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Abstract: Confinement can induce substantial changes in the physical properties of macromolecules
in suspension. Soft confinement is a particular class of restriction where the boundaries that constraint
the particles in a region of the space are not well-defined. This scenario leads to a broader structural
and dynamical behavior than observed in systems enclosed between rigid walls. In this contribution,
we study the ordering and diffusive properties of a two-dimensional colloidal model system subjected
to a one-dimensional parabolic trap. Increasing the trap strength makes it possible to go through
weak to strong confinement, allowing a dimensional transition from two- to one-dimension. The
non-monotonic response of the static and dynamical properties to the gradual dimensionality change
affects the system phase behavior. We find that the particle dynamics are connected to the structural
transitions induced by the parabolic trap. In particular, at low and intermediate confinement regimes,
complex structural and dynamical scenarios arise, where the softness of the external potential induces
melting and freezing, resulting in faster and slower particle diffusion, respectively. Besides, at strong
confinements, colloids move basically along one direction, and the whole system behaves structurally
and dynamically similar to a one-dimensional colloidal system.

Keywords: colloids; confinement; ordering; locomotion; Brownian dynamics

1. Introduction

Confining a many-body system into a small volume or area affects its physical proper-
ties [1–5]. Confinement is present in several natural and artificial systems of great scientific
and technological relevance [2,6]. The degree of confinement handles many of the observed
phenomena in such systems. However, other effects can be attributed solely to the intrinsic
confinement characteristics: topographical (hard) or energetic (soft) [7].

A system with rigid boundaries implies a hard external potential, i.e., a potential
which, according to the particle–wall separation, is either zero or infinity, thus, describing a
steric volume exclusion between the particles and the confining wall [8]. On the other hand,
soft confinement refers to a smooth external potential [7,8], i.e., a continuous potential
that is well-defined as the particle–wall separation systematically decreases. Besides, soft
confinement also entails the lack of a well-defined width of the confining region, i.e., there
is not a prescribed (rigid-like) boundary that defines the available space to the particles.
This kind of confinement induces different structural transitions and dynamical scenarios
than those already observed with rigid confinement [6–10].

Most of the studies on confinement effects rely on scenarios with fixed confining
walls, i.e., where the region that constrains the motion of the particles has a well-defined
volume or area. For example, there exist several works related to hard and soft particle
crystallization under rigid confinement, see, e.g., [2–7,11] and references therein. The
layering and dynamics of q2D superparamagnetic colloids enclosed between hard walls
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have been studied experimentally and using Brownian dynamics simulations [12–15].
However, recent works have highlighted the importance of the role played by the softness
of the confining mechanism [6–10,16,17]. For example, a colloidal system whose particles
interact with a potential that has a short-ranged attraction and a long-ranged repulsion
and confined by a harmonic-potential experiences a self-assembly process that leads to
exciting and complex structural patterns [18,19].

Nowadays, there are many colloidal systems that involve or model some form of
soft confinement. From an experimental point of view, a typical example consists of
charged glass plates that act as soft confinement to charged colloids [7,8,20]. Flexible
polymers end-grafted at the walls could act as a soft repulsive wall [17]. From a theoretical
perspective, a model to describe a soft repulsion is the WCA-like potential between a wall
and particles [17], or when a harmonic well confines or restricts the area or volume available
to the particles [6,10,16]. These soft potentials can be systematically tuned to lead to either
a weak or strong degree of confinement. Therefore, by merely playing with the softness
of the potential, it is possible to suppress or enhance a certain kind of structural ordering
with significant implications on the particle dynamics [16]. We refer to Reference [6] and
references therein for more specific colloidal systems and nanotechnology examples where
confinement plays an important role.

When one can manipulate the confining boundaries of the system, it is also possible
to modify the energy landscape that the particles experience. Hence, this opens up new
possibilities for self-assembling and the rational designing of mesoscopic clusters with a
diversity of mechanical and optical properties [21]. Nowadays, optical traps and colloidal
systems are clean and excellent model systems to explore such exciting possibilities [22].

Some recent works focused on the structural scenarios that emerge under the action
of a soft potential. For example, the effect on the structure of a hard-sphere fluid near a soft
wall [17]; the role played by the softness of a harmonic potential on the layering, freezing,
and melting of hard spheres [6]; crystallization of soft spheres in soft confinement [7].
However, most of these studies concentrated on q2D or 3D systems; much less explored is
the situation of 2D or q1D systems under soft confining potentials [9,10].

In an earlier contribution [23], we theoretically investigated the relationship between
the structure and the dynamical behavior of a colloidal system confined by a parabolic
potential whose constituents interact with a long-ranged potential, namely, a dipolar-like
interaction. In such a contribution, we emphasized the structural transitions undergone by
the colloidal system in a very narrow window of values of the k-parameter, which defines
the softness of the potential or the degree of confinement. In this work, we study the
transition from 2D to 1D of soft particles under soft confinement by means of computer
simulations. We extend our previous study to a different interval of k-values, particularly
to the regime of weak confinement. Essentially, the first stage of the transition from 2D to
q1D is analyzed in detail; this transition was not explored systematically in our previous
work [23].

Furthermore, for the sake of the discussion, in this article, we have introduced a
new set of observables that clarifies in a better way the connection between the local
structure and its implication on the dynamical behavior. The bond-orientational correlation
function quantifies the role of the soft boundary to inhibit or promote local hexagonal
ordering [16,24]. The distribution and ordering of particles are quantified using the pair
distribution function [25,26]. Finally, the so-called self-part of the intermediate scattering
function describes the particle dynamics and the multiple relaxation regimes [16,26].

