithm to incorrectly model the data. The
Iris data, as an example, is quite susceptible to poorly initialized centroids. Figure 8 shows
a model with centroids that correctly represent the data, and Figure 9 shows a model
where the starting centroids cause the model to incorrectly model the data.

Figure 8. Correctly modeled Iris clusters.

Y Axis: Sepal Width | X Axis: Sepal Length

Figure 8. Correctly modeled Iris clusters.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 13

Figure 9. Incorrectly modeled Iris clusters.

In the dimensions of the data, the grouping on the top left of the graph represents a
single cluster, while the larger mass is split into the remaining two. However, in a situa-
tion where the initialization places two of the centroids in the upper left group, there is a
chance that the algorithm will assign two of the clusters to the upper left grouping and
leave the remaining centroid to represent the larger grouping in the lower right. This can
come as a result of the K-Means algorithm’s weakness with regard to getting stuck on
local minima [1]. The random initialization of the points is what was used to help mitigate
some of the sensitivity to different initialization.

3.5. Fuzzy C-Means Implementation
As with the K-Means algorithm, the base functionality of the algorithm was not al-

tered. Before processing, the data were split into two parts. The first part contained the
data points themselves, and the other contained their respective classifications. From
there, the centroids were initialized. Unlike K-Means, for the Fuzzy C-Means, implemen-
tation of the points was not initialized from points in the data set. Instead, the data were
used to set up the range of space where the values are located, and a random set of posi-
tions in that space were chosen to act as the centroids. Additionally, unlike K-Means, the
membership matrix needed to be initialized. To do so, a membership array was created
for each data point in the set, with a number of values equal to the number of classifica-
tions/clusters. After the matrix itself was created, each data point was randomly assigned
one cluster to have a strong relationship with. As with the other algorithms, the random-
ness introduced in the initialization facilitated the study of the algorithm’s performance
over a larger range of the attribute space. The algorithm was set to terminate after a set
number of iterations were completed if there were no significant performance gains.

After each run of the algorithm was completed, the final positions of the centroids
were used to calculate the various performance indices of the run. After being calculated,
the results were stored in a separate table for later collection and averaging. The mean
value and standard deviation of over 50 runs were calculated and stored for comparison.
The results from the FCM runs can be found in Table 4.

Table 4. Results from the Fuzzy C-Means Algorithm.

Data Accuracy Inter-Cluster Distance Intra-Cluster Distance Quantization Error F-Score
Iris 88.6667 ± 1.1102e-14% 9.994 ± 3.7006e-15 96.9562 ± 2.309e-14 0.646 ± 9.5505e-17 0.8867 ± 1.1102e-16
Breast
Cancer 94.8424 ± 2.2204e-14% 26.9631 ± 7.4012e-15 2681.0984 ± 4.5475e-13 4.7631 ± 1.2243-15 0.9484 ± 2.2204e-16

Seeds 89.5238 ± 1.1102e-14% 16.1425 ± 1.4921e-14 312.5735 ± 4.9555e-14 1.4936 ± 1.3688e-16 0.8952 ± 1.1102e-16
Mammogra
phic Mass

66.875 ± 2.2204e-14% 48.7586 ± 0.572e-14 7023.1509 ± 5.2389e-12 7.3333 ± 4.432e-15 0.6687 ± 2.2204e-16

Sonar 55.2885 ± 0.0000% 1.8598 ± 1.1508e-14 237.3494 ± 4.5848e-13 1.139 ± 1.9135e-15 0.5529 ± 0.0000

Y Axis: Sepal Width | X Axis: Sepal Length

Figure 9. Incorrectly modeled Iris clusters.

Mach. Learn. Knowl. Extr. 2021, 3 707

In the dimensions of the data, the grouping on the top left of the graph represents a
single cluster, while the larger mass is split into the remaining two. However, in a situation
where the initialization places two of the centroids in the upper left group, there is a chance
that the algorithm will assign two of the clusters to the upper left grouping and leave the
remaining centroid to represent the larger grouping in the lower right. This can come
as a result of the K-Means algorithm’s weakness with regard to getting stuck on local
minima [1]. The random initialization of the points is what was used to help mitigate some
of the sensitivity to different initialization.

3.5. Fuzzy C-Means Implementation

As with the K-Means algorithm, the base functionality of the algorithm was not altered.
Before processing, the data were split into two parts. The first part contained the data
points themselves, and the other contained their respective classifications. From there, the
centroids were initialized. Unlike K-Means, for the Fuzzy C-Means, implementation of the
points was not initialized from points in the data set. Instead, the data were used to set
up the range of space where the values are located, and a random set of positions in that
space were chosen to act as the centroids. Additionally, unlike K-Means, the membership
matrix needed to be initialized. To do so, a membership array was created for each data
point in the set, with a number of values equal to the number of classifications/clusters.
After the matrix itself was created, each data point was randomly assigned one cluster to
have a strong relationship with. As with the other algorithms, the randomness introduced
in the initialization facilitated the study of the algorithm’s performance over a larger range
of the attribute space. The algorithm was set to terminate after a set number of iterations
were completed if there were no significant performance gains.

