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Abstract: The increasing popularity of flow field-based data analysis (FFBDA) techniques has a
paradigmatic example in the routines already developed for the rotational oscillating bicone bob
interfacial shear rheometer. Such routines use a second order centered finite difference (SOCFD)
discretization scheme, in both the vertical and radial coordinates, for the velocity field in the bulk
fluid subphase and a first order forward finite difference (FOFFD) scheme in the vertical coordinate
for the velocity field at the air/water interface. Such a mixture of schemes causes non-smooth flow
fields at the interface that can be tackled by appropriately devising a SOCFD scheme for the vertical
coordinate at the interface using a line of “phantom” nodes that merely serve to adequately merge
the Navier–Stokes equations and the Boussinesq–Scriven boundary condition at the interface. Here
we report on a detailed analysis of the quantitative improvements of such a scheme over the previous
one by comparing the structure of the flow fields at and close to the interface, the differences in the
interfacial and bulk drag torques on the bicone bob, and the differences in the torque/displacement
complex amplitude ratio.

Keywords: interfacial rheology; interfacial shear rheometer; bicone interfacial rheometer; flow
field-based data processing

1. Introduction

Interfacial shear rheology aims at characterizing the shear mechanical properties of
thin layers supported by a Newtonian liquid subphase. The need for a careful consideration
of the role of the liquid subphase was recognized [1–3] since the first interfacial viscometers
were designed [4,5]. Hence, in order to achieve a proper characterization of the shear
rheological properties of a sample, one needs to properly separate the effects of the interface
and the subphase. Therefore, the formulation of manageable physical models including
a realistic representation of the coupling between the flow fields at the subphase and the
interface are required.

Moreover, the availability of increasingly fast hardware (multi-kernel microprocessors
and graphic cards) and powerful software platforms (MATLAB®, GNU Octave, Python®,
Mathematica®, etc.) has dramatically decreased the computational time to the level that,
nowadays, including such flow field-based data analysis (FFBDA) routines for real-time
processing of the experimental data in modern interfacial shear rheometers is conceivable [6].

The first FFBDA scheme Reynaert et al. [7] was designed for the magnetic needle ISR
in the Helmholtz coil configuration, that was soon followed by another scheme designed for
the double wall-ring (DWR) rotational interfacial shear rheometer [8]. Some variants were
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proposed for the Helmholtz coil magnetic needle ISR [9,10] and the magnetic tweezers
configuration too [11]. Very recently, a FFBDA scheme adequate for the micro-button
rotational interfacial shear rheometer has been proposed too [6]. Let us mention here that
data analysis is not the only source of inaccuracy in interfacial rheometry; for a thorough
discussion of experimental problems that affect measurement accuracy see, for instance,
reference [12].

The bicone bob rotational rheometer is one of the oldest (see, for instance [13–16]
and references therein) and, together with the DWR, one of the most extended interfacial
rheometer configurations, probably because of the simplicity of the elements needed to
set it up if a modern rotational rheometer is available [17]. A FFBDA software package for
the rotational bicone bob interfacial shear rheometer under oscillatory forcing [18–20] was
recently described and made publicly available. The program was developed by adapting
the bicone geometry the ideas already used in references [11], for the magnetic trap ISR,
and [17], for the oscillating rotational bicone rheometer. Briefly, by using the flow field
configurations, obtained from numerical solutions of the Navier–Stokes equation with
adequate boundary conditions, in an iterative process, the program yielded a converged
value of the complex Boussinesq number, Bo∗, that was later used to obtain [21] the complex
interfacial dynamic moduli, G∗, or interfacial shear viscosity, η∗.

In that implementation [19] (code at [20]), different discretization schemes were used
in the horizontal (SOCFD) and vertical (FOFFD) spatial directions at the interface line,
which cause a sub-optimal evaluation of the velocity profiles right at the bicone rim [22].
Such errors might affect the calculation of the interfacial drag on the bicone probe and,
consequently, the converged values of the complex dynamic moduli. Moreover, imprecision
in the evaluation of the velocity fields close to the bicone rim may demand high mesh
resolution for a proper representation of the velocity field when non-linear velocity profiles
appear at the interface or the subphase, which is precisely the regime where FFBDA
schemes are mandatory. Such undesirable effects jeopardize the possibility of including
FFBDA schemes in the standard data analysis routines of commercial interfacial rheometers.

Here we report on an improvement of the numerical scheme that now incorporates a
fully reworked discretization method that is now second order centered finite differences
(SOCFD) in both spatial directions at both the subphase and, more importantly, the interface.
In order to achieve the formulation of the SOCFD at the interface, a line of phantom nodes
has been defined above the interface. However, an adequate combination of the discretized
Boussinesq–Scriven boundary condition and the Navier–Stokes equations yields expressions
for the matrix elements corresponding to the interface nodes in which the values of the
velocity field at the phantom nodes are not present and, consequently, the values of the
velocity field at the phantom nodes do not appear explicitly in the numerical formulation of
the problem. A new version of the program (PV-II, hereafter; the previous program version
will be labeled as PV-I)) has been made publicly available already [22] (code at [23,24]). No
detailed account of the consequential improvement in the results of the data analysis has been
provided whatsoever. Here, we provide a comparative analysis of the performance of both
program versions in a wide range of physical parameters.