The parabolic potential strength is systematically tuned from low to high values (weak
to strong confinement) to induce a dimensional transition. During such transition, the
particle density (packing fraction) is kept constant. Hence, our study mainly focuses on
the evolution of the equilibrated structure and its connection with particle dynamics. The
results highlight the non-monotonic structure and dynamical behavior driven by the soft
confinement during the transition from a 2D system close to a spontaneous crystallization
to a 1D highly diluted colloidal system.
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The manuscript is organized as follows. In Section 2, we provide some details of the
model system, namely, the inter-particle interaction and the external parabolic potential.
Section 3 presents a brief discussion of the standard Ermak–McCammon algorithm to
carry out Brownian dynamics simulations. In Section 4, we present the main results and
discussions on the structure and its relationship with the particle dynamics. Finally, a
summary of the main results is included in Section 5.

2. Pair Potentials and External Parabolic Field

In this work, we consider colloids interacting with a repulsive screened Coulomb
potential, typically known as Yukawa pair potential [27]. For further details and related
parameters, see, e.g., References [25,27–29]. The average packing fraction used during
the simulations is φ = πρa2 = 0.1766, where ρ is the particle number density and a the
colloidal radius. We use the same value of φ regardless of the stiffness parameter value, k.

Experimentally, constraining a colloidal suspension between parallel plates leads to
hard or soft confinement. Uncharged plates provide rigid confinement while regulating the
superficial charge on the confining plates leads to long-ranged repulsions [7]. Besides, vary-
ing the solvent salt concentration creates a system of soft particles in soft confinement [8,20].
In the present work, to constrain the particles in one direction, we use the same external
parabolic potential as in Reference [23]; uext(y) = 1

2 ky2. This soft potential acts on each
particle along the y-direction. In Reference [30], authors proposed a model for macroions
confined between two parallel neutral walls. The charge distribution inside the plates gen-
erates a quadratic potential, which is analogous to the harmonic potential here considered.
However, we do not attempt to model any specific theoretical or experimental system.

A soft potential does not impose a rigid boundary, however, variation of the stiffness
parameter k allows going through weak to strong confinement. Hence, k∗ ≡ ka2/kBT is the
main physical control parameter in our analysis, with kB and T being the Boltzmann con-
stant and the absolute temperature, respectively. For further details, see References [6,31].
From now on, we will omit the asterisk in k. Thus, any reference to a particular k-value
implies the dimensionless value.

3. Brownian Dynamics Simulation and Physical Observables

All calculations were carried out using Brownian dynamics (BD) computer simula-
tions. We use the same protocol as described in Reference [23], but the present work does
not consider hydrodynamic interactions. The dynamics of the system is then simulated as
follows. At the beginning, the external potential is switched off (k = 0), and N = 625 parti-
cles are distributed in random initial positions in a square box of dimensions (Lx = Ly = L);
periodic boundary conditions on each direction are applied. The particles move until the
equilibrium configuration is reached. After this step, we increase the stiffness parame-
ter in small steps ∆k = 0.1. Then, particles move at least 5× 103 time steps, where the
minimum image convention and periodic boundary conditions are applied only in the
x-direction. After that, to monitor the total energy per particle and the displacements along
the y-direction, another equilibration cycle is performed. The size of this cycle extends until
the total potential energy U(rN , t) reaches a constant value. At the end of this cycle, we
assign a new value to the box length Ly, related to the maximum displacement of particles
in the y-direction. Using this new value Lnew

y , the simulation box size is modified to keep
the particle density constant, namely, Lx = N/(ρLnew

y ). Finally, particles are randomly
placed in the new simulation box, and an additional equilibration cycle is carried out. This
procedure is repeated for each increment of k. The largest value of k used in this work is 30,
which corresponds to the strong confinement regime, i.e., when the system behaves as a
1D system.

The previous methodology allows us the slow relaxation of the system, which prevents
that particles get artificially trapped by the sudden exposition to the external potential.
In most of the simulations, we use N = 625 particles; however, some simulations have
been performed with a larger number of particles to discard size effects. The reduced time
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step, ∆t, is chosen as ∆tD0/a2 = 2× 10−4, where t is the time and D0 = kBT/6πηa is the
Stokes–Einstein diffusion coefficient [26], with η being the solvent shear viscosity.

3.1. Structural Observables

We monitor the structural evolution of the colloidal system through the pair correla-
tion function g(x) and the static structure factor S(qx) [5,26,28]. Both observables are of
great interest because they determine the ordering and characteristic length scales of the
dispersion. Besides, they are experimentally accessible and allow us a direct comparison
with simulation results. We also compute the probability of finding a particle along the
y-direction, P(y).

The above physical observables describe the spatial distribution of particles inside
the confining region. However, recent contributions have highlighted that local hexagonal
ordering depends on the confining boundary softness [21]. Here, hexagonal local ordering
relative to a given particle i is quantified using the local bond orientational order parameter,

ψ6i, defined as ψ6i = 1
Ni

Ni
∑

j=1
ei6θij , where Ni is the coordination number (number of the

nearest neighbors) or particle i, j labels its neighbors, and θij is the angle between a
reference axis and the bond joining particles i and j [16,32]. To identify particle neighbors,
we employ a closest distance criterion. Thus, the global orientational order parameter is
given by [32],

Ψ6 =
∣∣1/N

N

∑
i=1

ψ6i
∣∣, (1)

which is the average of the local order parameters overall N particles. This parameter
characterizes the hexagonal symmetry in 2D. Ψ6 = 1 for a perfect triangular lattice, and
Ψ6 = 0 for a random liquid [13,32]. The function g6(r) is used to analyze the orientational
correlation, and it is defined as [24],

g6(r) =
〈
ψ∗6 (r

′)ψ6(r′ − r)
〉
, (2)

where ψ6(r) is the local bond-orientational order parameter at the position r. The ori-
entational correlation function g6 approaches to a constant in the solid phase, decays
algebraically in the hexatic phase, and behaves exponentially in the liquid phase [24].