After each run of the algorithm was completed, the final positions of the centroids
were used to calculate the various performance indices of the run. After being calculated,
the results were stored in a separate table for later collection and averaging. The mean
value and standard deviation of over 50 runs were calculated and stored for comparison.
The results from the FCM runs can be found in Table 4.

Table 4. Results from the Fuzzy C-Means Algorithm.

Data Accuracy Inter-Cluster Distance Intra-Cluster Distance Quantization Error F-Score

Iris 88.6667 ± 1.1102e-14% 9.994 ± 3.7006e-15 96.9562 ± 2.309e-14 0.646 ± 9.5505e-17 0.8867 ± 1.1102e-16

Breast Cancer 94.8424 ± 2.2204e-14% 26.9631 ± 7.4012e-15 2681.0984 ± 4.5475e-13 4.7631 ± 1.2243-15 0.9484 ± 2.2204e-16

Seeds 89.5238 ± 1.1102e-14% 16.1425 ± 1.4921e-14 312.5735 ± 4.9555e-14 1.4936 ± 1.3688e-16 0.8952 ± 1.1102e-16

Mammographic Mass 66.875 ± 2.2204e-14% 48.7586 ± 0.572e-14 7023.1509 ± 5.2389e-12 7.3333 ± 4.432e-15 0.6687 ± 2.2204e-16

Sonar 55.2885 ± 0.0000% 1.8598 ± 1.1508e-14 237.3494 ± 4.5848e-13 1.139 ± 1.9135e-15 0.5529 ± 0.0000

3.6. Feed-Forward Neural Network Tuned by a Particle Swarm Optimization Algorithm

While the results of the K-Means and FCM algorithms were promising, to better
understand the grouping of the benchmarking data from a predictive analysis point of
view, a feed-forward neural network using a PSO optimizer was implemented. Using a su-
pervised learning algorithm such as this that functions quite differently than the clustering
algorithms utilized in the experiment allowed us to look at the problem with a different
perspective. The results were good, as was expected, but the range of values were notably
different than the ones returned by the other algorithms, and as such, different deductions
could be made about the functionality of both types of algorithms that were utilized.

As for the implementation itself, similar to the K-Means implementation, the data
needed to be split into groups of the data and the classifications. The training data and labels
were set up with the raw data and the categories, respectively, and any fixes/replacement
of values to the data set were applied. Once finished, the values for all of the necessary
nodes were initialized. For this implementation, the dimensionality of the number of
inputs, outputs, and hidden nodes were computed, and care was taken to fit the network
with the data. The number of input nodes was set to match the number of attributes for

Mach. Learn. Knowl. Extr. 2021, 3 708

the data set being analyzed, and the number of output nodes was set to be one less than
the number of input nodes. For the number of hidden nodes, the number was set to 20 for
each data set.

Furthermore, the data sets were split into training and testing groupings, with 70% of
the data used to train the model and the remaining 30% used to evaluate the accuracy of
the model. After each of the runs, the accuracy, global best loss, and F-score were calculated
and stored for later use. The results from the 50 runs were stored, and the mean and
standard deviation were calculated and stored in Table 5.

Table 5. Results from the FNN-PSO Algorithm.

Data Accuracy Global Best Loss F-Score

Iris 99.1556 ± 1.9317% 0.0481 ± 0.0353 0.9916 ± 0.0193
Breast Cancer 94.0381 ± 5.9493% 0.1541 ± 0.109 0.9404 ± 0.0595
Seeds 81.7143 ± 7.4872% 0.4653 ± 0.0995 0.8171 ± 0.0749
Mammographic Mass 78.8264 ± 7.1728% 0.4864 ± 0.0638 0.7883 ± 0.0717
Sonar 71.2666 ± 8.492% 0.546 ± 0.0809 0.7127 ± 0.0849

4. Results and Related Discussion

Tables 3–5 contain the results from the three algorithms used in this experiment.
They contain the mean and standard deviation of the performance metrics calculated over
50 runs. Figure 10 plots the accuracy of the K-Means algorithm over its iterations, and
Figure 11 plots the clustering model using K-Means in three dimensions. Figure 12 plots
the accuracy of the FCM algorithm over its iterations, and Figure 13 plots the clustering
model using FCM in three dimensions. Figure 14 plots the loss curve of the FNN-PSO over
1000 iterations, and Figures 15–19 compare the ground truth mapping of the data versus
the predicted mappings from the FNN-PSO. Finally, Figures 20–24 model the mean and
standard deviation of the accuracy for each distinct data set. All of the colors assigned
to the clusters are generated by the clustering and classification algorithms and are not
necessarily the same as those of the ground truth when plotted.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 15

Figure 10. Accuracy using K-Means on the experimental data sets.

Figure 10. Accuracy using K-Means on the experimental data sets.

Mach. Learn. Knowl. Extr. 2021, 3 709
Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 16

Figure 11. Visualization of the cluster centers using K-Means on experimental data sets.

Figure 11. Visualization of the cluster centers using K-Means on experimental data sets.

Mach. Learn. Knowl. Extr. 2021, 3 710
Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 17

Figure 12. Accuracy using FCM on the experimental data sets.

Figure 12. Accuracy using FCM on the experimental data sets.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 17

Figure 12. Accuracy using FCM on the experimental data sets.

Figure 13. Cont.