The paper is organized as follows. In Section 2, we make a brief introduction to the
mathematical representation of the physical model of the bicone interfacial rheometer and
a brief description of the numerical implementation of the new disctretization close to the
interface. In Section 3, we illustrate the improvements in the performance of the program by
comparing results obtained with both versions of the software, in aspects such as the velocity
field and profiles, the interfacial drag torque, and the values obtained for the dynamic moduli
both for numerical and experimental data. Conclusions are stated in Section 4.

2. Methods
2.1. Brief Description of the Mathematical Model

For the sake of completeness, we briefly remind here the physical model behind our
approach and its mathematical formulation. In interfacial rotational shear rheology with
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bicone probes, measurements are performed on samples contained in a cylindrical cup, the
bicone is placed with its rim exactly at the interface level, and the interface spans between
the bicone rim and the cup wall.

The velocity field is obtained by numerical integration of the Navier–Stokes equations
for an non-compressible fluid imposing the following approximations: (i) the axisymmetric
geometry imposes an azimuthal velocity field, v(r, z, t) = vθ(r, z, t), (ii) the interface is
flat and horizontal, (iii) the conical bob is represented by a null thickness disk, and (iv)
Marangoni flows can be neglected. Several circumstances that might take place in the
experiment, in particular the formation of a meniscus at the interface, that deviates its
shape from being perfectly flat, or non-zero radial and vertical fluid velocities, can not be
addressed with this model. The rotor is supposed to perform an oscillatory motion. Then,
the azimuthal flow velocity can be assumed to be proportional to the disk edge velocity,
vθ,b(t), by separating the time and space dependencies as follows

vθ(r, z, t) = g∗(r, z)vθ,b(t) = i Rbω g∗(r, z)θ0eiωt, (1)

where Rb is the conical bob radius, ω is the angular frequency, θ0 is the oscillatory dis-
placement amplitude, being θ∗(t) = θ0eiωt, and g∗(r, z) is the complex non-dimensional
spatial velocity amplitude, whose real and imaginary parts are in-phase and out-phase
with respect to the bicone velocity.

Under these approximations, the non-dimensional Navier–Stokes equations read
as follows

i Re∗ g∗(r̄, z̄) =
∂2g∗(r̄, z̄)

∂r̄2 +
∂2g∗(r̄, z̄)

∂z̄2 +
1
r̄

∂g∗(r̄, z̄)
∂r̄

− g∗(r̄, z̄)
r̄2 , (2)

where Re∗ = ρωR2
c

η∗ is the Reynolds number. The spatial coordinates, r̄ and z̄, have been
made non-dimensional with the cup radius, Rc, while 1/ω has been chosen as the charac-
teristic time scale. We remark that the subphase viscosity, η∗, can be a complex number if
the subphase is viscoelastic.

No-slip boundary conditions are imposed at the cup walls and floor, and at the bicone-
fluid contact line, together with zero velocity along the cylindrical symmetry axis within
the subphase. These boundary conditions are written as

g∗(r̄, 0) = g∗(1, z̄) = 0,

g∗(0, z̄) = 0,

g∗(r̄ ≤ R̄b, h̄) =
r̄

R̄b
. (3)

At the air–water interface (R̄b < r̄ < 1 and z̄ = h̄), we use the Boussinesq–Scriven
boundary condition [7,25], which, in cylindrical coordinates, reads as

∂g∗

∂z̄
= Bo∗

∂

∂r̄

(
1
r̄

∂

∂r̄
(r̄ g∗)

)
, at R̄b < r̄ < 1, z̄ = h̄, (4)

where the complex Boussinesq number is defined as Bo∗ = η∗s
Rcη∗ . Note that the interfacial

viscosity, η∗s , can be a complex number too.
The rotational rheometer provides the angular position of the rotor-bicone ensemble

and the torque the rheometer is imposing on it. In order to relate this parameters with the
hydrodynamic field solution we use the torque balance equation

T∗(t) + T∗sub(t) + T∗surf(t) = I
∂2θ(t)

∂t2 , (5)

where T∗ is the forcing torque, T∗sub and T∗surf are, respectively, the subphase and surface
drag torques and I is the moment of inertia of the rotor-bicone ensemble. The surface and
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subphase drag torques can be computed from the velocity profiles obtained after solving
the hydrodynamic problem as:

T∗sub = −iω2πRbη∗θ0eiωt
∫ Rb

0
r2
(

∂g∗

∂z

)∣∣∣∣
z=h

dr,

T∗surf = iω2πR2
bRc Bo∗η∗θ0eiωt

(
Rb

(
∂g∗

∂r

)∣∣∣∣
r=Rb , z=h

− 1

)
. (6)

Then, we make the ansatz that the forcing torque can be represented as

T∗(t) = T0eiωt−δ = T0e−iδeiωt = T∗0 eiωt. (7)

where δ is the phase difference between θ∗(t) and T∗(t). Hence, one can define a complex
amplitude ratio between the torque and the angular displacement, AR∗, as

AR∗ =
T∗0
θ0

,

δ = arg(AR∗). (8)

Taking into account Equations (1), (5), (6), and (8), the amplitude ratio, the azimuthal
velocity amplitude function g∗, and the complex Boussinesq number, Bo∗, are related by
the following expression

AR∗ = iω2πRbη∗
[∫ Rb

0
r2
(

∂g∗

∂z

)∣∣∣∣∣
z=h

dr

−RbRc Bo∗

Rb

(
∂g∗

∂r

)∣∣∣∣∣
r=Rb , z=h

− 1

− Iω2. (9)

Solving for Bo∗ in Equation (9) allows us to define an iterative procedure to obtain a
converged value of the complex Boussinesq number from the experimental value of the
complex amplitude ratio, AR∗exp [17,19]. The converged value of Bo∗ can then be used to
compute the interfacial dynamic shear moduli, G∗, or viscosity, η∗.