3.2. Dynamical Observables

Dynamical properties, such as the mean-square displacement (MSD), are calculated
based on the equilibrium particle trajectories. Because the coupling with the parabolic
potential introduces an anisotropic dynamical behavior, it is more illustrative to com-
pute the contributions to the MSD separately. Hence, Wx(t) and Wy(t) denote the MSD
perpendicular and parallel to the confinement, respectively [29].

Particle dynamics are also characterized through the self-part of the intermediate
scattering function (sISF), defined by [16,26],

Fs(q, t) =
1
N

〈 N

∑
i=1

exp(iq · [(ri(t)− ri(0)])
〉

, (3)

which measures the decay in time of particle correlations at wavelength 2π/q. For diluted
fluids, this function approaches to an exponential decay, and the relaxation time for spatial
inhomogeneities with wavenumber q = π, denoted by τα, is defined by Fs(q, τα) = 1/e.
Similar to the analysis for the MSD, we focus on the decay of the sISF along the unconfined
sIFSx and confined direction sIFSy.

For the sake of the discussion, from now on, we describe any physical quantity
in reduced units: r∗ ≡ r/a, t∗ ≡ tD0/a2, W∗(t) ≡ W(t)/a2, although we will omit
the asterisk.
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4. Results and Discussion
4.1. Structural Transitions: Analysis and Discussion

The response of the colloidal system to the soft confining potential is to form structural
units of parallel chains of particles, i.e., lane-like formation [33–35]. As the strength of the
parabolic potential increases, the system responds in a non-monotonic way. We correlate
such behavior with the absence of hard-boundaries. Instead of a hard-wall, particles
belonging to the top and bottom channels create effective deformable boundaries. Of
course, strictly speaking, these boundary particles are not responsible for the confinement,
but somehow, they allow the particle rearrangement inside the harmonic potential.

We do not associate the observed structural transitions with thermodynamic state
transitions. For each k value, the temporal evolution of the energy is monitored (data not
shown). We have noticed that once the system reaches equilibrium after a thermalization
process, the energy per particle fluctuates very little around a constant value.

4.1.1. System Dimension

The transition from 2D to 1D is achieved by gradually increasing the value of k follow-
ing the protocol described in Section 3. For each increment of k, simulations are performed
at constant density (or packing fraction), where a decrease in Ly is accompanied by a corre-
sponding increase in Lx. The box length changes along the direction of confinement are
directly related to the particle maximum displacements in the y-direction. The most distant
particles to the center of the box along the y-direction create a sort of flexible boundary. In
this work, flexible confinement means that such particles (red particles in the snapshots
of Figure 1) display more significant position fluctuations because their movements are
not restricted by the presence of a hard-wall or periodic image particles; besides, they do
not diffuse to the bulk. Hence, although particles belonging to the boundaries channels
serve as a flexible wall, we have fixed the box dimensions in both x- and y-directions. The
use of the same concentration avoids effects associated with density variations. Hence,
the competition between the inter-particle potential and the external field will be the main
physical mechanism behind the observed structure and the particle dynamics.

k

k = 0.1

k = 9.0

k = 6.0

Figure 1. Box length in the y-direction as a function of the trap stiffness k for three different system
sizes. Snapshots were created with VMD [36] and represent typical configurations of particles in
q2D, q1D, and 1D geometries. The confining harmonic potential acts on each particle individually,
but boundary particles (at a given instant of time) are colored in red, and those forming the bulk
in blue. Dashed lines represent approximate regions in Ly and k where the system exhibits a
dimensionality transition.
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We also monitor the dimensional transition along the direction of confinement (Figure 1).
To be sure that the pathway from 2D to 1D does not include finite-size artifacts, simu-
lations with three different box sizes were performed, i.e., different number of particles
(N = 400, 625, 900). As shown in Figure 1, the path seems to be independent of the system
size. The most dramatic changes occur in the interval of 0.1 ≤ k ≤ 1, where the system
transforms from 2D to q1D. In the region from 1.0 ≤ k ≤ 8.0, a transition from q1D to 1D
appears. For values larger than k = 9.0, the system has reached the limit of a 1D channel.
In particular, for k ≥ 10, motion along y-direction has been completely suppressed, and
the center of mass of each particle has fluctuations in the y-direction smaller than the
particle size.

The probability distribution of finding a particle along the y-direction, P(y), has
unique features that allow us to identify and describe a dimensional transition. Figure 2
shows the P(y) for all k-values here studied. From there, one can deduce that particles
are located, on average, in those places indicated by the maxima of P(y). The presence
of well-defined minima and maxima in P(y) also indicates the formation of well-defined
strata [2,5]. The difference in the height between a maximum and a minimum provides
an estimation of the energetic barrier that a particle has to overcome to diffuse it among
different strata [23].

k = 0.5

k = 0.2

k = 0.8 k = 0.9

k = 10.0

Figure 2. Probability distribution of finding a particle along the direction of confinement for (a) and
(b) small, (c) intermediate and (d) strong couplings with the parabolic potential. The evolution of the
number of peaks in the P(y) gives information of the structural transition that the system undergoes
from an open 2D system (k = 0) to a q2D (0 < k ≤ 1) to q1D (1 < k < 9), to the final 1D-single-file
configuration (k ≥ 9.0).

For k = 0, particles distribute homogeneously; thus, the probability P(y) has a
constant value. For k < 0.3, the coupling with the external potential is very weak, however,
in Figure 2a, it is possible to appreciate a change in the ordering of the colloids. Particles
can move in both x- and y-directions, but some order starts to appear. In particular, for
k = 0.3 and 0.5, the system experiences a rearrangement of particles forming a well-defined
number of channels. However, surprisingly, for k = 0.4, the system exhibits a kind of
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re-entrant behavior, i.e., the strata are not well-defined, indicating a loss of correlation in
the y-direction.