Mach. Learn. Knowl. Extr. 2021, 3 711
Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 18

Figure 13. Visualization of the cluster centers using FCM on experimental data sets.

Figure 14. Loss curves of FNN-PSO algorithm for each data set over 1000 iterations.

Figure 13. Visualization of the cluster centers using FCM on experimental data sets.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 18

Figure 13. Visualization of the cluster centers using FCM on experimental data sets.

Figure 14. Loss curves of FNN-PSO algorithm for each data set over 1000 iterations. Figure 14. Loss curves of FNN-PSO algorithm for each data set over 1000 iterations.

Mach. Learn. Knowl. Extr. 2021, 3 712
Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 19

Figure 15. Ground truth vs. predicted labels from FNN-PSO algorithm on Iris

Figure 16. Ground truth vs. predicted labels from FNN-PSO algorithm on Breast Cancer

Figure 17. Ground truth vs. predicted labels from FNN-PSO algorithm on Seeds

Figure 15. Ground truth vs. predicted labels from FNN-PSO algorithm on Iris.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 19

Figure 15. Ground truth vs. predicted labels from FNN-PSO algorithm on Iris

Figure 16. Ground truth vs. predicted labels from FNN-PSO algorithm on Breast Cancer

Figure 17. Ground truth vs. predicted labels from FNN-PSO algorithm on Seeds

Figure 16. Ground truth vs. predicted labels from FNN-PSO algorithm on Breast Cancer.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 19

Figure 15. Ground truth vs. predicted labels from FNN-PSO algorithm on Iris

Figure 16. Ground truth vs. predicted labels from FNN-PSO algorithm on Breast Cancer

Figure 17. Ground truth vs. predicted labels from FNN-PSO algorithm on Seeds

Figure 17. Ground truth vs. predicted labels from FNN-PSO algorithm on Seeds.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 20

Figure 18. Ground truth vs. predicted labels from FNN-PSO algorithm on Mammographic Mass

Figure 19. Ground truth vs. predicted labels from FNN-PSO algorithm on Sonar

Figure 20. Accuracy of the algorithms on the Iris data set.

84.35% 99.16% 88.67%
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

K-Means NNPSO FCM

Ac
cu

ra
cy

 (%
)

Iris

Figure 18. Ground truth vs. predicted labels from FNN-PSO algorithm on Mammographic Mass.

Mach. Learn. Knowl. Extr. 2021, 3 713

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 20

Figure 18. Ground truth vs. predicted labels from FNN-PSO algorithm on Mammographic Mass

Figure 19. Ground truth vs. predicted labels from FNN-PSO algorithm on Sonar

Figure 20. Accuracy of the algorithms on the Iris data set.

84.35% 99.16% 88.67%
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

K-Means NNPSO FCM

Ac
cu

ra
cy

 (%
)

Iris

Figure 19. Ground truth vs. predicted labels from FNN-PSO algorithm on Sonar.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 20

Figure 18. Ground truth vs. predicted labels from FNN-PSO algorithm on Mammographic Mass

Figure 19. Ground truth vs. predicted labels from FNN-PSO algorithm on Sonar

Figure 20. Accuracy of the algorithms on the Iris data set.

84.35% 99.16% 88.67%
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

K-Means NNPSO FCM

Ac
cu

ra
cy

 (%
)

Iris

Figure 20. Accuracy of the algorithms on the Iris data set.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 21

Figure 21. Accuracy of the algorithms on the Breast Cancer data set.

Figure 22. Accuracy of the algorithms on the Seeds dataset.

95.95% 94.04% 94.84%
82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

102.00%

K-Means NNPSO FCM

Ac
cu

ra
cy

 (%
)

Breast Cancer

89.30% 81.71% 89.52%
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

K-Means NNPSO FCM

Ac
cu

ra
cy

 (%
)

Seeds

Figure 21. Accuracy of the algorithms on the Breast Cancer data set.

Mach. Learn. Knowl. Extr. 2021, 3 714

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 21

Figure 21. Accuracy of the algorithms on the Breast Cancer data set.

Figure 22. Accuracy of the algorithms on the Seeds dataset.

95.95% 94.04% 94.84%
82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

102.00%

K-Means NNPSO FCM

Ac
cu

ra
cy

 (%
)

Breast Cancer

89.30% 81.71% 89.52%
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

K-Means NNPSO FCM

Ac
cu

ra
cy

 (%
)

Seeds

Figure 22. Accuracy of the algorithms on the Seeds dataset.
Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 22

Figure 23. Accuracy of the algorithms on the Mammographic Mass data set.

Figure 24. Accuracy of the algorithms on the Sonar data set.

