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Abstract: Motivated by the growing threat of distributed denial-of-service (DDoS) attacks and
the emergence of quantum computing, this study introduces a novel “quanvolutional autoencoder”
architecture for learning representations. The architecture leverages the computational advantages
of quantum mechanics to improve upon traditional machine learning techniques. Specifically, the
quanvolutional autoencoder employs randomized quantum circuits to analyze time-series data from
DDoS attacks, offering a robust alternative to classical convolutional neural networks. Experimental
results suggest that the quanvolutional autoencoder performs similarly to classical models in visu-
alizing and learning from DDoS hive plots and leads to faster convergence and learning stability.
These findings suggest that quantum machine learning holds significant promise for advancing data
analysis and visualization in cybersecurity. The study highlights the need for further research in this
fast-growing field, particularly for unsupervised anomaly detection.

Keywords: convolutional neural network; quantum computing; autoencoder; dimensionality
reduction; representation learning; quanvolutional autoencoder

1. Introduction

Classic neural networks continue to show their diversity and intensive research has
been undertaken by different groups worldwide [1–3]. They continue to impact a wide
variety of applications in various areas positively. One of the most efficient neural network
architectures for learning spatial dependencies is the convolutional neural network (CNN).
The CNN is based on the convolutional operation that can be easily implemented in most
software and hardware platforms. CNNs have been shown to be very competitive at
learning representations from both single data sources [4,5] and also from multi-modal
data [6,7]. In particular, autoencoder configurations of a CNN are usually preferred for
learning unbiased representations of spatially correlated data [8,9].

There is a similar growth in interest in quantum machine learning (QML) models
that may utilize quantum computing and quantum information techniques. In great
introductory articles such as Refs. [10,11], the authors show different strategies that can
be used to encode data into a quantum representation (quantum embeddings [12]) and
techniques to perform fundamental quantum operations that facilitate learning in a way
that is analogous to the classic machine learning paradigm [13–15]. These strategies and
our understanding of QML have evolved into different attractive experimental models
such as quanvolutional neural networks (QNNs) [16–18]. These types of networks have
replaced the classic convolutional operation with a quantum operation that is equivalent
and has the potential to perform faster and produce similar results. Given the nature of
quantum computing and the error-prone nature of quantum circuit measurements, either
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simulated or real, making fair comparisons and quantifying its usefulness with precision
can be challenging.

QML applications in cybersecurity are an emerging trend. While quantum computers
are still in the developmental stage and not widely adopted for cybersecurity applications,
the integration of quantum and classical deep learning techniques has shown promise in
enhancing cybersecurity measures, particularly in areas like botnet DGA detection [19].

This paper aims to address two critical gaps in the existing literature. First, it intro-
duces a pioneering QML architecture, the “quanvolutional autoencoder”, which synergisti-
cally combines quantum computing techniques with classical machine learning paradigms.
Second, it applies this novel architecture to a pressing issue in cybersecurity—specifically,
the analysis and visualization of time-series data related to DDoS attacks.

The motivation for developing the quanvolutional autoencoder is rooted in the search
for more efficient methods to process complex, high-dimensional data. While classical
autoencoders have their strengths, they can struggle with the computational demands
of large-scale or intricate datasets. Quantum computing presents an alternative avenue,
with theoretical predictions of speedup in specific computational tasks, particularly those
suited to quantum algorithms’ strengths. For instance, Grover’s algorithm is known to
offer exponential speedup in search problems over classical algorithms. Our prior work,
detailed in [15], explores this aspect of quantum computing, demonstrating the potential of
such algorithms in specific contexts. Here, we do not claim an exponential speedup for our
quanvolutional autoencoder architecture; instead, we leverage the principles of quantum
computation to aim for improvements in convergence times and learning stability within
the capabilities of current quantum technology.

Our key contributions are as follows:

1. The development and validation of a quanvolutional autoencoder, a quantum-based
architecture designed to outperform classical autoencoders in terms of computational
efficiency and learning stability.

2. A comprehensive empirical analysis comparing the quanvolutional autoencoder with
classical autoencoders, focusing on their ability to differentiate between normal traffic
and DDoS attacks in an unsupervised setting.

3. Evidence of faster and more stable convergence in the quantum-based model during
training, substantiated by a rigorous loss function analysis.

4. An exploration into the untapped potential of quantum-based autoencoders in the
field of unsupervised anomaly detection, setting the stage for future research.

The remainder of this paper is organized as follows: Section 2 provides an in-depth
review of related work in the domains of quantum autoencoders and DDoS attack analysis
using hive plots. Section 3 explains our experimental methodology, followed by a detailed
presentation of our results and discussion in Section 4. Section 5 concludes the paper.

2. Background and Related Work

Autoencoders (AEs) have been a cornerstone in unsupervised learning, offering many
applications ranging from dimensionality reduction to generative modeling [20]. The
architecture of a classic autoencoder, as depicted in Figure 1, is particularly effective in
learning compressed representations of high-dimensional data, such as images of size
256 × 256 that flatten to a one-dimensional vector, x ∈ R65536 [21]. The bottleneck layer,
usually with the fewest neural units, is the central point of information compression [22,23].