If one further increases the coupling with the external potential, the system exhibits
once again a re-entrant structural behavior, now in the interval 0.6 ≤ k ≤ 1.0 (Figure 2b).
For example, when k = 0.6, 0.8, and 1.0, the system exhibits well-defined strata; in contrast,
when k = 0.7 and 0.9, the strata dissolve in less localized configurations. Such behavior
means that the system undergoes a loss of correlation along the y-direction. The order–
disorder interconverting configurations directly impact the energetic barrier size, which
becomes a non-monotonic function of the trap stiffness. Then, it is clear that even at weak
couplings, particles cannot entirely move freely along the y-direction, and they become
highly localized in small regions. This degree of confinement is consistent with a q2D
scenario where the penetrable soft harmonic potential drives the order–disorder transitions
(see snapshots of Figure 2b). This behavior is similar to that observed in [12–15], where
the spreading of the peaks in the center of the channel indicates a loss of structure in
that region.

By increasing the stiffness parameter to k ≈ 1.5, the parabolic potential induces a
transition from 4- to 3-strata configuration and evolves to 2-strata configuration when
k = 3 (see snapshot in Figure 2c). When k = 3, the system exhibits two well-defined
channels with no particles located at the center of the channel. However, when k = 4, the
two-channel configuration is lost. In fact a second structural stage occurs in the interval
4 ≤ k < 9, see Figure 2c,d. For such k-values, there is a monotonic transition from a two-
channel to a single-channel configuration, i.e., from q1D to 1D. The increase of the height
of the peak and, simultaneously, the narrowing of the P(y) distribution width signals the
transition. These features are an indication that particles become more localized in the
y-direction. However, in the interval 4 ≤ k ≤ 6, we should carefully interpret the number
of peaks as equal to the number of strata. For example, for k = 5.0, it seems that the system
exhibits a three strata configuration, but in reality, this is not the case; it occurs that some
regions of the box have single file particle configurations with particles located close to the
box center, while other regions exhibit two-channel configurations. An analogous situation
prevails for k = 6, see snapshot in Figure 1. As k increases, the two-strata regions undergo
a transition to a single-file configuration.

We now discuss the limit of strong couplings (Figure 2d). As k increases, the den-
sity fluctuations relax faster in the x-direction, while in the y-direction, particles become
highly localized. For k ≥ 9.0, the system has practically reached a 1D configuration (see
snapshot of Figure 2d), where the center of mass of the particles moves in a narrow region
slightly larger than the particle radius. In Figure 2d, the probability distribution P(y) also
exhibits almost one single peak that allows us to conclude that the system behaves as in a
1D channel.

Following Reference [23], one can introduce a classification of the system dimension-
ality using the value of Lmax

y and the number of channels in the system. Then, a 1D system
is such that k ≥ 9, where Ly < 2a, i.e., a single-file configuration. A q1D system is such
that 2 < k < 9, where the width along the y-direction is within the interval: 5a ≤ Ly < 10a.
A q2D system can be then defined when 0 < k < 2 and the movement along the y-
direction is restricted within the interval: 10a ≤ Lmax

y < 80a. In general, the snapshots of
Figures 1 and 2 provide an overview of the evolution of the dimensional transition as a
function of the stiffness parameter. It is interesting to note that such transitions and the
ordering (as we see further below) might be associated with the positional freedom that
offers the external potential [6].

4.1.2. Structural Behavior

In the subsequent analysis, we include the case k = 0 (no external field) as the reference
system to discuss the observed structural transitions. However, to characterize the orien-
tational ordering in the interval 0.1 ≤ k ≤ 1 (q2D regime), we only consider those (blue)
particles that belong to the bulk. Thus, in the calculations given by Equations (1) and (2),
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we have excluded the (red) boundary particles. A similar approach was used in [12,14],
where the colloids close the walls were treated differently than those in the bulk.

In the homogeneous system (k = 0), the long-range orientational order is absent,
typical of a liquid phase. However, even for a small perturbation, such as k = 0.1, the
system displays a dramatic increase in hexagonal order, similar to that predicted for a
crystal. For this coupling, the system exhibits large space voids between the boundary
particles and the available space in the y-direction. Hence, the creation of these voids
results in more significant suppression of the local area fraction; particles get trapped in a
reduced region compared with the original values of Lx and Ly leading to a highly packed
system that exhibits hexagonal ordering. The correlation between hexagonal order and
the presence of large voids adjacent to the wall has also been observed in circular optical
corrals [16].

During the interval where the transition from q2D to q1D occurs, increasing the stiff-
ness parameter not necessarily decrease the orientational order. In the interval, 0.5 ≤ k ≤ 1.0,
the g6 exhibits a non-monotonous behavior. The orientational order decays for most of
the k-values, except for k = 0.8 and k = 1.0; at these two particular values of k, the system
displays long-range orientational order typical of a solid phase [37]. Note that in this
situation, the boundary particles exhibit a high spatial order (see snapshot of Figure 3b).
The ordering of red particles can be associated with promoting the hexagonal order of
those particles that are not part of the boundary. However, for k = 0.9, this mechanism is
interrupted since boundary particles are less ordered and cannot keep the system (bulk) in
an ordered configuration (see snapshot of Figure 3b).

k = 0.9

k = 0.8 

Figure 3. Orientational correlation function, g6(r), in the intervals (a) 0 ≤ k ≤ 0.5 and (b) 0.5 ≤ k ≤
1.0, where one can easily distinguish between particles belonging to the boundary (red) and those
confined to a certain region (blue).