The K-Means algorithm was the first algorithm that was implemented for the exper-
iment, so it was often used as a baseline for comparing the other algorithms. While the
performance did not excel in many categories, the results were all within the expected
range based on results from other similar experiments and in the literature [2]. One po-
tential problem to note is that the standard deviation for the performance metrics from
the Iris results are noticeably higher than the results from the other data sets. This was
found to be due to the algorithm’s tendency to become stuck at local minima [1], which is
detailed more in Section 5. The results from the Fuzzy C-Means algorithm have averages
that are more or less similar to the results from K-Means. However, the standard deviation
for those values is much lower. Despite randomly initializing the starting centroids, the
model always seemed to converge to positions that effectively presented the same perfor-
mance metrics. It can be inferred that the ‘fuzzy’ aspect of the model is what is contrib-
uting to this, allowing for any particular point to belong to each cluster centroid to a cer-
tain degree, but when it came time to classify, the highest weighted relationship with a
centroid (no matter how small the difference between the various weights) was what

66.20% 78.83% 66.88%
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

K-Means NNPSO FCM

Ac
cu

ra
cy

 (%
)

Mammographic Mass

52.64% 71.27% 55%
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

K-Means NNPSO FCM

Ac
cu

ra
cy

 (%
)

Sonar

Figure 23. Accuracy of the algorithms on the Mammographic Mass data set.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 22

Figure 23. Accuracy of the algorithms on the Mammographic Mass data set.

Figure 24. Accuracy of the algorithms on the Sonar data set.

The K-Means algorithm was the first algorithm that was implemented for the exper-
iment, so it was often used as a baseline for comparing the other algorithms. While the
performance did not excel in many categories, the results were all within the expected
range based on results from other similar experiments and in the literature [2]. One po-
tential problem to note is that the standard deviation for the performance metrics from
the Iris results are noticeably higher than the results from the other data sets. This was
found to be due to the algorithm’s tendency to become stuck at local minima [1], which is
detailed more in Section 5. The results from the Fuzzy C-Means algorithm have averages
that are more or less similar to the results from K-Means. However, the standard deviation
for those values is much lower. Despite randomly initializing the starting centroids, the
model always seemed to converge to positions that effectively presented the same perfor-
mance metrics. It can be inferred that the ‘fuzzy’ aspect of the model is what is contrib-
uting to this, allowing for any particular point to belong to each cluster centroid to a cer-
tain degree, but when it came time to classify, the highest weighted relationship with a
centroid (no matter how small the difference between the various weights) was what

66.20% 78.83% 66.88%
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

K-Means NNPSO FCM

Ac
cu

ra
cy

 (%
)

Mammographic Mass

52.64% 71.27% 55%
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

K-Means NNPSO FCM

Ac
cu

ra
cy

 (%
)

Sonar

Figure 24. Accuracy of the algorithms on the Sonar data set.

Mach. Learn. Knowl. Extr. 2021, 3 715

The K-Means algorithm was the first algorithm that was implemented for the exper-
iment, so it was often used as a baseline for comparing the other algorithms. While the
performance did not excel in many categories, the results were all within the expected range
based on results from other similar experiments and in the literature [2]. One potential
problem to note is that the standard deviation for the performance metrics from the Iris
results are noticeably higher than the results from the other data sets. This was found to
be due to the algorithm’s tendency to become stuck at local minima [1], which is detailed
more in Section 5. The results from the Fuzzy C-Means algorithm have averages that are
more or less similar to the results from K-Means. However, the standard deviation for
those values is much lower. Despite randomly initializing the starting centroids, the model
always seemed to converge to positions that effectively presented the same performance
metrics. It can be inferred that the ‘fuzzy’ aspect of the model is what is contributing to
this, allowing for any particular point to belong to each cluster centroid to a certain degree,
but when it came time to classify, the highest weighted relationship with a centroid (no
matter how small the difference between the various weights) was what determined which
cluster the point belonged to. Fuzzy C-Means also did not seem to share the issue for the
Iris data set with K-Means. This could imply that the membership matrix also allows better
exploration of the data sets in certain conditions.

As for the neural network, while it does not share most of the performance metrics
with the other two algorithms, accuracy and F-Score, which it does share, seem to have a
significant improvement on most of the data sets. The Mammographic Mass and Sonar data
sets in particular have a notable improvement over the two clustering algorithms. The most
likely factor in this is the difference in how the algorithm determines the classification for
the data points. As the neural network does not rely on the Euclidean distance to determine
which points belong to which category and instead uses the approximation function
generated by the network, the overlapping of the cluster areas that caused problems for the
clustering algorithms is not apparent. It is also worth noting however that the performance
of the Seeds data set was notably worse for the network. As shown in Figure 14, the
Seeds data set struggles to converge, unlike most of the data sets. Looking at the standard
deviations for the accuracies may offer some insight into this discrepancy. The network
appears to have more volatility in its predictions then both clustering algorithms, and so
it is possible that the setup of the nodes and activation function adds some problematic
handling of the data that was not apparent in K-Means or Fuzzy C-Means.

5. Concluding Remarks and Observations from Related Studies

The goal of this work was to investigate the strengths and weaknesses of several
clustering and classification algorithms to help validate the performance of each of them
and to gain a better understanding of where they might be applicable. The simpler and
relatively computationally cheap K-Means is well suited for general tasks but tends to
fall short on more complex data sets. Fuzzy C-Means is similarly suited for general
tasks and has the bonus of being able to better handle the ambiguity between clusters
using a probabilistic membership matrix. Still, the limitations of utilizing a deterministic
cluster update scheme can leave it falling short in data sets with overlapping clusters.
Furthermore, both algorithms can end up trapped in local optima, creating an inaccurate
model. The same problem may be looked at from a classification standpoint, where a
feed-forward neural network optimized by PSO performs reliably on all of the data sets
considered. The sensitivity to the initialization parameters implies that care must be
taken to ensure that the algorithm returns meaningful results for any individual data set.
However, there is no guarantee that even the most optimal set of parameters will result in a
perfect classification, as that would depend on the complexity of the underlying mapping
represented by the dataset.