Autoencoders have been extended to various forms, including convolutional autoen-
coders (CAEs), which are particularly effective in handling image data [24,25]. CAEs are
a subset of CNNs and are generally trained in an unsupervised manner to learn spatial
hierarchies of features [26,27]. They have been instrumental in various applications, from
image denoising to anomaly detection [28,29]. Recent advancements have also led to the
development of more complex variants like variational autoencoders (VAEs) and denois-
ing AEs, which have shown promise in generative modeling and robust feature learning,
respectively [30,31].
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Figure 1. Autoencoder architecture example using fully connected (dense) layers. Flattened input data
goes through a series of encoding and decoding layers. The bottleneck offers access to compressed
information of the input data.

Quantum machine learning, particularly quantum autoencoders, is an emerging field
that aims to leverage the computational advantages of quantum mechanics. Preliminary
studies suggest that quantum autoencoders can perform comparably to their classical
counterparts but with the added benefit of computational efficiency [32,33]. In cybersecurity,
specifically for the analysis of DDoS attacks, hive plots serve as a multi-dimensional data
visualization tool.

Our work builds upon both classical and quantum autoencoding techniques, aiming
to push the boundaries of what is computationally possible and efficient in unsupervised
learning [34,35].

2.1. Convolutional Autoencoder

CAEs have been the subject of extensive research, especially for unsupervised learning
tasks [36,37]. They are a specialized type of autoencoder designed to handle grid-structured
input data, like images [38,39]. The architecture typically consists of convolutional lay-
ers, adept at learning spatial hierarchies of features [36,37]. The primary objective of a
CAE is to learn a compressed yet rich representation of the input data [40,41]. This is
achieved by minimizing a reconstruction loss function, usually through backpropagation
and gradient descent.

CAEs have found successful applications across various domains. For instance, re-
searchers have used CAEs in agriculture to detect anomalies in agricultural vehicles [41].
In the field of power systems, engineers employ CAEs to detect high-impedance faults [42].
Similarly, the textile industry utilizes CAEs for identifying defects in fabrics [43]. In medical
imaging, experts apply CAEs to assess lung cancer in CT images [44] and to detect infant
cries and pain [40].

Furthermore, CAEs have been combined with other techniques to enhance their
performance. For instance, combining CAEs with variational autoencoders (VAEs) has
been used for unsupervised image clustering [45]. Integrating CAEs with long short-term
memory (LSTM) networks has been employed for fall detection from thermal camera
data [46]. Additionally, CAEs have been used in motion synthesis and editing, where they
learn a representation of character motion [47].

CAEs are a powerful tool for unsupervised learning tasks, particularly in handling
grid-structured input data like images. They have been successfully applied in various do-
mains, including agriculture, power systems, fabric defect detection, medical imaging, and
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motion synthesis. Combining CAEs with other techniques has expanded their capabilities
and improved their performance in different applications.

2.2. Quanvolutional Autoencoder for Computer Vision

Quantum algorithms (QAs) hold great promise in the field of computer vision, offering
rapid and secure information processing capabilities that are paramount for handling com-
plex datasets. In this vein, we propose a novel architecture: a quanvolutional autoencoder
(QAE), which combines the principles of quantum computing with the framework of a clas-
sical convolutional autoencoder to enhance feature learning and dimensionality reduction
from image data. At the core of our approach is the replacement of conventional convolu-
tional filters with quantum convolutions—a technique executed via a quantum circuit to
perform feature extraction [48]. These quantum convolutions introduce a paradigm shift
from classical processing, enabling the exploitation of quantum mechanical phenomena
to handle the input data. Figure 2 depicts a streamlined view of the QAE architecture,
delineating the progression from input to quanvolutional processing, subsequent encoding
to a latent space, and final image reconstruction.

Input Quanvolutions Encoder z ∈ Rd Decoder Output

Figure 2. Generic architecture of a quanvolutional autoencoder. The quanvolutional layer initiates
the feature extraction process from the input data. The encoder compresses these features into a
dense latent space representation, z, which is then expanded back to the original data structure by
the decoder, culminating in the output.

Our interpretation of the QAE, while inspired by the original concept of quanvolu-
tional neural networks [49], diverges significantly in both application and methodology.
Unlike the classification focus of the prior work, our model is oriented towards unsu-
pervised representation learning—a distinction that necessitates novel approaches to loss
functions, layer design, and computational demands. Furthermore, our model is fully
unsupervised and does not rely on labeled data, setting it apart from traditional supervised
learning paradigms.

The efficacy of QAs in neural network architectures is partly constrained by the
availability of qubits, which is a limitation more pronounced in physical implementations
than in simulations. Despite this, the application of quantum information processing
techniques to classical data represents a substantial advancement, harnessing both Gaussian
and non-Gaussian quantum gates to achieve the linear and nonlinear transformations
intrinsic to neural networks [50]. The adaptability of these quantum-based transformations
to various data types has the potential to impact many areas, such as cybersecurity, which
we will discuss next.