2.2. Numerical Methods: Implementation of the New Discretization at the Interface

The difference between PV-I and PV-II resides in the way the equations for the interface
nodes are defined. In the previous version [19], we discretized the equation representing
the Boussinesq–Scriven boundary condition (Equation (4)) by taking first order finite
differences in the vertical coordinate, z̄, and SOCFD in the radial direction, r̄. In PV-II, on
the contrary, we use SOCFD in both directions. This is done by introducing phantom nodes
at the positions with indexes (j, 0), with (bxc indicates the highest integer smaller than
or equal to x.) bNR̄bc+ 2 ≤ j ≤ N. Hence, we have included a line of phantom nodes
right above the interface, and we now have (N + 1− (bNR̄bc+ 2)) extra equations for the
velocity field, g∗j,0, at the extra nodes in the mesh.

Following [18], we can take advantage of the problem’s symmetry and solve for the
flow field in the rectangle 0 ≤ r̄ ≤ 1 and 0 ≤ z̄ ≤ h̄. A cartoon version of the mesh is
illustrated in Figure 1.
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Rb

(0, 0)

(1, h)

(1, 0)

(0, h)

Figure 1. Sketch of the new mesh. Blue up triangles: nodes at the cylindrical symmetry axis inside the
subphase. Red dots: nodes at the bottom wall of the cup. Grey squares: nodes at the bicone surface.
Black dots: nodes inside the fluid subphase. Black crosses: nodes at the outer cup wall. Magenta
diamonds: nodes at the interface. Green down triangles: phantom nodes above the interface.

The discrete version of the Boussinesq–Scriven boundary condition (Equation (4)), in
the new scheme of SOCFD in both the horizontal and vertical directions, is

1
2

M
h̄

(
g∗j,0 − g∗j,2

)
= Bo∗N2

(
g∗j+1,1 − g∗j−1,1

2(j− 1)
−

g∗j,1
(j− 1)2 + g∗j−1,1 + g∗j+1,1 − 2g∗j,1

)
,

∀j ∈ Z/ bNR̄bc+ 2 ≤ j ≤ N, (10)

while the discrete version of the Navier–Stokes equations at the central nodes is

i Re g∗j,1 = N2

(
g∗j+1,1 + g∗j−1,1 − 2g∗j,1 +

g∗j+1,1 − g∗j−1,1

2(j− 1)
−

g∗j,1
(j− 1)2

)

+

(
M
h̄

)2(
g∗j,0 + g∗j,2 − 2g∗j,1

)
, ∀j ∈ Z/ bNR̄bc+ 2 ≤ j ≤ N. (11)

Solving for g∗j,0 in Equation (10) and substituting into Equation (11), the value of the
velocity field at the phantom nodes, g∗j,0, may be eliminated, and we are left with

i Re g∗j,1 = N2
(

1 + 2
M
h̄

Bo∗
)(

g∗j+1,1 + g∗j−1,1 − 2g∗j,1 +
g∗j+1,1 − g∗j−1,1

2(j− 1)
−

g∗j,1
(j− 1)2

)

+ 2
(

M
h̄

)2(
g∗j,2 − g∗j,1

)
, ∀j ∈ Z/ bNR̄bc+ 2 ≤ j ≤ N. (12)

Consequently there is no need to take the phantom nodes into account when solv-
ing the linear system corresponding to the discrete representation of the Navier–Stokes
equation. We remark that the limit of negligible interfacial viscoelasticity, (Bo∗ = 0), is well
behaved because in such a case the above expression reduces to the one corresponding to a
free interface condition ( ∂g∗

∂z̄ = 0, at the interface).
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Finally, by implementing the corresponding four node formula (see Figure 2) for the
interface nodes in Equation (12), factorizing and rearranging the terms in g∗j,k, we arrive at

g∗j−1,1

[
N2
(

1 + 2
M
h̄

Bo∗
)(

1− 1
2(j− 1)

)]
− g∗j,1

[
i Re + N2

(
1 + 2

M
h̄

Bo∗
)(

2 +
1

(j− 1)2

)
+ 2
(

M
h̄

)2
]

+ g∗j+1,1

[
N2
(

1 + 2
M
h̄

Bo∗
)(

1 +
1

2(j− 1)

)]
+ g∗j,2

[
2
(

M
h̄

)2
]
= 0,

∀j ∈ Z/ bNR̄bc+ 2 ≤ j ≤ N. (13)

Hence, the corresponding matrix elements are:

A(j, j− 1) = N2
(

1 + 2
M
h̄

Bo∗
)(

1− 1
2(j− 1)

)
,

A(j, j) = −i Re − N2
(

1 + 2
M
h̄

Bo∗
)(

2 +
1

(j− 1)2

)
− 2
(

M
h̄

)2
,

A(j, j + 1) = N2
(

1 + 2
M
h̄

Bo∗
)(

1 +
1

2(j− 1)

)
,

A(j, j + (N + 1)) = 2
(

M
h̄

)2
,

∀j ∈ Z/ bNR̄bc+ 2 ≤ j ≤ N. (14)

g∗j,0

g∗j,1
g∗j−1,1 g∗j+1,1

g∗j,2

Figure 2. Four node scheme at the interface. Black dot: node inside the fluid subphase. Magenta
diamonds: nodes at the interface. Green down triangle: phantom node above the interface.