While there is still work that can be conducted in this area, the experiments done in this
paper have achieved some of the insights that were hoped for. While the clustering data sets
performed admirably on some data sets, others were only slightly better than guesswork.

Mach. Learn. Knowl. Extr. 2021, 3 716

This shows that while spatially grouping data can be adequate in some situations, it can
only go so far. Furthermore, the improved exploration provided by the “Fuzzy” aspects
of FCM did allow it to perform more consistently and even better in some situations than
K-Means. Still, this strength did not allow it to overcome the fundamental weakness in
spatially grouped data with overlapping clusters. The FNN-PSO had its strengths as well,
relying not on spatial clustering, but approximating an equation to represent the data set,
meaning overlapping data was not an issue. It did however fall short in the complexity
of the implementation, especially with regard to the Seeds data set, where even the most
optimal parameters that were found did not allow it to properly approximate the data.
Additionally, as with the Breast Cancer data set, it did not perform much better than the
simpler clustering algorithms despite this extra complexity. Going forward, it will be
important to keep these things in mind, as knowing how the data set works is just as
important as finding an algorithm that works well for the data set.

Future work in this area would include moving beyond benchmarking data sets
and into more complex data in order to apply some of the insights gained from these
introductory experiments. Furthermore, exploring the functionality of the algorithms on a
step-by-step basis could give further insights into the exact strengths and weaknesses of
the algorithms and their applicability to a large variety of interesting problems.

5.1. Related Work and Performance

While the results from the experiments here have given some of the desired insights,
to validate some of these results, it is productive to compare them to the results reported in
other, similar experiments. Below is a list of works that cover clustering and classification
tasks utilizing the same data sets investigated in this paper.

• “Comparative Analysis of K-means and K-medoids Algorithm on IRIS Data” [35],
authored by Kalpit G. Soni and Atul Patel.

• “Self-organizing Maps as Substitutes for K-Means Clustering” [36], authored by
Fernando Bação, Victor Lobo, and Marco Painho.

• “Comparison of Machine Learning Methods for Breast Cancer Diagnosis” [37], au-
thored by Ebru Aydındag Bayrak, Pınar Kırcı and Tolga Ensari.

• “Ensemble Decision Tree Classifier for Breast Cancer Data” [38], authored by D. Lavanya
and K. Usha Rani.

• “An Application of Deep Neural Network for Classification of Wheat Seeds” [39],
authored by Ayşe Eldem.

• “Predicting breast cancer biopsy outcomes from BI-RADS findings using random
forests with chi-square and MI features” [40], authored by Sheldon Williamson, K.
Vijayakumar, and Vinod J. Kadam.

• “Classification of Sonar Targets Using OMKC, Genetic Algorithms and Statistical Mo-
ments” [41], authored by Mohammad Reza Mosavi, Mohammad Khishe, Ehsan Ebrahimi.

5.2. Observations on Iris

In Soni and Patel [35], the K-medoids or partitioning around medoid method was
utilized for benchmarking purposes. The K-medoids method was proposed to help reduce
the effects of outliers in the K-Means algorithm. In this technique, a set number of ran-
dom points is chosen before the distances between the data points, and the centroids are
calculated. The results of clustering accuracy vs. true classes for the K-means algorithm
was 88.7%, and for K-medoids, it was 92%. Bação, Lobo and Painho [36] investigated
self-organizing maps (SOM) on the Iris data set. Self-organizing maps were utilized here
in a clustering context, and function similar to K-means in how the data patterns were
mapped to neurons in an n-dimensional grid and were then grouped based on distance in
the output space. The results from this study show that self-organizing maps can perform
well and are less prone to local optima than K-means. Essentially, this method allows
earlier exploration of the search space and can avoid issues that K-means may have where
the data have multiple optima.

Mach. Learn. Knowl. Extr. 2021, 3 717

5.3. Observations on Breast Cancer

Bayrak, Kirci and Ensari [37] cover the utilization of support vector machines and
artificial neural networks on the Wisconsin Breast Cancer (Original) data set. Support
vector machines are often used for pattern recognition problems and function by separating
the classes with a hyperplane consisting of support vectors of critical samples from each
of the classes. The results for the best implementation of a SVM put the classification
accuracy at about 96.9957%. In Lavanya and Rani [38], the classification and regression
trees (CART) method was tested on the Breast Cancer (Original) data set. This method uses
recursive partitioning in a regression tree algorithm hybridized with bagging, a bootstrap
aggregation method. Based on the experiments, this hybrid method was able to give a
classification accuracy of about 97.85%.

5.4. Observations on Seeds

In Eldem [39], a deep neural network is utilized to test the effectiveness of a model
trained on the Seeds data set. For this experiment, both the base data set and a synthetic
data set were utilized to test the performance of the model. Multiple models were trained
using a combination of these two data sets. First off, a model with only the base data set
was trained on a 70–30 split, one trained was on the synthetic data set and tested on the base
data set, and finally, a model utilizing a combination of both the base and synthetic data
sets combined and utilizing a 70–30 train–test split was determined. The model utilizes
categorical cross entropy as its loss function. The results show a 100% success rate across
its tests, including the tests utilizing the synthetic data set.