2.3. DDoS Attacks

In cybersecurity, a DDoS attack is a common type of organized attack. In particular,
DDoS attacks are a common way to attack websites and other networked servers. These
attacks are usually easy to perform and require little skill. The attack attempts to deplete
a limited resource, such as server memory or CPU cycles, resulting in low service per-
formance or significant delays in response time. Over the past year, the average DDoS
attack size has increased by over 540%, with the maximum attack size exceeding a ter-
abit/second. It is currently possible for unskilled attackers to rent botnets with about
500,000 connected devices. Such attacks are only expected to worsen since the number of
minimally secured Internet of Things (IoT) devices that can be conscripted into botnets is
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expected to surpass 20 billion devices soon. DDoS attacks against organizations that use
cloud services often cause bandwidth depletion and resource inaccessibility [51]. Thus,
there is a significant need for new techniques that identify and mitigate DDoS attacks. In
machine learning, DDoS detection and mitigation techniques can be addressed with ma-
chine learning algorithms [52–55]. Significant recent efforts include multi-channel CNNs
for DDoS attack detection [56], multivariate regression analysis [57], and support vector
machine-based techniques [58], to name a few. In this paper, we explore the novel approach
of network traffic visualization using hive plots to investigate DDoS attacks.

2.4. Introduction to Hive Plots

Attack pattern visualization is pivotal for extracting more meaningful information
from complicated datasets. Researchers introduced hive plots as a straightforward approach
to creating an informative, quantitative, and easily comparable depiction of multidimen-
sional datasets [59–62]. Since then, hive plots have found applications in areas such as
bioinformatics [61] and machine learning [53], to name a few. Hive plots are useful since
they do not introduce artifacts like many other forms of data visualization. See Figure 3
as an example of a hive plot. In the figure, the example depicts a three-axis hive plot; for
example, in a DDoS attack, these dimensions might represent the time of the attack, source
IP address, and source country, which in the figure correspond to al , ar, and at, respectively.
The decision of which axis to use and how many axes to use depends on what we are trying
to represent. This research will use hive plots to provide information about network traffic.
This will enable us to study DDoS attacks from a QML perspective using convolutional AEs.

Figure 3. Example of a three-axis hive plot. Each axis at, al , and ar represents a dimension or
information about the data. This example corresponds to a snapshot of network traffic; the top axis,
at, represents the country of origin, the left axis, al , represents the time window, and the right axis, ar,
represents the source IP address; therefore, this example would be considered a DDoS attack pattern.

2.5. Quantum Autoencoder Implementation

Some tools can enable the implementation of a quantum autoencoder. The part that
usually involves quantum computing operations is the execution of a quantum circuit.
Qiskit is a language developed for quantum computing; it provides libraries, packages, and
simulators with OpenQASM [63] and IBM-Q [64] quantum processors for implementing
quantum circuits in a classical space. Deploying a feature_map function from the scikit-
learn library has made quantum and classical data conversion possible, while IBM and
QASM simulators provide a platform for developing a combination of quantum–classical
applications. This research uses PennyLane libraries [65] that facilitate constructing a
quantum circuit that can be executed in Qiskit or other similar platforms. PennyLane is a
robust library, allowing for easy integration of quantum computing and machine learning
platforms such as TensorFlow or PyTorch. Our research is based on TensorFlow and Qiskit
through PennyLane.
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2.6. Background on Quantum Computing

Quantum computing merges the principles of quantum physics with computer sci-
ence, aiming to tackle specific problems that traditional computers find challenging. The
quantum bit, or qubit, is a core element of quantum computing. It is capable of representing
multiple states simultaneously through superposition, a feature distinct from the binary
states of classical bits.

The unique capability of qubits to be in multiple states at once could theoretically
enable quantum computers to solve particular problems much more efficiently than classical
computers. Although the foundational concepts of quantum computing have been known
for some time, it is only recently that practical quantum computers have started to become
available. These devices are still in the early stages of capability, reminiscent of the early
digital computers, and face significant limitations [66].

In the field of artificial intelligence and machine learning, quantum circuits are being
explored for their potential to carry out classical computing tasks differently. Studies
have shown that it is feasible to implement classical neural network algorithms, such as
those used for training and evaluating neural networks, using quantum circuits [67]. This
blending of classical and quantum computation is beginning to take shape in practical
applications.

For example, researchers have designed quantum circuits that could streamline pro-
cesses like k-fold cross-validation, a method widely used in machine learning, suggesting
a quantum advantage in computational efficiency [68]. Our research contributes to this
growing body of work by using a quantum circuit that incorporates a diverse array of
quantum gates and operators. A segment of this circuit is shown in Figure 4 for illustrative
purposes. The figure illustrates a 9-qubit portion of a larger 16-qubit circuit used in our ex-
periments. It includes Hadamard gates, represented by H, and unitary operations, denoted
by Ui. These operations, parameterizable by angles, are analogous to hyperparameters
in classical machine learning [34]. Additionally, control and target qubits, represented by
• and ⊕ symbols, respectively, are critical for the functioning of quantum gates and the
subsequent manipulation of qubit states.

|0⟩0 H U2 U1 • • . . . • •

|0⟩1 H U1 . . . U2 U1 • • • • • •

|0⟩2 H . . . U1 . . .

|0⟩3 H . . . . . . U2 U1

|0⟩4 H U1 . . .

|0⟩5 H . . .

|0⟩6 H U1

|0⟩7 H U1

|0⟩8 H . . .

Figure 4. A sample 9-qubit quantum circuit with a quantum adiabatic algorithm that randomly
implements different qubit operators. Note that our circuit uses 16 qubits with similar arbitrary
placement of qubit operators to resemble and implement a quantum convolutional filter. Circuit
drawn using the tool in [69].