3. Results: Comparative Performance

In this section we briefly sketch the most salient features concerning the improvements
in the software performance by comparing the results of the new program version (PV-II,
hereafter) against those of the previous one (PV-II, hereafter). The comparison will be
performed on a typical experimental realization [17–19] of the bicone system with a bicone
with radius Rb = 34 mm, in a cup, with radius Rc = 40 mm, the water bulk subphase
being H = 22 mm deep. The frequency of the oscillation has been set at ω = π rad/s. In
the following, variables obtained by means of program versions PV-I and PV-II will be
labeled with subscripts I and I I, respectively. Regarding practical applications of such data
analysis schemes in the lab, the balance between computational cost and computational
errors is a key aspect of the problem. Hence, the effect of the mesh size on the numerical
results is investigated in detail.

3.1. Velocity Field Configurations

In Figure 3, we show color coded views of the differences between the velocity fields
obtained with both versions of the software. The left panel in Figure 3 shows the differences
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between the real parts of the velocity field, |<[g∗I I(r, z)]−<[g∗I (r, z)]|, while the right panel
shows the differences between the imaginary parts, |=[g∗I I(r, z)]−=[g∗I (r, z)]|. It is clear
that the most significant differences appear close to the interface and, particularly, at the
bicone rim. Nevertheless, the observed values, for both the differences between real and
imaginary parts are always smaller than 5× 10−3 (remember that the highest value of the
velocity field amplitude is 1 just at the bicone rim).

Figure 3. Color coded plot of
∣∣<[g∗I I(r, z)]−<[g∗I (r, z)]

∣∣ (left) and
∣∣=[g∗I I(r, z)]−=[g∗I (r, z)]

∣∣ (right)
for a viscoelastic interface with Bo∗ = 0.1− 0.1i, at ω = π rad/s. The highest value of the velocity
field amplitude is 1 just at the bicone rim.

According to Figure 3, relevant differences appear at the interface and just below
it. In Figure 4, we show a comparison between the profiles of the real and imaginary
parts of the non-dimensional velocity at the interface obtained with both versions of the
software, g∗s,I(r) (panels to the left) and g∗s,I I(r) (panel to the right), at two different mesh
sizes, namely, 440× 220 (top row) and 2520× 1260 (bottom row).

0.034 0.035 0.036 0.037 0.038 0.039 0.04

r   (m)

0

0.2

0.4

0.6

0.8

1

g
* s
,I
(r

)

440x220

0.034 0.035 0.036 0.037 0.038 0.039 0.04

r   (m)

0

0.2

0.4

0.6

0.8

1

g
* s
,I
I(r

)

Bo
*
=25(i-1), f=5 Hz

Bo*=0.25, f=0.5 Hz

Bo
*
=0, f=0.05 Hz

0.034 0.035 0.036 0.037 0.038 0.039 0.04

r   (m)

0

0.2

0.4

0.6

0.8

1

g
* s
,I
(r

)

2520x1260

0.034 0.035 0.036 0.037 0.038 0.039 0.04

r   (m)

0

0.2

0.4

0.6

0.8

1

g
* s
,I
I(r

)

Bo
*
=25(i-1), f=5 Hz

Bo*=0.25, f=0.5 Hz
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*
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Figure 4. Real and imaginary parts of g∗s,I(r) (left) and g∗s,I I(r) (right) for ω and Bo∗ values as in
Figure 3. Top row: 440× 220 mesh. Bottom row: 2520× 1260. Continuous and dashed lines represent
the real and imaginary parts, respectively. Case A: High frequency with a viscoelastic interface
(black). Case B: Medium frequency with purely viscous interface (red). Case C: Low frequency and
clean air–water interface (blue).
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In each graph, we consider three different dynamical situations where continuous
and dashed lines represent the real and imaginary parts, respectively. Case A (black
lines) represents a viscoelastic interface (η∗s = (1− i)× 10−3 N · s/m) at high frequency
( f = 5 Hz). Case B (red lines) represents a purely viscous interface (η∗s = 10−5 N · s/m) at
an intermediate frequency ( f = 0.5 Hz). Finally, case C (blue lines) refers to a clean air–
water interface at low frequency ( f = 0.05 Hz). It is clear that the slight piece-wise linear
aspect of <[g∗s,I(r)] and =[g∗s,I(r)] at the bicone rim is not present anymore in <[g∗s,I I(r)]
and =[g∗s,I I(r)]. This effect should be more appreciable for interfacial velocity profiles far
from linear, i.e., for low interfacial viscosity and high oscillation frequency.

3.2. Interfacial and Subphase Torques

The differences found in the flow field profile just at the rim of the bicone might bring
noticeable changes in the interfacial and subphase drag torques and, consequently, in the
amplitude ratio. In the following, we will illustrate the influence of mesh spacing and
interfacial viscosity on the drag torques just for the case of purely viscous interfaces on top
of a water subphase and at a fixed frequency of 0.5 Hz.