5.5. Observations on Mammographic Mass

Williamson, Vijayakumar and Kadam [40] investigate the performance of the random
forest algorithm on the Mammographic Mass data set. Before the model was run, multiple
setup steps were utilized. First, missing value handling was completed using a K-nearest
neighbors implementation; then, the values of the data set were standardized using min-
max normalization, and finally, the chi-square test of independence was used to determine
which attributes should be used for testing. After these pre-processing steps, a classification
model using the random forest algorithm was created. With the proposed method, an
accuracy of 84.7% was recorded.

5.6. Observations on Sonar

Mosavi, Khishe and Ebrahimi [41] utilized the Sonar data set to benchmark perfor-
mance of a variety of online multi kernel classifier (OMKC) algorithms. In essence, the
functionality of the algorithms proposed for this paper are based on the idea of training the
multi kernel classifier and optimizing the linear combination simultaneously. The proposed
variations in structure serve to improve both the accuracy and efficiency of operation and
utilize stochastic methods for updating the kernel weights. The results of these various
models have ranges in accuracy between 61.11% and 79.95%, with the best performance
belonging to the implementation utilizing the stochastic selection of the kernels and the
stochastic updating of the kernel weights.

While the methods used vary widely, the range of values produced from these works
are in range with the ones produced by the experiments in this paper. For reference,
one may also look at [42–45] as implementations of a related nature for benchmarking
classification and clustering jobs.

Author Contributions: Conceptualization, A.P. and S.S.; methodology, A.P. and S.S.; formal analysis,
A.P. and S.S.; investigation, A.P. and S.S.; resources, S.S.; writing—original draft preparation, A.P.;
writing—review and editing, A.P. and S.S.; visualization, A.P. and S.S.; supervision, S.S. Both authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Mach. Learn. Knowl. Extr. 2021, 3 718

Informed Consent Statement: Not applicable.

Data Availability Statement: The publicly available datasets analyzed in this work are accessi-
ble from UCI Machine learning Repository at https://archive.ics.uci.edu/ml/index.php (accessed
on 10 February 2021) and the scikit-learn library at https://scikit-learn.org/stable/ (accessed on
10 February 2021).

Acknowledgments: The authors would like to express their appreciation to the colleagues who
provided valuable input during the preparation of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ahmadyfard, A.; Modares, H. Combining PSO and k-means to enhance data clustering. In Proceedings of the 2008 International

Symposium on Telecommunications, Tehran, Iran, 27–28 August 2008; pp. 688–691.
2. Sengupta, S.; Basak, S.; Peters, R.A. Data clustering using a hybrid of fuzzy c-means and quantum-behaved particle swarm

optimization. In Proceedings of the 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC),
Las Vegas, NV, USA, 8–10 January 2018; pp. 137–142.

3. Sengupta, S.; Basak, S.; Saikia, P.; Paul, S.; Tsalavoutis, V.; Atiah, F.; Ravi, V.; Peters, A. A review of deep learning with special
emphasis on architectures, applications and recent trends. Knowl. Based Syst. 2020, 194, 105596. [CrossRef]

4. Merwe, D.W.; Engelbrecht, A.P. Data Clustering Using Particle Swarm Optimization. In Proceedings of the 2003 Congress on
Evolutionary Computation, Canberra, Australia, 8–12 December 2003; pp. 215–220.

5. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June–18 July 1965; Volume 1, pp. 281–297.

6. Tarkhaneh, O.; Shen, H. Training of feedforward neural networks for data classification using hybrid particle swarm optimization,
Mantegna Lévy flight and neighborhood search. Heliyon 2019, 5, e01275. [CrossRef]

7. Zhang, C.; Shao, H. Particle Swarm Optimisation in Feedforward Neural Network. In Artificial Neural Networks in Medicine and
Biology. Perspectives in Neural Computing; Malmgren, H., Borga, M., Niklasson, L., Eds.; Springer: London, UK, 2000. [CrossRef]

8. Karaboga, D.; Akay, B.; Ozturk, C. Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural
Networks. In Modeling Decisions for Artificial Intelligence; Torra, V., Narukawa, Y., Yoshida, Y., Eds.; MDAI 2007. Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 4617. [CrossRef]

9. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

10. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)
algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

11. Sengupta, S.; Basak, S.; Peters, R.A. QDDS: A Novel Quantum Swarm Algorithm Inspired by a Double Dirac Delta Potential. In
Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018;
pp. 704–711. [CrossRef]

12. Yang, X.S.; Deb, S. Cuckoo Search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired
Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.

13. Colorni, A.; Dorigo, M.; Maniezzo, V. Distributed Optimization by Ant Colonies. In Actes de la Première Conférence Européenne sur
la vie Artificielle, Paris, France; Elsevier Publishing: Amsterdam, The Netherlands, 1991; pp. 134–142.