The work of Shiba et al. also touches on this concept, employing a 9-qubit circuit for
an autoencoder application [49]. Our research differentiates itself by exploring the use of
random rotations to generate quantum convolutions, aiming to achieve efficient learning
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convergence and effective representation of data and matching or surpassing classical
convolutional methods in performance. The specifics of our approach and its results will
be detailed in Section 3.

2.7. Critical Review of the Existing Literature

The field of quantum machine learning has seen a surge in interest, particularly in the
development of quantum autoencoders [24]. While these works have laid the foundation
for quantum-based machine learning models, they often fall short in several key areas.

Firstly, the scalability of quantum autoencoders remains a significant concern. Most
existing models are constrained by the number of qubits available, limiting their applicabil-
ity to more complex datasets [24]. Secondly, the focus has primarily been on computational
efficiency, often overlooking the model’s performance in real-world applications.

In the realm of classical autoencoders, particularly convolutional autoencoders, the
literature is abundant but often lacks a focus on cybersecurity applications. While these
classical models have been applied in various domains, their potential in cybersecurity,
specifically in DDoS attack analysis, still needs to be explored [26].

Significantly, the existing literature on DDoS attacks primarily relies on classical
machine learning algorithms, with little exploration into the potential of quantum machine
learning [26]. This gap in understanding highlights the potential for quantum algorithms
to revolutionize cybersecurity measures.

Our work introduces a novel concept in the field of quantum machine learning—the
quanvolutional autoencoder. This model leverages the computational advantages of quan-
tum mechanics and demonstrates its practical applicability in the realm of cybersecurity.

3. Methodology

Our central hypothesis is that a quanvolutional autoencoder can perform at the same
level of accuracy as a traditional autoencoder but with faster convergence, using DDoS
data as a test case. The experimental procedure we employed was designed to rigorously
test our hypothesis. It is categorized into three parts: the first part discusses the dataset of
hive plots, the second part describes the experimental setup, and the third part details the
Qiskit implementation.

3.1. Hive Plots Dataset

For our experiments, we used a dataset comprising a large number of hive plots.
In [53,54], the authors released a dataset that contains numerous instances of DDoS attacks
and normal traffic represented using hive plots. Hive plots are frequently used for data
visualization in big data mining. Simple visualization approaches such as bar charts and
pie charts are generally ineffective for data depiction in the realm of big data mining [60].
For example, a hive plot can effectively illustrate computer networks and is a preferred
method for data visualization and information communication. Unlike other network
representation techniques like force diagrams, which do not always use a node coordinate
system, hive plots organize nodes based on the structure of the network. These nodes
are linked and positioned according to the network’s structural characteristics on radially
arranged linear axes. Curved lines represent the edges connecting these nodes. Overall,
hive plots are straightforward and easy to understand [60]. A hive plot can be constructed
with multiple axes. The axes can represent the attributes of the data. The edges will be
on the axes, which are linked with curves (Bezier curves), representing the relationships
between the nodes. Figure 5 depicts a sample hive plot diagram of three axes and multiple
nodes and edges. The edges are the connections between nodes through the axes.

Figure 5a is a randomly selected sample from the hive plots corresponding to normal
traffic, while Figure 5b depicts a DDoS attack hive plot. The figure has three axes: one
going up, one right, and one left. The axis convention we followed was arbitrarily chosen
as follows: the time in which the network traffic was recorded is shown on the left axis;
the device’s source IP address is plotted on the right axis; and the country matching the
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source IP address is plotted on the top axis [53]. The hive plot dataset was built at Marist
College by sending HTTPS requests in time steps into a honeypot called Peitho [53,54].
Randomization was used to simulate a real-world DDoS attack to determine the number of
requests from each proxy to the honeypot. The attack data were received by submitting
requests to an LCARS API (https://github.com/Marist-Innovation-Lab/LCARS, accessed
on 14 February 2024). LCARS (Lightweight Cloud Application for Real-time Security) is an
analysis and visualization tool used to perform graph analyses, hive plot visualizations,
and relational analyses on collected log files of a honeynet [70]. LCARS aims to help explore
correlations, frequencies, and outliers in cyberattack data.

(a) (b)

Figure 5. Example of a simple hive plot diagram from an experiment. (a) Normal traffic. (b) DDoS attack.

Using Python, one can display the hive plot along with information about the time
sequence of the developing traffic for a specific time window; see Figure 6. The figure
shows samples from the dataset taken at random from any sequence. The number at the
top of the figure indicates the time step, which can vary from 0 to 7, which indicates the
time step, t, in the sequence. The distance from the center represents a separation measure,
e.g., the time gap between network traffic records. In Figure 6, the hive plot on the top
left was taken at time step 0, and the hive plot on the top right was taken at time step 1.
The bottom two figures are examples of different time steps, i.e., 1 and 5. Note that time
step 0 is the same for all sequences, and it is used as a control group to make sure all such
samples map to the same space induced by machine learning.

Figure 6. An example of hive plots from the hive plot dataset. The number on the top represents the
time step. The three axes, top, left, and right, represent the country associated with the originating IP
address, the number of times the service is requested, and the originating IP address, respectively. If
fewer IP addresses from fewer countries are hitting more times, there is a possibility of DDoS attack
formation, and if not, it represents a form of regular traffic.

https://github.com/Marist-Innovation-Lab/LCARS
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From Figure 6 we can note on the top right that at time step 1 a DDoS attack is forming,
as a small number of IP addresses and countries are hitting a significant number of times.
The same description is true for the bottom left figure at time step 1. The bottom right hive
plot, which is in time step 5, is an example of regular traffic, as several IP addresses and
countries are hitting a minimal number of times.