In Figure 5, we show the relative differences in the real, ∆r(<(T∗sub)) (solid symbols),
and imaginary parts, ∆r(=(T∗sub)) (open symbols), of the subphase drag torque, Tsub,
between the solutions obtained with different mesh sizes taking as reference the solution
obtained for the mesh with the highest resolution used (2520× 1260 mesh). Black, red,
and blue symbols correspond to meshes with 200× 100, 440× 220, and 1000× 500 nodes,
respectively. The left and right panels display the results for PV-I and PV-II, respectively.
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Figure 5. Subphase drag torque relative differences between the solutions with different mesh sizes
taking as a reference the 2520× 1260 mesh solution for the real part, ∆r(<(T∗sub)) (solid symbols),
and the imaginary part, ∆r(=(T∗sub)) (open symbols). Black symbols: 200× 100 mesh. Red symbols:
440× 220 mesh. Blue symbols: 1000× 500. Left panel: program version (PV)-I, right panel: PV-II.

The results obtained for subphase drag with versions I and II of the program show
no apparent differences. This fact can be easily explained, because the subphase drag
occurs mostly at the lower surface of the bicone, where the difference between the flow
field computed with PV-I and PV-II are negligible. Interestingly, the relative difference in
Tsub is practically unaffected by the value of the interfacial viscosity η∗s .

On the contrary, the interfacial drag torque is determined by the velocity field gradient
right at the bicone rim and, consequently, the corresponding figure for the interfacial drag
torque is expected to show some differences. Such differences can be appreciated in Figure 6,
where we show the relative differences real part, ∆r(<(T∗surf)) (solid symbols), and imaginary
part, ∆r(=(T∗surf)) (open symbols) of the interfacial drag torque, Tsurf, between the solutions
obtained with different mesh sizes taking as a reference the 2520× 1260 mesh solution. Black,
red, and blue symbols correspond to meshes with 200× 100, 440× 220, and 1000× 500 nodes,
respectively. The left and right panels of Figure 6 correspond, respectively, to the results
obtained with PV-I and PV-II.
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Figure 6. Interfacial drag torque relative differences between the solutions with different mesh sizes
taking as a reference the 2520× 1260 mesh solution for the real part, ∆r(<(T∗surf)) (solid symbols),
and the imaginary part, ∆r(=(T∗surf)) (open symbols). Black symbols: 200× 100 mesh. Red symbols:
440× 220 mesh. Blue symbols: 1000× 500. Left panel: PV-I, right panel: PV-II.

In both versions of the program, ∆r(<(T∗surf)) and ∆r(=(T∗surf)) decrease with increas-
ing ηs until they eventually level at ηs values between 10−5 and 10−4 N·s/m. However,
∆r(<(T∗surf)) is considerably larger in PV-I than in PV-II for all the mesh sizes analyzed.
Considering ∆r(=(T∗surf)), version II again shows smaller values, but the difference between
version I and II is in this case much smaller than for ∆r(<(T∗surf)).

This fact can be explained by the effect of the box size length scale [26]. There are
several characteristic length scales that affect the flow behavior in the bicone geometry.
Following Fitzgibbon et al. [26], we can distinguish the subphase viscous (Stokes) length
scale, `ω =

(
ν
ω

)1/2, where ν is the kinematic viscosity, the interfacial viscous length scale,
`s

ω = |Bo∗|1/2`ω, the box size, b̃, and finally the bob radius, Rb. In the terms of Reference [26],
the box size is the interface radial extension, b̃ = Rc − Rb. Then, the interfacial length scale
for velocity attenuation becomes larger than the box size when

`s
ω > b̃ =⇒

√
|Bo∗ω |`ω > b̃ =⇒

√
|η∗s |√
ηρω

> b̃. (15)

In the configuration here considered, the cross over value for η∗s then should be

|η∗s | ∼ b̃2√ρωη ∼ 6.4× 10−5 N·s/m, (16)

that is in very good agreement with the cross over value found numerically. Below that
value, the interfacial viscous length scale, which depends on the value of ηs, dominates
the dynamics, while above that value the box size, which is constant, is the relevant length
scale. In the bulk subphase the Stokes length is `ω ∼ 0.56 mm; hence, in this study `ω < H
and, consequently, the relevant viscous length scale at the subphase is `ω.

The differences observed in the calculations of T∗sub and T∗sur f certainly have consequences
on the total drag torque too. Such differences can be appreciated in Figure 7, where we show
the relative differences in the real part, ∆r(<(T∗tot)) (solid symbols), and imaginary part,
∆r(=(T∗tot)) (open symbols) of the total drag over the bicone + rotor assembly, between the
solutions obtained with different mesh sizes taking as a reference the 2520× 1260 mesh
solution. Black, red, and blue symbols correspond to meshes with 200× 100, 440× 220, and
1000× 500 nodes, respectively. The left and right panels of Figure 7 correspond, respectively,
to the results obtained with versions I and II of the software.
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Figure 7. Total drag force relative differences between the solutions with different mesh sizes taking
as a reference the 2520 × 1260 mesh solution for the real part, ∆r(<(T∗tot)) (solid symbols), and
the imaginary part, ∆r(=(T∗tot)) (open symbols). Black symbols: 200× 100 mesh. Red symbols:
440× 220 mesh. Blue symbols: 1000× 500. Left panel: PV-I, right panel: PV-II.