One can notice an analogous order–disordered structural behavior in the pair distribu-
tion function, g(x), where it seems that the system melts for k = 0.9, but is highly ordered
for k = 0.8, 1.0 along the x-direction (see Figure 4b); this connection is discussed further
below. Thus, varying the strength of the external potential, particles that belong to the
bulk experience a dramatic change in their configuration, suggesting that the degree of
confinement in combination with the softness of the harmonic potential induces melting
and freezing transitions. This result is markedly different from that observed in q2D su-
perparamagnetic colloids where the hard wall imposed a different structure between the
particles at the wall and those of the adjacent row. This inconmmensurability prevents the
formation of a perfectly hexagonal structure [13].

A curved boundary only permits local hexagonal ordering when deformations have a
low energetic cost. Thus, adaptive confinement promotes or inhibits hexagonal order by a
variation of the stiffness parameter [16,21]. It seems that the ordered–disordered pattern
found in the g6(r) is analogous to that observed in experiments with adaptive confinement
using optical corrals. In our case, by controlling the harmonic potential softness, it is
possible to induce transitions between ordered and disordered structures. For instance, a
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hexagonal configuration can melt by a small increment in k. On the other hand, when the
trap stiffness increases beyond k = 1.0, the system undergoes a transition from q2D to q1D;
thus, it is not longer possible to define an “inside region”. In fact, for values k > 2.0, the
system consists primarily of only two strips. Thus, it has no sense to calculate the g6(r).

We also follow the evolution of the colloidal micro-structure through the one-dimensional
pair distribution function and the static structure factor. We only present results in the direction
perpendicular to the confinement, i.e., x-direction. For k = 0, when the external potential
is absent, the condition g(r) = g(x) = g(y) is fulfilled (the same applies for the static
structure factor). Besides, both structure correlation functions exhibit the typical features
of colloids interacting with long-ranged repulsive potentials: (i) particles do not feel the
hard-core interaction, (ii) the system shows a typical fluid-like order, and (iii) the structure
factor main peak has a height below 5.5, and there is a characteristic length scale given by the
average distance d = ρ−1/2. However, when the external potential is turned on, one observes
variations in the local structure, even for small values of k, see Figure 4a.

Figure 4. Pair distribution function along the x-direction for several values of the stiffness parameter:
(a) 0 ≤ k ≤ 0.5 and (b) 0.5 ≤ k ≤ 1.0.

The g(x) quantifies the order along the direction without confinement and makes
evident the particle spatial reordering when k is varied. For example, for k = 0, particles are
preferentially located at multiples of the distance d. However, when k > 0, particles try to
form a hexagonal lattice separated by a distance ≈0.90d, which is close to the exact value of√

3/2 corresponding to the separation between two rows of particles in a perfect hexagonal
lattice. The static structure factor S(qx) corroborates this observation (see Figure 5a). For
k = 0, the characteristic length scale is determined by d; hence, the location of the main
peak of S(qx) is at the position qx ≈ 2π. In contrast, for k = 0.1, the location peak is
moved to the right, showing that particles are closer, forming more compact structures as
compared with k = 0.

For k = 0.2, 0.4 particles are located at positions that resemble the hexagonal order. In
fact, along the unconfined direction, they are closer than those in the case k = 0.1. The S(qx)
(Figure 5a) allows one to notice this feature, where the width of the main peak becomes
highly narrow, and the other peaks locate at multiples of the characteristic length; the latter
can be obtained from the expression: qlc = 2π. Thus, the characteristic length is lc ≈ 0.83d.
However, local and long-range order in the y-direction is lost (data not shown). These
features could explain the loss of orientational correlation at very long distances (Figure 3a).
Note that the structure factor is also sensible to the order–disorder state of the boundary
particles; see snapshots of Figure 3a.
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Figure 5. Static structure factor along the x-direction for several values of the stiffness parameter: (a)
0 ≤ k ≤ 0.5 and (b) 0.5 ≤ k ≤ 1.0.

For k = 0.3 and 0.5, 0.7, 0.9 the g(x) exhibits a loss of correlations at large inter-
particle separations (Figure 4a,b). The two first nearest neighbors locate at multiples of the
average distance d, but for larger distances, the distribution of peaks does not exhibit a clear
periodicity, and the height of the peaks has decreased. The structure factor corroborates this
feature, where the first peak has decreased its height, indicating that another characteristic
length is emerging (see Figure 5a,b). From these features, it seems that the system melts in
the x-direction. Interestingly, the g6(r) captures this loss of correlation along the unconfined
direction as a loss of hexagonal order at long distances. This scenario is consistent with the
kind of softness-induced melting discussed above and illustrated by the disordered state
of the boundary particles; see snapshots for k = 0.7, 0.9 in Figure 3b.

In clear contrast, for k = 0.8 and k = 1.0 the g(x) and the S(qx) exhibit characteristics
of a solid-like ordering. The g(x) peaks locate at well-defined positions, multiples of the
average distance, and the correlations become long-ranged. The S(qx) displays practi-
cally one highly narrow main peak, a signal of a dominant length scale in the colloidal
suspension. This scenario is also consistent with the softness-induced freezing; see snap-
shots of Figure 3b. Besides, one should note that the main peak of the structure factor
for k = 0.2, 0.4, 0.6, 0.7, 0.9 is located at different positions as compared with the main
peak for k = 0.8, 1.0. This evidence that different natural length scales are present and the
underlying structural ordering is different in each case. The peaks of the S(qx) for k = 0.6
deserve additional comments. For this case, the g(x) exhibits a clear split at relatively
short distances (Figure 4b). These peaks are associated with the second and third peaks of
the S(qx), whereas the first peak is linked to the strong oscillations that the g(x) displays
at long distances (data not shown). These results are in agreement with those reported
for superparamagnetic colloid in hard walls [12,14], where the presence of well-defined
strata is associated with a more considerable degree of order. The authors also reported a
re-entrant behavior of the system, transitioning from liquid-like to solid-like and back as
the channel width varies.