14. Sengupta, S.; Basak, S.; Peters, R.A., II. Chaotic Quantum Double Delta Swarm Algorithm Using Chebyshev Maps: Theoretical
Foundations, Performance Analyses and Convergence Issues. J. Sens. Actuator Netw. 2019, 8, 9. [CrossRef]

15. Sha, D.; Lin, H.-H. A multi-objective PSO for job-shop scheduling problems. Expert Syst. Appl. 2010, 37, 1065–1070. [CrossRef]
16. Chen, C.; Zhou, K. Application of Artificial Bee Colony Algorithm in Vehicle Routing Problem with Time Windows. In Proceedings

of the 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Xi’an, China, 15–17 August 2018;
pp. 781–785. [CrossRef]

17. Marinakis, Y.; Marinaki, M.; Migdalas, A. Particle Swarm Optimization for the Vehicle Routing Problem: A Survey and a
Comparative Analysis. In Handbook of Heuristics; Martí, R., Pardalos, P., Resende, M., Eds.; Springer: Cham, Switzerland, 2018.

18. Sengupta, S.; Basak, S. Computationally efficient low-pass FIR filter design using Cuckoo Search with adaptive Levy step
size. In Proceedings of the 2016 International Conference on Global Trends in Signal Processing, Information Computing and
Communication (ICGTSPICC), Jalgaon, India, 22–24 December 2016; pp. 324–329. [CrossRef]

19. Dhabal, S.; Sengupta, S. Efficient design of high pass FIR filter using quantum-behaved particle swarm optimization with
weighted mean best position. In Proceedings of the 2015 Third International Conference on Computer, Communication, Control
and Information Technology (C3IT), Hooghly, India, 7–8 January 2015; pp. 1–6. [CrossRef]

20. Zhu, H.; Wang, Y.; Wang, K.; Chen, Y. Particle Swarm Optimization (PSO) for the constrained portfolio optimization problem.
Expert Syst. Appl. 2011, 38, 10161–10169. [CrossRef]

21. Kumar, D.; Mishra, K. Portfolio optimization using novel co-variance guided Artificial Bee Colony algorithm. Swarm Evol.
Comput. 2017, 33, 119–130. [CrossRef]

https://archive.ics.uci.edu/ml/index.php
https://scikit-learn.org/stable/
http://doi.org/10.1016/j.knosys.2020.105596
http://doi.org/10.1016/j.heliyon.2019.e01275
http://doi.org/10.1007/978-1-4471-0513-8_50
http://doi.org/10.1007/978-3-540-73729-2_30
http://doi.org/10.1007/s10898-007-9149-x
http://doi.org/10.1109/SSCI.2018.8628792
http://doi.org/10.3390/jsan8010009
http://doi.org/10.1016/j.eswa.2009.06.041
http://doi.org/10.1109/SDPC.2018.8664999
http://doi.org/10.1109/ICGTSPICC.2016.7955321
http://doi.org/10.1109/C3IT.2015.7060145
http://doi.org/10.1016/j.eswa.2011.02.075
http://doi.org/10.1016/j.swevo.2016.11.003

Mach. Learn. Knowl. Extr. 2021, 3 719

22. Basak, S.; Sun, F.; Sengupta, S.; Dubey, A. Data-Driven Optimization of Public Transit Schedule. In Big Data Analytics; Madria, S.,
Fournier-Viger, P., Chaudhary, S., Reddy, P., Eds.; BDA 2019. Lecture Notes in Computer Science; Springer: Cham, Switzerland,
2019; Volume 11932. [CrossRef]

23. Majhi, S.K.; Biswal, S. Optimal cluster analysis using hybrid K-Means and Ant Lion Optimizer. Karbala Int. J. Mod. Sci. 2018,
4, 347–360. [CrossRef]

24. K-Means Advantages and Disadvantages|Clustering in Machine Learning. 2021. Available online: https://developers.google.
com/machine-learning/clustering/algorithm/advantages-disadvantages (accessed on 10 February 2021).

25. Nayak, J.; Naik, B.; Behera, H.S. Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014. Blockchain
Technol. Innov. Bus. Process. 2015, 2, 133–149.

26. Bezdek, J.C. Modified Objective Function Algorithms. In Pattern Recognition with Fuzzy Objective Function Algorithms; Springer US
Science & Business Media: New York, NY, USA, 1981; pp. 155–201.

27. Torra, V. On Fuzzy c -Means and Membership Based Clustering. In International Work-Conference on Artificial Neural Networks;
Springer: Cham, Switzerland, 2015; pp. 597–607.

28. Zhang, J.; Ma, Z. Hybrid Fuzzy Clustering Method Based on FCM and Enhanced Logarithmical PSO (ELPSO). Comput. Intell.
Neurosci. 2020, 2020, 1–12. [CrossRef] [PubMed]

29. Feng, Y.; Lu, H.; Xie, W.; Yin, H.; Bai, J. An Improved Fuzzy C-Means Clustering Algorithm Based on Multi-chain Quantum Bee
Colony Optimization. Wirel. Pers. Commun. 2017, 102, 1421–1441. [CrossRef]

30. Figueiredo, E.M.; Ludermir, T. Investigating the use of alternative topologies on performance of the PSO-ELM. Neurocomputing
2014, 127, 4–12. [CrossRef]

31. Sengupta, S.; Basak, S.; Peters, R. Particle Swarm Optimization: A Survey of Historical and Recent Developments with Hybridiza-
tion Perspectives. Mach. Learn. Knowl. Extr. 2018, 1, 10. [CrossRef]

32. UCI Machine Learning Repository. Available online: http://archive.ics.uci.edu/ml/ (accessed on 10 February 2021).
33. Scikit-learn Library. Available online: https://scikit-learn.org/stable/ (accessed on 10 February 2021).
34. Patel, G.K.; Dabhi, V.K.; Prajapati, H.B. Clustering Using a Combination of Particle Swarm Optimization and K-means. J. Intell.