Generally speaking, both the real and imaginary parts of the relative differences in the
total torque are smaller in PV-II. Moreover, for all the mesh sizes analyzed and for both
versions of the numerical approach, ∆r(=(T∗tot)) is considerably smaller than ∆r(<(T∗tot))
(see the different scale of the left and right vertical axes). Interestingly, the results for
PV-I show a practically constant value of the relative differences in the real part of the
total torque, ∆r(<(T∗tot)), while the imaginary part shows trend changes at two different
values of ηs. Indeed, the imaginary part levels out below ηs ∼ 10−5 N·s/m and above
ηs ∼ 10−3 N·s/m, while showing a steep decrease in between those values upon increasing
ηs. On the contrary, for PV-II, the real part of the total torque is flat above ηs ∼ 10−4 N·s/m
and increases upon decreasing ηs below that value, while the imaginary part shows a
similar behavior although in this case the cross-over value is ηs ∼ 10−3 N·s/m.

3.3. Complex Amplitude Ratio

The differences in the drag terms must show up in the complex amplitude ratio, AR∗,
too. In Figure 8, we show the relative differences in the modulus and argument of the
complex amplitude ratio for the two program versions (left and right panels correspond
to PV-I and PV-II, respectively). The dependence with the mesh size has been studied
and the relative differences are referred to the results of the highest resolution mesh used
(2520× 1260 nodes). Black symbol curves correspond to a 200× 100 mesh, red symbols
to a 440× 220 mesh, and blue symbols to a 1000× 500 mesh. Filled and empty symbols
correspond to relative differences in the modulus and argument, respectively.

The relative differences in the modulus and argument of the complex amplitude
ratio show a more complex behavior as a function of ηs, because the contributions of the
differences in the interfacial and subphase drags are combined together with the inertia
term (see Equation (9)) and nonlinearly transformed into modulus and argument.

In Figure 8, the aforementioned three distinct regions appear too. In this case the
cross-over values are located approximately at ηs ∼ 10−4 and ηs ∼ 10−2 N·s/m. Generally
speaking, the values of the relative differences for PV-II are always smaller than those
corresponding to PV-I, particularly regarding the argument. Moreover, the modulus
relative differences shows a monotonic variation with ηs for PV-II, while this is not true for
PV-I. Overall, the convergence of the results as a function of mesh size is quite good because
the relative differences always decrease upon increasing mesh spatial resolution. Indeed,
the relative differences between the best resolution mesh (2520× 1260 nodes) and the
second best resolution mesh (1000× 500 nodes) are about 0.1% in the modulus and 0.005%
in the argument. Hence, if in a given application the computing time needs to be shortened,
spatial meshes of 1000× 500 nodes or even 440× 220 nodes might be safely used.
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Figure 8. Relative differences in modulus, ∆r(AR) (solid symbols), and phase, ∆r(arg) (open
symbols), between the solutions obtained with different mesh sizes taking as a reference the
2520× 1260 mesh solution. Black symbols: 200× 100 mesh. Red symbols: 440× 220 mesh. Blue
symbols: 1000× 500. Left panel: PV-I; right panel: PV-II.

3.4. Local Strain at the Bicone Rim

It is not surprising that physical quantities that involve the response of the whole interface,
such as the total torque, the complex amplitude ratio, or the complex interfacial viscosity,
show small differences between the values obtained with both versions of the program. The
opposite is true concerning physical variables that depend mostly on the local values at the
bicone rim, such as the interfacial torque or the interfacial strain close to the bicone rim. The
changes in the interfacial torque have already been illustrated in Figure 6. Indeed, the
interfacial strain close to the bicon rim is, typically, the reference variable to study whether
the measurements are made in the linear regime or not.

In the mathematical representation of the problem used here, the expression for the
interfacial strain at the bicone rim is

γ∗(Rb) =

(
∂uθ

∂r
− uθ

r

)∣∣∣∣
r=Rb

= Rbθ0eiωt
(

∂g∗

∂r
− g∗

r

)∣∣∣∣
r=Rb

. (17)

Hence

γ∗(Rb)

θ0eiωt = Rb

(
∂g∗

∂r

)∣∣∣∣
r=Rb

− g∗(Rb) = Rb

(
∂g∗

∂r

)∣∣∣∣
r=Rb

− 1, (18)

and, taking into account Equation (6), the expression for the relationship between the strain
at the bicone rim and the interfacial torque is

Tsur f

θ0eiωt = iω2πR2
bRcBo∗η

(
Rb

(
∂g∗

∂r

)∣∣∣∣
r=Rb

− 1

)
= iω2πR2

bRcBo∗η
γ∗(Rb)

θ0eiωt . (19)

In Figure 9, we show the relative differences in the modulus and argument of the
complex interfacial strain at the bicone rim for the two program versions (left and right
panels correspond to PV-I and PV-II, respectively). The dependence with the mesh size has
been studied and the relative differences are referred to the results of the highest resolution
mesh used (2520× 1260 nodes). Black symbol curves correspond to a 200× 100 mesh, red
symbols to a 440× 220 mesh, and blue symbols to a 1000× 500 mesh. Filled and empty
symbols correspond to relative differences in the modulus and argument, respectively.
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Figure 9. Relative differences in the modulus, ∆r(|γ∗(Rb)|) (solid symbols), and the argument,
∆r(arg(γ∗(Rb))) (open symbols), of the interfacial strain at the bicone rim between the solutions
obtained with different mesh sizes taking as a reference the 2520× 1260 mesh solution. Black symbols:
200× 100 mesh. Red symbols: 440× 220 mesh. Blue symbols: 1000× 500. Left panel: PV-I; right
panel: PV-II.