3.2. Experimental Setup

We designed a simple autoencoder in a classical sense and another that takes advantage
of quantum convolutions. The proposed quanvolutional (quantum convolutional) neural
network architecture has a 16-qubit entanglement that acts as a receptive field, similar to
the receptive field in the first layer of a CNN. The 16-qubits come from a 4 × 4 window
that acts as the CNN’s receptive field. A classic CNN learns filters (or matrices) that
will be convolved with an input. CNN’s filters are learned using a gradient descent
approach. A max-pooling procedure decreases the dimensionality of the results by taking
the maximum of specific regions. Rectified linear unit (ReLU) activation functions are also
used. In the middle of the classic autoencoder architecture, a bottleneck layer provides
access to a latent space z ∈ Rd, after which the reconstruction process develops similarly.
The process is repeated to construct the entire network with various filters at different
sizes with the aforementioned traditional convolutional, pooling, deconvolutional, and
upsampling layers.

Our proposed autoencoder for this experiment uses a set of non-trainable quantum-
based filters, which are quantum circuits with entanglement. The classical version has
16 convolutional filters of size 9 × 9, stride of 9 × 9, and max pooling of size 3 × 3 followed
by ReLU. The next convolutional layer has 16 filters of size 3 × 3 and stride 3 × 3 followed
by max pooling of size 2 × 2 followed by ReLUs. The bottleneck has three dense layers of
512, 128, and 2 neural units. We are dressing the quantum version of this architecture with
16 qubits as a quanvolutional autoencoder. Figure 7 depicts our autoencoder architecture.

Figure 7. Convolutional neural network architecture for the hive plot experiment.

To train our model, we minimize a binary cross-entropy loss with the standard Adam
optimizer with an initial learning rate of 0.001 [71], and we stop the training after the model
converges and has no improvement in the loss function for 15 epochs.
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3.3. Python Implementation

We employed the TensorFlow and Keras libraries to construct both the classical and
quantum CNNs for our implementation. Our quanvolutional model leverages universal
quantum circuits to process hive plots and extract spatial features for cyberattack analysis.
The quantum circuit utilized in our model consists of 16 qubits with specific entanglement
patterns, as depicted in Figure 8.

Figure 8. Diagram representing the quantum circuit used for quanvolution, featuring 16 qubits
arranged in a 4 × 4 grid. Each qubit is processed through the unitary operation U (refer to 1), and the
outcome is measured and fed into one of 16 channels, denoted as Ch. 0 through Ch. 15. The notation
i = {0, 15} specifies the index range of the qubits, indicating that each channel corresponds to the
measurement of one qubit from the first (0) to the sixteenth (15). This configuration illustrates the
mapping of a 16-qubit quantum state to a classical output, forming the basis for quantum-enhanced
feature extraction.

Each qubit, denoted by |qi⟩, corresponds to a spatial location in a 4 × 4 grid, where
0 ≤ i ≤ 15. These qubits undergo a universal quantum gate operation U, defined as

U = eiαRn̂(β)Rm̂(γ)Rn̂(δ). (1)

Here, α is a global phase, while β, γ, δ are rotation angles. The unit vectors m̂ and n̂ are
non-parallel and define the axis of rotation. The operator Rn̂(θ) is a rotation matrix defined
as e−i θ

2 n̂·⃗σ, where σ⃗ represents the Pauli matrices [72].
The quantum circuit is parameterized by these angles and unit vectors, which are

generally optimized during training. The optimization would usually be performed using
gradient-based methods [35], and the backpropagation would be facilitated by parameter-
shift rules specific to quantum circuits [73]. However, in our study, the circuits are non-
trainable; instead, after the encoding described above, a randomized quantum circuit
is applied, which consists of random layers generated by parameters drawn uniformly
from the range [0, 2π). These layers include random rotations and entanglements acting
on the qubits to process the encoded data. The random parameters for these layers are
predetermined and remain fixed throughout the process, embodying the non-trainable
aspect of our quantum model. The output of the quantum circuit is then measured, yielding
expectation values with respect to the Z Pauli operator for each qubit. These values are
interpreted as the processed features of the input patch and are utilized to construct the
output feature maps of the quanvolutional layer.

This method allows for extracting complex spatial features from hive plots used in
cyberattack analysis, leveraging the quantum mechanical properties of superposition and
entanglement. Despite the non-trainable nature of the quantum circuits in our model,
the random initialization of the circuit parameters facilitates a diverse and rich feature
extraction mechanism distinct from conventional convolutional approaches.
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To integrate the quantum layers into the classical CNN architecture, we used Tensor-
Flow Quantum (TFQ), an extension of TensorFlow for hybrid quantum–classical machine
learning. This allows seamless integration and enables the use of classical neural network
layers alongside quantum layers.

The loss function used for training was binary cross-entropy, and the optimization was
performed using the Adam optimizer with an initial learning rate of 0.001 [71]. The training
was halted if there was no improvement in the loss function for 15 consecutive epochs.