For k = 1 and 3 (q1D regime) the colloidal system exhibits well defined 4- and 2-strata
configurations, respectively (Figure 2c). For these values of the stiffness parameter, the
g(x) exhibits characteristics of a highly ordered system (Figure 6a). The peaks become
sharper, reflecting that particles are more localized, and they are spatially correlated at
long-distances, i.e., there are strong oscillations at several mean inter-particle distances, d.
Moreover, there is only one characteristic length scale in the system, determined by the
inter-maxima separations, i.e., the maxima are at positions that are multiples of d, and the
valleys separate them, i.e., regions in the pair distribution where g(x) = 0. These valleys
suggest that particles are highly localized and strongly correlated along the channel [25].
The static structure factor also reflects this ordering, where a highly narrow peak is at
qd ≈ 2(2π) (Figure 6c).
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Figure 6. (a,b) Pair distribution functions and (c,d) static structure factors along the x- direction for
several values of the stiffness parameter, 1 ≤ k ≤ 30.

Interestingly, at the intermediate value of k = 2.0, the system exhibits a completely
different structural scenario, see Figure 6a,c. The first peak of the g(x) is located at shorter
separations and there is a loss of correlation at longer distances. We link this structural
reentrance with the transition from 3- to 2-strata. During this transition, there are no well-
defined channels; in some regions, the system consists of two channels, and in other regions,
there are clusters of particles forming three non-permanent channels. This structural
scenario is the reason why one observes the third peak in the P(y) (see Figure 2c). For
this case, the short-range correlations observed in the g(x) are seen directly in the S(qx),
which shows smooth features, and the maxima positions represent the interplay among
different length scales. The dimensional transition correlates with a structural change. The
colloidal dispersion goes from a cooled-liquid state to a liquid state linked with the loss of
correlations along the x-direction.

In the confinement regime corresponding to k-values in the interval 4 ≤ k ≤ 8
(Figure 6), the system undergoes a monotonic increase in the correlations giving rise to
another re-entrant freezing-like transition. One can notice that as k increases, the height of
the peaks in the g(x) and S(qx) also increases, and long-range correlations start to appear.
This behavior is fully consistent with the one observed for repulsive 1D colloidal systems
as a function of the potential strength, or packing fraction [25,28,38]. Hence, by increasing
k from 4.0 to 8.0, particles become more confined along the y-direction, but also in the
x-direction. Thus, although particles locate at well-defined positions, the periodicity does
not correspond to the mean inter-particle distance, d. We associate this behavior with
the structural transition in which the system goes from 2- to 1-channel configuration (see
snapshots of Figure 2).

For values of the stiffness parameter k ≥ 9, the system forms a single chain of particles.
At this transition, the g(x) acquires a much less pronounced structure (Figure 6b). In
particular, the first peak dramatically decreases its height, there is a complete loss of
correlations at long separations, and there is not periodicity along the channel. These
features are typically associated with the structure of colloidal dispersions in a fluid phase.
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The snapshot when k = 9 in Figure 1 visually corroborates that the limit of a 1D diluted
system has been finally reached [25]. The inset of Figure 6d shows the structure factors
for k > 10. Such S(qx) corresponds, accordingly to the P(y) shown in Figure 2d, to 1D
systems. We also corroborate that the structural behavior for k ≥ 10 is very similar to that
of a 1D colloidal system at the same density.

The physical implication from the above analysis is that varying the boundary stiffness
alters the static properties of a confined material. Analogous to the observed behavior of a
3D hard-sphere dispersion under the action of a parabolic trap, we associate the re-entrant
and phase-separating behaviors to the soft confinement. The penetrable harmonic potential
offers more positional degrees of freedom than the typical rigid confinement, making an
important energy contribution to the system free energy, which depends on the particle
configuration [6]. Similar oscillating behavior in the global structure as a function of
the degree of confinement has already been observed in q2D superparamagnetic colloids
between hard walls [12–15]. The oscillations in the structural properties indicate that the
structure of the crystal can be altered by slight changes in the channel width.

4.2. Dynamics

To understand the particle transport during the structural transitions described in the
previous section, we focus on dynamical correlations, such as the mean-square displace-
ment and the self-part of the intermediate scattering function, for different values of the
trap stiffness k. In addition to the non-monotonic structural behavior, transport phenomena
should also exhibit peculiarities linked to the structural variations analyzed above. Open
systems rarely exhibit such dynamical features.

Figure 7a shows the MSDs in the interval 0 ≤ k ≤ 0.5. For the homogeneous system
(k = 0), particles exhibit normal diffusion; the MSDs along the x- and y-directions, Wx
and Wy, respectively, are almost identical (within the statistical uncertainties), and both
exhibit a linear time dependence at short and long times. When k > 0, the particle diffusion
decreases in both directions, however, one can observe a faster diffusion when k = 0.3.
The non-monotonic diffusive behavior observed during the interval from k = 0 to k = 0.5
is attributed to the different structural scenarios, where the cage formed by its nearest
neighbors affects particle movement [39]. Inset of Figure 7a shows the MSD along the
confined direction. The external field induces particle localization in such a direction,
promoting a diffusion decrease of one order of magnitude. However, at long times, the
dynamical behavior is practically the same regardless the stiffness parameter value. It is
clear that the variation of the confinement conditions affects the diffusion mechanisms
and their magnitude in both directions. In particular, it can induce either faster or slower
particle diffusion.

Figure 7. Wx(t) for different values of the stiffness parameter, k, to cover low couplings.
(a) 0 ≤ k ≤ 0.5, (b) 0.5 ≤ k ≤ 1.0. Inset shows the MSD in the y-direction.