Syst. 2016, 26, 457–469. [CrossRef]
35. Soni, K.G.; Patel, A. Comparative Analysis of K-means and K-medoids Algorithm on IRIS Data. Int. J. Comput. Intell. Res. 2017,

13, 899–906.
36. Bação, F.; Lobo, V.; Painho, M. Self-organizing Maps as Substitutes for K-Means Clustering. In Computational Science–ICCS 2006;

Springer: Berlin/Heidelberg, Germany, 2005; pp. 476–483. [CrossRef]
37. Bayrak, E.A.; Kirci, P.; Ensari, T. Comparison of Machine Learning Methods for Breast Cancer Diagnosis. In Proceedings of

the 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey,
24–26 April 2019. [CrossRef]

38. Lavanya, D.; Rani, K.U. Ensemble Decision Making System for Breast Cancer Data. Int. J. Comput. Appl. 2012, 51, 19–23.
[CrossRef]

39. Eldem, A. An Application of Deep Neural Network for Classification of Wheat Seeds. Avrupa Bilim Ve Teknol. Derg. 2020,
19, 213–220.

40. Williamson, S.; Vijayakumar, K.; Kadam, V.J. Predicting breast cancer biopsy outcomes from BI-RADS findings using random
forests with chi-square and MI features. Multimed. Tools Appl. 2021, 1–21. [CrossRef]

41. Mosavi, M.R.; Khishe, M.; Ebrahimi, E. Classification of sonar targets using OMKC, genetic algorithms and statistical moments.
J. Adv. Comput. Res. 2016, 7, 143–156.

42. Hanif, M. Parallelized PSO Clustering; GitHub Repository. 2020. Available online: https://github.com/ms03831/parallelized-
PSO-clustering (accessed on 10 February 2021).

43. Shriti, K. Fuzzy C Means Clustering; GitHub Repository. 2020. Available online: https://github.com/ShristiK/Fuzzy-C-Means-
Clustering (accessed on 10 February 2021).

44. Ahmad, Z. Train Neural Network (Numpy)-Particle Swarm Optimization (PSO). 2020. Available online: https://medium.com/
@zeeshanahmad10809/train-neural-network-numpy-particle-swarm-optimization-pso-93f289fc8a8e (accessed on 10 February 2021).

45. Prateekk94. Fuzzy C-Means Clustering on Iris Dataset. 2020. Available online: https://www.kaggle.com/prateekk94/fuzzy-c-
means-clustering-on-iris-dataset (accessed on 10 February 2021).

http://doi.org/10.1007/978-3-030-37188-3_16
http://doi.org/10.1016/j.kijoms.2018.09.001
https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages
https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages
http://doi.org/10.1155/2020/1386839
http://www.ncbi.nlm.nih.gov/pubmed/32256549
http://doi.org/10.1007/s11277-017-5203-2
http://doi.org/10.1016/j.neucom.2013.05.047
http://doi.org/10.3390/make1010010
http://archive.ics.uci.edu/ml/
https://scikit-learn.org/stable/
http://doi.org/10.1515/jisys-2015-0099
http://doi.org/10.1007/11428862_65
http://doi.org/10.1109/ebbt.2019.8741990
http://doi.org/10.5120/8134-1823
http://doi.org/10.1007/s11042-021-11114-5
https://github.com/ms03831/parallelized-PSO-clustering
https://github.com/ms03831/parallelized-PSO-clustering
https://github.com/ShristiK/Fuzzy-C-Means-Clustering
https://github.com/ShristiK/Fuzzy-C-Means-Clustering
https://medium.com/@zeeshanahmad10809/train-neural-network-numpy-particle-swarm-optimization-pso-93f289fc8a8e
https://medium.com/@zeeshanahmad10809/train-neural-network-numpy-particle-swarm-optimization-pso-93f289fc8a8e
https://www.kaggle.com/prateekk94/fuzzy-c-means-clustering-on-iris-dataset
https://www.kaggle.com/prateekk94/fuzzy-c-means-clustering-on-iris-dataset

	Introduction
	Materials and Methods
	K-Means Algorithm
	Fuzzy C-Means Algorithm
	Feed Forward Neural Network with a Particle Swarm Optimization (PSO) Driven Weight Update Scheme
	Feed-Forward Neural Network
	Particle Swarm Optimization (PSO)

	Experimental Setup
	Parameter Settings for PSO
	Data Sets
	Performance Indices
	K-Means Implementation
	Fuzzy C-Means Implementation
	Feed-Forward Neural Network Tuned by a Particle Swarm Optimization Algorithm

	Results and Related Discussion
	Concluding Remarks and Observations from Related Studies
	Related Work and Performance
	Observations on Iris
	Observations on Breast Cancer
	Observations on Seeds
	Observations on Mammographic Mass
	Observations on Sonar

	References