We refer to the specific steps outlined in Algorithm 1 for a comprehensive understand-
ing of the proposed method.

Algorithm 1 Quanvolutional Autoencoder for DDoS Data Analysis

1: Input: Hive Plots Dataset
2: Output: Trained Quanvolutional Autoencoder Model

▷ Part 1: Hive Plots Dataset
3: Load the hive plots dataset [53,54]
4: Preprocess the dataset to fit the model architecture

▷ Part 2: Experimental Setup
5: Initialize classical and quantum autoencoder architectures
6: Set initial learning rate to 0.001 [71]
7: Set loss function as binary cross-entropy
8: Set optimizer as Adam

▷ Part 3: Qiskit Implementation
9: Implement the 16-qubit quantum circuit as in Figure 8

10: Define the universal quantum operator U as in Equation (1)
▷ Training

11: Train both classical and quantum models
12: Monitor the loss function for convergence
13: Stop training if no improvement for 15 epochs

▷ Evaluation
14: Evaluate the models on test data
15: Compare the performance and convergence rate

3.4. Limitations of the Hive Plots Dataset

While extensive, the dataset used in this study is limited to hive plots generated from
DDoS attacks and normal traffic. This specificity could introduce a bias in the model,
making it less generalizable to other types of network traffic or cyberattacks. Additionally,
the dataset was built at Marist College using a specific honeypot setup, which may not fully
represent the diversity of real-world network configurations and DDoS attack strategies.
Therefore, the results may only be universally applicable with further validation on more
diverse datasets.

3.5. Computational Constraints and Non-Trainable Filters

The proposed quanvolutional autoencoder uses a 16-qubit entanglement, which, while
innovative, introduces computational complexity that may not be easily scalable or practical
for real-world applications at this time. Quantum computing resources are still nascent,
and their availability is limited. Furthermore, the quantum-based filters in our architecture
are non-trainable. This design choice was made to focus on the quantum advantages, but it
also means that the model might need to adapt better to new or evolving types of DDoS
attacks. The non-trainable nature of these filters could be a limitation regarding the model’s
adaptability and long-term efficacy.

3.6. Unsupervised Nature and Class Separation in Quanvolutional Autoencoders

Autoencoders are inherently unsupervised learning models designed primarily for
dimensionality reduction and feature learning. In the context of our research, the autoen-
coder is not used for classifying DDoS attacks from normal traffic; instead, it compresses
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the hive plot data into a lower-dimensional latent space. This latent space is then visualized
to observe separations or clusters which could be labeled for classification.

It is important to note that while labels are used in the visualizations presented in
this paper, the autoencoder model itself is not privy to these labels during the training
phase. The labels are solely for the purpose of aiding human interpretation of the model’s
performance and are not used as input or ground truth during the training process.

Furthermore, although autoencoders are not classifiers, they can be fine-tuned for
classification tasks. One common approach is removing the autoencoder’s decoder portion
and attaching a classification head to the bottleneck layer. However, this is beyond the scope
of the current paper. Our primary focus is to demonstrate the potential of quanvolutional
autoencoders in efficiently compressing and reconstructing hive plot data while showing
through visual evidence that the compressed latent space could be helpful for classification
tasks in future work.

4. Results and Discussion

Let us contrast the classical and quantum-based methodologies in a few different
ways, including reconstruction ability, learned representations, and convergence.

4.1. Reconstruction Ability

Initially, we can look into the latent space induced by the autoencoder. An inspection
of the latent space reveals the ability of the model to learn complex representations in
low- and high-dimensional spaces. To vary the dimensionality of the latent space, we
set the number of neurons in the intermediate dense layer, the “bottleneck”; see Figure 7
for reference. First, we set the bottleneck to encode down to 64 dimensions; second, the
bottleneck encodes down to only 2 dimensions. This allows us to inspect the learned
representations and observe their reconstruction abilities.

Figure 9 depicts the hive plot reconstructions achieved departing from latent spaces of
2 dimensions (a) and 64 dimensions (b). From the figure, we can visually observe slight
differences in favor of better reconstructions using the high-dimensional representations.
However, there are no significant differences from an information perspective; i.e., a trained
human can still perceive whether a hive plot is an attack or regular traffic based solely on
the reconstruction.

(a) (b)

Figure 9. Classic convolutional autoencoder reconstructions from different latent space dimensions.
(a) Reconstruction samples from 2 dimensions. (b) Reconstruction samples from 64 dimensions.

Similarly, Figure 10 shows the reconstructions obtained using our quanvolutional
autoencoder model with both 2-dimensional (a) and 64-dimensional (b) latent space data.
Both reconstructions look similar, although the one coming from the 64-dimensional space
have more details. However, the important point is that a trained human can still dis-
tinguish whether a reconstructed sample represents normal traffic or a DDoS attack. For
example, the right-most bottom two samples in Figure 10a,b are normal traffic and DDoS
attacks, respectively.
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(a) (b)

Figure 10. Hive plots reconstructed with the quanvolutional autoencoder on latent spaces with
different dimensions. (a) Reconstruction samples from 2 dimensions. (b) Reconstruction samples
from 64 dimensions.