The MSDs at long times for k = 0.5, 0.6, 0.7, increase monotonically with k (Figure 7b).
Such increase might be related to the new lengths scales that emerge in the system induced
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by the boundary particles at the order–disorder transitions. However, for k = 0.8, 1.0, there
is a substantial decrease in particle diffusion. From Figure 3b and the inset of Figure 5b,
we recall that both scenarios exhibit the same structural behavior, which results in a
similar slow diffusion. From the inset of Figure 7b, one can observe that for k = 0.9 (blue
line), the flexible confinement allows larger displacements in the y-direction resulting in a
faster diffusion along the x-direction. Hence, the origin of the slow–fast–slow diffusion
mechanisms might also be related to the boundary particle rearrangements, leading to
different solid- and liquid-like structures (see snapshots of Figure 3b). In References [12,14]
a similar dynamical behavior was reported, where the defect concentration (disorder) is
intimately tied to the dynamics of the system; the transport properties of the colloidal
particles also oscillate as a function of the dimensionless channel width. The MSDs in
the confinement direction also exhibit non-monotonic behavior. It mimics the dynamical
scenario along x-direction. Note that despite the structure and dynamics for k = 0.8 and
k = 1.0 along the x-direction are very similar, the Wy(t) for k = 1 is evidently larger
than k = 0.8. This behavior could be interpreted as evidence of directional dependent
melting [10], where the system melts in one direction but not in the other.

For intermediate couplings, particularly, 1 ≤ k ≤ 5, see Figure 8a, the long-time
behavior of the MSDs in the x-direction displays a non-monotonic behavior with k. For
example, for k = 1 particles diffuse very slow in contrast with the other values of k, except
for k = 3, which exhibits a similar structural and dynamical k-dependence. The absence
of a monotonic dynamical behavior is related to the structural transition that the system
undergoes, i.e., from 4-strata (k = 1.0) to 2-strata (k = 3.0). The transition from k = 1.0 to
k = 2.0 is signaled by a re-entrant structural behavior associated with disordered particle
configurations. This scenario allows the particles to move more freely along the y-direction.
The loss of translational correlations reflects in the increase of the diffusive behavior in
both directions.

Figure 8. Wx(t) for different values of the stiffness parameter, k, to cover intermediate and strong
couplings. (a) 1 ≤ k ≤ 6; (b) 7 ≤ k ≤ 30 . Inset displays the MSDs in the y-direction.

Particular attention deserves the case k = 3.0; there, the system has reached a con-
figuration of two channels (see snapshot of Figure 2c), where boundary particles cannot
be defined. Compared with k = 2.0, the system exhibits higher structural order along the
x-direction and a completely different characteristic length scale (Figure 6a,c). The two-
strata configuration creates an energetic barrier, which complicates the particle exchange.
These structural features are then responsible for the slower diffusion of particles in both
directions (red line of Figure 8a).

In the interval, 4 ≤ k ≤ 8, it is possible to observe a monotonic decrease in the
diffusive behavior (Figure 8) in both x and y directions. During this interval of k-values, the
rearrangement of particles is always in zig–zag configurations. The particle displacements
in the y-direction, concerning the simulation box center, restrict the motion of neighboring
particles along the x-direction. Thus, as k increases, particles become more localized in
both directions resulting in a systematic slowing down of the diffusion in any direction.
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Approximately, for stiffness parameter values of k ≥ 9, the long-time behavior of the
W(x) exhibits a monotonic increase. To understand this, we should think in terms of a
1D single-file system. When k increases, Lx and Ly increases and decreases, respectively,
resulting in slightly higher particle mobility in the x-direction (Figure 8) and suppression
of particle motion in the y-direction (see inset of Figure 8b). We expect that values of k > 30
will suppress particle fluctuations along the y-direction, and the system will reach the limit
of a true 1D system. In this limit, the dynamics at very long times should be characterized
by the relation Wx(t) ∝ t1/2 [25,28,38].

For the highest value of k = 30 explored in this work, the correlation functions g(x)
and S(qx), see Figure 6b,d, respectively, are practically identical to the true 1D system
(data not shown). However, the long-time dynamics do not follow the single-file diffusion
behavior [25,28]. Given that, strictly speaking, a 1D system with a packing fraction of
∼0.17 is a highly diluted system [25], the time needed to reach such a sub-diffusive regime
is larger than the time window explored in the simulations. In other words, particles must
displace longer distances to develop the translational correlations that give rise to the
single-file dynamics behavior. Hence, we claim that the observed behavior in Figure 8b is
only part of the transitional regime to the sub-diffusive non-Fickian behavior.

Particle dynamics are also characterized through the self-part of the intermediate
scattering function. The delicate interplay between particle–particle and particle–potential
interactions results in rich structural scenarios, which leads to multiple temporal relaxation
regimes. Of course, we associate this behavior with the soft nature of the confining potential.
The sISF decays exponentially to zero in an ergodic system; when k = 0, the sISF exhibits
this behavior in both directions (circles in Figure 9a). In contrast, when the external field
acts on the particles, even for weak couplings (Figure 9a,b), the sISF in the non-confinement
direction barely reaches zero within the time window of the simulations. The sISF decays in
a non-monotonic way, which corroborates the observed structural and dynamical features
in the g(x), S(qx), and the MSD.

Figure 9. Self-intermediate scattering functions Fs(q = π, t) as a function of the trap stiffness, going
from (a) and (b) weak to (c) intermediate and (d) strong couplings. The main figure shows the sIFS
along the non-confinement direction, and the inset displays the sIFS in the y-direction.
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From the inset of Figure 9a, one can observe that the sIFS in both directions exhibit the
same trend. In contrast, for k = 0.8 and k = 1.0 the sIFSy (Figure 9b) exhibits a plateau. This
plateau is a signature of high localization and suppression of particle transport along the
confinement direction. From Figure 9a,b is clear that local structure is influenced even at
weak coupling with significant implications for the dynamics along the x and y directions.