On the one hand, the relative differences in the modulus of the complex interfacial
strain at the bicone rim, ∆r(|γ∗(Rb)|), do not differ significantly for both program versions.
On the other hand, the relative differences in the argument of the complex interfacial strain
at the bicone rim, ∆r(arg(γ∗(Rb))), show large differences for ηs ≤ 10−4 N·s/m. The
relative differences in ∆r(arg(γ∗(Rb))) between program versions I and II are particularly
important in the range 10−5 . ηs . 10−4 N·s/m, where the relative differences obtained
with version PV-I are higher by a factor of 10 than those corresponding to version PV-II.
This variation, in favor of version PV-II, is important because the range of ηs between 10−5

and 10−4 N·s/m is, precisely, where more gain should be expected from using FFBDA
schemes in the bicone geometry, provided the rheometer’s resolution in torque and angular
displacement is good enough.

3.5. Consistency Tests

Consistency tests consist of programming a given interfacial viscosity, solving the flow
field configuration, obtaining the corresponding value of the complex amplitude ratio, and
feeding the data analysis scheme with those data to check if the FFBDA scheme yields the
same values that were programmed initially. The test is performed for a set of 30 values of
the interfacial viscosity with logarithmic spacing in the interval 10−6 ≤ ηs ≤ 100 N·s/m.
All of the results shown here have been obtained with a high resolution mesh
(1000× 500 nodes).

The consistency tests performed on the iterative scheme using PV-II, with the same
protocol employed in [19], are shown in the left panels of Figure 10. Different rows
correspond to the three aforementioned representative cases. The top row corresponds
to a perfectly viscous interface, so that the real part of the complex interfacial viscosity
should coincide with the programmed value of ηs and the value of the imaginary part
should be negligible, as it is shown in the top left panel of Figure 10, where the real
part of the calculated values of the interfacial viscosity is always larger by at least three
orders of magnitude than the corresponding values of the imaginary part. The middle
row corresponds to a viscoelastic interface with equal real and imaginary components of
the perfectly viscous interface, so that both the real and imaginary parts of the complex
interfacial viscosity should coincide with the programmed value of ηs. This is precisely
what is shown in the middle left panel of Figure 10 where the real and imaginary parts
superpose nicely in a single symbol line. The bottom row corresponds to a perfectly elastic
interface, so that the real part of the complex interfacial viscosity should be negligible,
while the imaginary part should coincide with the programmed value of ηs. This happens
again, as shown in the bottom left panel of Figure 10, but in a small region slightly above
ηs ∼ 10−5 N·s/m; such a behavior appeared also in PV-I [19].
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Figure 10. Real (solid circles) and imaginary (open circles) parts of the interfacial shear viscosity
(left column) and number of iterations (triangles) until convergence (right column) as a function of
the interfacial shear viscosity modulus, |η∗s | at a frequency f = 0.5 Hz. Upper row: Purely viscous
interface (η′′s = 0). Middle row: Viscoelastic interface (η′s = η′′s ). Bottom row: Purely elastic interface
(η′s = 0).

The tests yielded very similar results to those reported for version I in [19]. This
is not strange since in the consistency tests of each version of the software, the initial
flow configuration is obtained using the same version that is used to process the data
afterwards. The curves in the right side panels of Figure 10 show the number of iterations
needed for convergence at each ηs value for PV-II. They show very similar trends to those
corresponding to PV-I [19] but the numbers of iterations needed for convergence with
PV-II are slightly larger (2 to 3 more iteration steps, typically) than those corresponding to
PV-I, probably a consequence of the more involved mathematical implementation of the
boundary condition at the interface.

3.6. Comparative Results on Experimental Data

In the following, we illustrate the differences in the performance of both program
versions on experimental data obtained in, first, thin silicone oil films of known interfacial
viscosity and depth, and, second, on a pentadecanoic acid (PDA) Langmuir monolayer
under an isothermal compression. All of the results shown here have been obtained with
a high resolution mesh (1000× 500 nodes); hence, the differences in the results obtained
with program versions PV-I and PV-II have been minimized.
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In Figure 11, we show the results of processing experimental data obtained at an
air/water interface covered with three different silicone oil films. Red symbols: η = 33 Pa·s,
d = 150 µm; ηs = 5 × 10−3 N·s/m. Black symbols: η = 33 Pa·s, d = 75 µm;
ηs = 2.5× 10−3 N·s/m. Blue symbols: η = 1 Pa·s, d = 100 µm; ηs = 10−4 N·s/m. In
the left panel, circles and triangles correspond to the interfacial viscosity, ηs(ω), and interfacial
loss modulus, G′′s (ω), respectively. The values obtained with both program versions are
indistinguishable in the logarithmic vertical scale chosen. Moreover, the values obtained for
the interfacial viscosity agree very well with the expected value in the three cases, and the
loss modulus shows a linear dependence on frequency (straight line with unity slope in the
doubly logarithmic plot). Such data convergence was achieved with 5 iteration steps or less.