In comparison, both classic and quantum-based models exhibit similar reconstruction
abilities; both can learn representations from hive plots. Based on the reconstructions
learned down to different dimensions, visual inspection suggests similar reconstruction
capabilities from a perceptual point of view. In particular, the reconstruction is thought
to be optimal within the constraints given by the deep learning model itself, e.g., the
information bottleneck and the loss function used, which are given by

L(θ; x) = −1
d

d

∑
i=1

xi · log x̂i + (1 − xi) · log(1 − x̂i), (2)

where x ∈ Rd is the input, x̂ is the reconstruction, and θ are the model parameters. This
is known as the binary cross-entropy loss. Minimizing this loss repeatedly, using random
starts, yields consistent results across the board using the Adam optimizer with an initial
learning rate of 0.0001 and an automatic decay after a five-epoch plateau. The learning
stops after no improvements in the validation loss after ten epochs.

4.2. Learned Representations

The next item to analyze is the learned latent space; this is arguably the most significant
contribution of this paper. We begin by referring to Figure 11a, which shows every single
hive plot on the dataset as a marker projected into a two-dimensional space induced by the
autoencoder; dots (•) represent normal traffic, and crosses (×) represent the DDoS attacks,
color-coded to show the stage of the attack. At time zero, all crosses and dots are in the
same space on top of each other; both normal traffic and attack, since they are blank (no
traffic) images of the axis, map to the same coordinates. This will serve as a “sanity check”
to ensure the encoder is not learning spurious correlations among the input features.

Let us recall that the proposed autoencoder is not trained with any labels whatsoever.
Yet, the model naturally makes two significant groupings: one group is lined up near the
top, composed of normal traffic data (•); and the second group, DDoS attacks (×), are
below the first group. This suggests that an autoencoder fine-tuned for binary classification
could easily distinguish between regular traffic and an attack. The fine-tuning task is
trivial, while the encoder–decoder design is novel. Furthermore, Figure 11a also indicates
that eight different groups are also formed in different regions, each corresponding to the
attack’s stage, t, and are indicated with different colors. These groups appear to be better
differentiated, particularly when it comes to data representing attacks, while normal traffic
data do not always form separate clusters for different time steps. Such a finding may also
suggest that a fine-tuned autoencoder could determine whether an attack is happening and
at which stage of development it is occurring.

Similarly, Figure 11b depicts the learned representations of the quanvolutional autoen-
coder. The learned space is very similar to a classic autoencoder; however, the dimensions
induced by the encoder appear rotated in comparison. There are other minor differences
concerning the separation between time steps, t, although overall, the results are com-
parable in performance. This suggests that the proposed autoencoder architecture is not
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degraded by replacing the convolutional feature maps at the input layer with quantum
convolutional features.

(a) (b)

Figure 11. Hive plot dataset compressed to a two-dimensional latent space using a classical and
quanvolutional approach. (a) Learned representations with classic convolutional AE. (b) Learned
representations with our quanvolutional AE.

Similarly, Figure 12 focuses on analyzing the learned latent space using 64-dimensional
data. The proposed autoencoder naturally divides the data into three major groups: no
traffic (observed near the corner), normal traffic, and DDoS attacks. The model also
differentiates between the different stages of an attack. The results of the quanvolutional
autoencoder, Figure 12b, when compared with those of the classic autoencoder, Figure 12a,
show that the proposed autoencoder architecture performs similarly and is not degraded
by replacing the convolutional feature maps with quantum convolutional features. The
plots in Figure 12 use UMAP to display 64-dimensional data in dimensions [74].

(a) (b)

Figure 12. Comparison of the classification results from the quanvolutional and classical autoen-
coders with 64-dimensional data displayed in a two-dimensional plane using UMAP. (a) Classical
neural network architecture on 64 dimensions. (b) Quanvolutional neural network architecture on
64 dimensions.
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A more quantitative approach that demonstrates that our approach has a competitive
advantage is discussed next in terms of convergence.

4.3. Convergence Efficiency

The loss in (2) is our function for evaluating convergence. Our quanvolutional autoen-
coder exhibits a promising decrease in loss, achieving final loss values comparable to the
classical approach but within a notably shorter training span. Specifically, the quantum
model attains equivalent loss levels 15 epochs earlier than its classical counterpart. In
quantitative terms, if the classical model requires N epochs to converge, our quanvolu-
tional autoencoder accomplishes a similar convergence by epoch N − 15. This result is
consistent across multiple runs with random initializations, as shown in Figures 13 and 14
for two-dimensional data and for higher-dimensional data, respectively, which underscores
the efficiency of our approach in rapid model fitting.

Figure 13. Losses for two-dimensional autoencoder. Left: Shows the training loss. Right: Shows the
loss in validation data.

Figure 14. Losses for sixty-four-dimensional autoencoder. Left: Shows the training loss. Right: Shows
the loss on validation data.

Training automatically terminates if no improvement in validation loss is observed
for 50 consecutive epochs, enforcing a stringent criterion to prevent overfitting while also
safeguarding against numerical instabilities commonly encountered in neural networks.
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4.4. Learning Stability

The standard deviation of the loss function over distinct epoch intervals rigorously
quantifies the stability of learning. During the initial 15 epochs, the quantum model
demonstrates a stability index (S1−15) of 0.06–0.10, reflecting 10 to 15 times greater stability
compared to the classical approach, which has S1−15 close to 1.0. This heightened stability
is maintained in the 15–25 epoch interval, where the quantum model’s standard deviation
is 10 to 5 times smaller (S15−25), and continues to exhibit twice the stability (S25−53 = 0.5)
in the 25–53 epoch interval. Figures 15 and 16 exclude initial outliers and concentrate
on the epoch ranges indicative of most consistent performance, effectively visualizing
the quantum model’s superior stability, particularly in handling 64-dimensional data
challenges, validating its robustness in the gradient descent process.