In the intermediate and strong coupling limit, k > 1, one can observe a clear distinction
in the colloidal system ergodicity. The sIFSx decays to zero for all cases (Figure 9c,d). In
clear contrast, the sIFSy exhibits a plateau at shorter times, indicating that particles become
more confined as the coupling with the external potential is increased. Besides, for systems
with k ≥ 9.0, the sIFSx decays much faster than systems with lower values of k. This faster
relaxation is associated with the transition from q1D to a diluted 1D system where particles
exhibit higher mobility (Figure 8b).

In general, structural ordered states are associated with lower diffusion. One can then
establish a connection between the slow or fast relaxation of particles with features such as
long-range particle correlations, long-range orientational order, dimension variations, and
slow and fast diffusion. This connection is better summarized in the k-dependence of the
structural relaxation time τα [16,26,40]; Fs(q, τα) = e−1, along the x-direction (Figure 10a).
As can be seen from the figure, the τα displays multiple relaxation regimes, which depend
strongly on the degree of confinement.

Figure 10. (a) Structural relaxation time and (b) global orientational order parameter as a function of
the stiffness parameter, k.

We split the k-dependence of τα into three regimes to highlight the different stages
of particle relaxation. The first stage, i.e., weak couplings, allows us to see the important
role of the larger positional freedom of boundary particles on the particle relaxation.
There, the order–disorder inter-converting configurations induce an extended relaxation
process associated with high ordered states. Systems such as k = 0.1, 0.8 and 1.0 that
exhibit long-range orientational order characterized by the high value of the orientational
global parameter Ψ6 (see Figure 10b) also exhibit larger relaxation times. Thus, it is
possible to induce freezing and melting scenarios in confined systems by altering the
boundary properties.

On the other hand, in the regime 1.0 < k < 4.0, there are slow and fast modes of
relaxation associated with the dimensional transition from q2D to q1D. The peak at k = 3 is
due to the transition from 3- to 2-strata; here, the colloidal system displays two-well-defined
channels with high structural order. In the regime 4.0 ≤ k < 8.0, the systematic increase
in τα is related to the slow dynamics behavior during the dimension transition from q1D
to 1D. The peak at k = 8.0 is associated with the fact that the colloidal system almost
reaches the 1D file configuration. The box length in the y-direction prevents the mutual
passage of particles inducing a highly ordered configuration along the x-direction; thus, the
structure factor exhibits characteristics typical of a solid-like state [25]. Finally, in the last
regime, k ≥ 9.0, there is only one relaxation time, which does not depend on the stiffness
parameter anymore. This change in the temporal relaxation behavior occurs at the onset of
a dimensionality change. At this stage, the system has reached the single-file configuration.
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Thus, relaxation occurs faster, which means that at the same particle concentration, the
particle transport process occurs faster in 1D than in 2D.

5. Final Remarks and Perspectives

We have theoretically studied the physical properties of charged colloidal dispersions
under soft confinement. In the model system, each particle experiences a Hookean restoring
force. At a given instant, particles at the boundary acted as a flexible wall capable of affect-
ing the interior (bulk particles) adaptively. Hence, as the boundary particles experienced
order–disorder configurations, a wide variety of structural and dynamical scenarios could
be accessed that are not present in conventional static confinement.

A strong link between the particle dynamics and the structural changes induced by
the external potential was highlighted. By systematically varying the coupling with the
external field, it was possible to manipulate the self-assembly and the transport processes
of the interacting colloids. Even in the weak-coupling regime, the harmonic potential
dramatically affected the rearrangement of the colloidal particles. Given that particles at
the boundaries did not interact with image particles or a rigid wall, they seemed to be
especially sensitive to the variation of the stiffness parameter k. These particles played a
crucial role in inducing order or disorder to those particles in the bulk.

The probability distribution, P(y), allowed us to describe and categorize the transition
from the homogenous 2D colloidal system until it reaches the final 1D configuration. For
values up to k = 1, we characterized the orientational ordering with the bond-angular
correlation function g6. We found that the presence of the harmonic potential promotes
hexagonal ordering that otherwise will be absent. However, such an orientational ordering
exhibited a non-monotonic dependence on k. There was a delicated interplay between
the particle–particle repulsions and the confining potential. For k = 0.8 and 1.0, the
orientational ordering approached a constant value for large distances; this behavior
resemblances the existence of a solid or crystalline phase.

In the interval 0 < k < 9, observables such as the pair distribution function and
the static structure factor successfully captured the numerous ordered and disordered
transitions that occurred as a function of k. These observables not only revealed the re-
entrant structural behavior or the solid- or liquid-like state, they also allowed us to identify
differences in the underlying structural order.

The dynamical behavior strongly correlated with the structural scenarios that emerged
as k was gradually increased. The colloidal system exhibited lower diffusion for those
values of k, where long-range orientational order or solid-like behavior was observed. In
contrast, the MSD in both x- and y-directions exhibited enhancement diffusion where a
re-entrant liquid-like transition seemed to occur. The MSD along both directions nicely
captured the transition to the 1D regime. When the system reached the single-file config-
uration, the diffusion along the confined direction was completely suppressed while it
increases along the unconfined direction.

The self-part of the intermediate scattering function corroborated the structural and
dynamical features, namely, the sIFS exhibited a non-monotonic decay associated with the
freezing and melting scenarios present in the interval 0 < k ≤ 3. The sIFS also captured the
1D regime where it exhibited a plateau in the confined direction and faster decay along the
x-direction. The dynamical behavior complexity was summarized through the structural
relaxation time, which displayed multiple relaxation times accordingly with the structural
scenario and the degree of confinement.

As discussed above, we paid particular attention to weak and intermediate particle–
trap couplings, where the structural arrangement of boundary particles was able to induce,
for example, melting- or freezing-like states and faster or slower particle diffusion. The
effect on the static and dynamic properties of colloidal dispersions of these peripheral
particles as a kind of adaptive boundary deserves to be studied both theoretically and
experimentally in more detail. Work along this line is in progress.
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