## SUPPORTING INFORMATION

## Preparation of TiO<sub>2</sub> nanoparticle aggregates and capsules by the "two-emulsion method"

Nadya I. Politova-Brinkova<sup>1</sup>, Sonya R. Tsibranska-Gyoreva<sup>1</sup>, Slavka S. Tcholakova<sup>1\*</sup>, Nikolai D. Denkov<sup>1</sup>, Thomas Danner<sup>2</sup>

<sup>1</sup> Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria; <u>np@lcpe.uni-sofia.bg</u> (N.P.); <u>st@lcpe.uni-sofia.bg</u> (S.T.); <u>sc@lcpe.uni-sofia.bg</u> (S.C.); <u>nd@lcpe.uni-sofia.bg</u> (N.D.)

<sup>2</sup> BASF, GCT/P, L549, Ludwigshafen, Germany; <u>thomas.danner@basf.com</u> (T.D.)

\* Correspondence: <u>sc@lcpe.uni-sofia.bg</u>; Tel.: +359-2-8161698

## Table S1.

Surfactants tested for stabilizing W/O emulsion with Hexadecane and Heavy mineral oil.

| Surfactant<br>commercial name | Surfactant type              | Hydrophobic tail |         | Number of | HIR   |
|-------------------------------|------------------------------|------------------|---------|-----------|-------|
|                               |                              | Туре             | C atoms | EO-groups | IILD  |
| Lutensol A8                   | Fatty-alcohol<br>ethoxylates | Linear           | 12-14   | 8         | ≈ 13  |
| Lutensol TO8                  | Oxo-alcohol<br>ethoxylates   | Linear           | 13-15   |           |       |
| Lutensol TO2                  |                              | Branched         | 13      | 2         | ≈ 7   |
| Brij 30                       | Oxo-alcohol<br>ethoxylates   | Linear           | 16      | 20        | ≈ 16  |
| Brij 52                       |                              |                  |         | 2         | ≈ 5.3 |
| Brij 72                       |                              |                  | 18      | 2         | ≈ 4.9 |

| Span 20 | Sorbitane esters<br>of long-chain<br>fatty acids | Saturated        | 12   | Not<br>appropriate | ≈ 8.6 |
|---------|--------------------------------------------------|------------------|------|--------------------|-------|
| Span 40 |                                                  |                  | 16   |                    | ≈ 6.7 |
| Span 60 |                                                  |                  | 18   |                    | ≈ 4.7 |
| Span 80 |                                                  | 1<br>double bond | 18   |                    | ≈ 4.3 |
| Span 65 |                                                  | Saturated        | 3x18 |                    | ≈ 2.1 |



**Figure S1.** Mean diameter by number,  $d_N$ , and by volume,  $d_V$ , of the particles aggregates (a) before and (b) after drying at 120 °C as a function of concentration of Span 80 dissolved in Hexadecane. The measurements are performed by DLS method for particles obtained by two-emulsion method using Ultra Turrax at 13 500 rpm.



**Figure S2.** Mean diameters by volume,  $d_V$ , and by number,  $d_N$ , as measured by DLS obtained from emulsions with Hexadecane and Heavy oil. Empty symbols and dashed lines correspond to measurements before drying of the particles and the full symbols and straight lines – after drying. The concentration of the surfactant with respect to the oil was 1 wt. % Span 80. The emulsification was performed with Ultra Turrax at 20 500 rpm for 5 minutes for the initial emulsions and for 10 minutes for the mixed ones.



**Figure S3.** Dependence of the particles' diameter as a function of mixing time for two different fixed rpms. The homogenization of the initial emulsions was performed for 5 minutes at 20 500 rpm. 1 wt. % Span 80 in Hexadecane was used as oily phase.