Figure 15. Losses for validation of two-dimensional autoencoder.

Figure 16. Losses for validation of sixty-four-dimensional autoencoder.

4.5. Discussion on Scalability and Noise-Induced Barren Plateaus

As we explore the scalability of quantum autoencoders, with a specific focus on our
proposed quanvolutional autoencoder, we must address not only the computational com-
plexity but also the nuanced challenges introduced by quantum noise. Sections 2.7 and 3.5
of our manuscript have already highlighted the dual hurdles of scaling computational
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complexity and managing noise in real-world applications. Here, we extend this discussion
to incorporate the critical issue of noise-induced barren plateaus (NIBPs), as identified in
recent research [75].

The computational complexity of quantum circuits, especially those leveraging en-
tanglement and quanvolutional operations, is substantially influenced by the number of
qubits, described as

C(n) = α1 · 2n + α2 · n2 = O(2n), (3)

where C(n) denotes the computational complexity, n represents the number of qubits, and
α1 and α2 quantify the base computational cost of quantum operations and the additional
cost from entanglement and noise management, respectively. The exponential growth term,
2n, mirrors the expansion of the quantum state space, indicating a significant increase in
computational complexity with larger qubit systems.

Crucially, the fidelity of quantum operations, a pivotal factor for the practical deploy-
ment of quantum algorithms, deteriorates with the system’s scale, as denoted by

F(n) = e−γ·n, (4)

where F(n) signifies the operation’s fidelity and γ represents the rate of decline in fidelity
correlating with the increase in qubit count. This exponential decay highlights the chal-
lenge of preserving high-fidelity quantum operations in more extensive systems due to
noise interference.

Incorporating insights from Wang et al. [75], we further understand that noise not
only affects fidelity but also leads to NIBPs, where any kind of training associated with
quantum algorithms becomes notably flat due to vanishing gradients, even if the circuit
is not trainable, i.e., variational. This phenomenon grows exponentially more severe
with the number of qubits, complicating the training of quantum and hybrid classic–
quantum models on NISQ devices. For quantum circuits, particularly those with depths
growing linearly with the number of qubits, the gradients can diminish exponentially,
severely hindering the algorithm’s ability to learn and adapt the parameters of the circuit
or model parameters surrounding the quantum circuit in the case of the dressed quantum
model presented here. However, our model’s design, which incorporates non-learnable
quanvolutional filters, is still susceptible to quantum noise interference but to a lesser
degree, mitigating the risk of extreme detrimental effects arising from noise. Yet, at the
current stage, expanding the system to include a larger number of qubits does not prove to
be beneficial.

Addressing NIBPs and ensuring scalability requires innovative strategies beyond
conventional error correction. Advanced error mitigation techniques and the development
of noise-robust quantum algorithms emerge as essential for improving the practical viability
and scalability of quantum autoencoders, including our quanvolutional autoencoder, for
real-world applications. Our ongoing research, as detailed in [76], demonstrates a more
resource-efficient approach to error mitigation by using a modified depolarizing channel,
which reduces the reliance on complex matrix operations and avoids the use of the Pauli
Y-gate. This approach enhances noise resilience and maintains a balance between circuit
depth and computational efficiency. These findings currently guide our development of
robust QML models and indicate potential extensions to multi-qubit systems for training
more complex datasets. Future research will further explore these and other strategies,
aiming to circumvent the limitations imposed by NIBPs and fully exploit the capabilities of
quantum computing in complex domains.

5. Conclusions

This study contributes to the field of quantum machine learning by introducing
the “quanvolutional autoencoder”, a novel architecture that leverages the computational
advantages of quantum mechanics. The architecture was specifically designed to analyze
time-series data from DDoS attacks, a critical issue in cybersecurity.
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Our experimental results affirm that the quanvolutional autoencoder performs compa-
rably to classical convolutional neural networks in visualizing and learning from DDoS
hive plots. Notably, the quantum-based model demonstrated superior convergence rates
and learning stability, as evidenced by Figures 13–16. These findings validate the proposed
model’s efficacy and highlight its potential advantages in real-world applications.

The intellectual merit of this work lies in its innovative fusion of quantum mechanics
and machine learning algorithms. By employing a 16-qubit quantum convolutional neural
network, the study pushes the boundaries of what is achievable with classical autoencoders,
particularly in the context of cybersecurity.

However, it is crucial to acknowledge the limitations of this study. The dataset used is
specific to hive plots generated from DDoS attacks, which may limit the model’s generaliz-
ability. Additionally, the computational complexity introduced by the 16-qubit entangle-
ment and the non-trainable nature of the quantum filters could pose challenges in scalability
and adaptability. These limitations suggest future research avenues, including exploring
the model’s applicability to diverse datasets and its scalability in real-world scenarios.

This study is foundational for applying quantum machine learning in cybersecurity. It
opens up new avenues for research, particularly in unsupervised anomaly detection, and
sets the stage for future investigations that can build upon these initial findings.
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