The corresponding relative differences in the values of the loss modulus, ∆r([G′′s ]I,I I) =
[G′′s ]I−[G′′s ]I I

[G′′s ]I I
, and the interfacial viscosity, ∆r([η′s]I,I I) =

[η′s ]I−[η′s ]I I
[η′s ]I I

, processed with both ver-
sions of the program are shown in the right panel of Figure 11. As expected, the relative
differences coincide for the loss modulus and the interfacial viscosity exception made
of the points at which both moduli take values comparable to the resolution limit of the
instrument∼10−4 N/m [18], that according to the data shown in the left panel corresponds,
approximately, to ω < 2 rad/s. Hence, the circles and triangles appear superposed in the
right panel plot but at ω < 2 rad/s. Not surprisingly, the relative differences are much
bigger for the case of the lower value of the interfacial viscosity because the case with
ηs = 10−4 N·s/m is close to the resolution limit of the instrument [18] and, consequently,
small errors in the flow field solution yield larger errors in the determination of the values
of the rheological properties. Moreover, the relative differences grow with frequency, which
is not surprising because the interfacial velocity profile becomes increasingly nonlinear as
the frequency is increased, and the difference between the profiles determined with both
versions of the program should increase accordingly.
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Figure 11. Left panel: Interfacial loss modulus, [G′′s ]I I (triangles), and interfacial viscosity, η′s (circles)
as a function of oscillation frequency, ω. Right panel: Relative difference, ∆r([G′′s ]I,I I), between the
loss modulus of the thin films of silicone oil obtained with PV-I and PV-II as a function of frequency.

In the left panel of Figure 12, we show plots of the values obtained for the inter-
facial loss modulus, G′′s (γ), as a function of the strain, γ, for the silicone oil films with
ηs = 5× 10−3 N·s/m (red triangles; expected loss modulus G′′s ∼ 1.5× 10−2 N/m) and
ηs = 10−4 N·s/m (blue circles; expected loss modulus G′′s ∼ 3× 10−4 N/m)). In these
measurements the frequency was set at f = 0.5 Hz (ω = π rad/s), and the oscillation am-
plitude was varied. The left panel shows that the measurements are well within the linear
regime, and good agreement with the expected values of the loss modulus is obtained.
The corresponding relative differences in the values of the loss modulus processed with
both versions of the program are shown in the right panel of Figure 12. Again, the relative
differences are larger for the case of the lower value of the interfacial viscosity.
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Figure 12. Left panel: Interfacial loss modulus, [G′′s ]I I as a function of strain, γ, for the silicone oil
films with ηs = 5× 10−3 N·s/m (red triangles) and ηs = 10−4 N·s/m (blue circles). Right panel:
Relative difference, ∆r([G′′s ]I,I I), between the loss modulus of the thin films of silicone oil obtained
with PV-I and PV-II as a function of strain.

In Figure 13, we show (red triangles) the values of [G′′s ]I I (red triangles) as a function
of the interfacial pressure, Π, of a pentadecanoic acid Langmuir monolayer [19] obtained
with PV-II, together with the relative difference, ∆r([G′′s ]I,I I), between the values obtained
when analyzed with both versions of the program calculated with two different mesh
resolutions, namely, 1000× 500 nodes (black dots) and 200× 100 nodes (blue dots). From
the results obtained with the high spatial resolution mesh (black dots), it is clear that the
values of the difference, due to higher errors in the computations made with PV-I, are very
small when the interfacial viscosity is larger than 10−3 N·s/m, roughly corresponding to
interfacial pressure values above 25 mN/m, while they grow up to values about 0.1% for
lower values of the interfacial viscosity. The comparison with the results obtained using
the low spatial resolution mesh (blue dots) shows that the differences increase by, roughly,
a tenfold factor.
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Figure 13. Loss modulus, [G′′s ]I I , (red triangles) and relative difference, ∆r([G′′s ]I,I I), between results
using PV-I and PV-II (black dots) of a PDA Langmuir monolayer, as a function of the interfacial
pressure Π. The relative differences ∆r([G′′s ]I,I I) are shown for two different spatial resolution meshes:
1000× 500 nodes (black dots) and 200× 100 nodes (blue dots).

4. Conclusions

In this report, we show a detailed study of the influence of the discretization scheme
close to an air/water interface in a FFBDA scheme for the bicone bob interfacial rheometer
under oscillatory forcing. We have compared the performance of two program versions,
using first order forward (FOFFD) and second order centered (SOCFD) finite differences
discretization schemes at the interface, respectively. The SOCFD scheme needs the in-
troduction of a line of phantom nodes above the interface. Such nodes, however, do
not appear explicitly in the linear system of equations that has to be solved numerically
because they are eliminated when combining the Navier–Stokes Equation (11) and the
Boussinesq–Scriven boundary condition at the interface (10).
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The velocity profiles at the interface show significant differences at the bicone rim, where
the solutions provided by the SOCFD scheme are much smoother than those pertaining to
the FOFFD one (Figure 4). Such an advantage is more noticeable the larger the nonlinearity
of the profile, i.e., the lower the interfacial viscosity and the higher the oscillation frequency
and the lower the spatial resolution of the mesh used in solving the hidrodynamic problem.
Interestingly, the advantage in the accuracy of the flow profiles, at the highest mesh resolution
used here, shows up as a few percent differences on the interface and subphase drag torques
(Figures 5–7), on the complex amplitude ratio (Figure 8), and on the final values obtained for
the complex viscosity or dynamic moduli (Figure 10). Hence, using high resolution meshes,
the values of the dynamic moduli or the complex viscosity obtained with PV-I show only
marginal differences with respect to the more correct ones obtained with PV-II. Consequently,
the operating windows previously reported [18] for a bicone bob ISR supplemented with
BiconeDrag PV-I should be valid too when using PV-II. Regarding the computation time,
PV-II requires, typically, only about 20% more iteration steps than PV-I to achieve convergence.
Such an increase in time cost is not relevant for the typical applications of the program.
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