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Abstract: This study investigates the nucleation and growth of micro-/nanodroplets of triflate-based
ionic liquids (ILs) fabricated by vapor deposition on different surfaces: indium tin oxide (ITO); silver
(Ag); gold (Au). The ILs studied are constituted by the alkylimidazolium cation and the triflate
anion—[CnC1im][OTF] series. One of the key issues that determine the potential applications of
ILs is the wettability of surfaces. Herein, the wetting behavior was evaluated by changing the
cation alkyl chain length (C2 to C10). A reproducible control of the deposition rate was conducted
employing Knudsen cells, and the thin-film morphology was evaluated by high-resolution scanning
electron microscopy (SEM). The study reported here for the [CnC1im][OTF] series agrees with recent
data for the [CnC1im][NTf2] congeners, highlighting the higher wettability of the solid substrates
to long-chain alkylimidazolium cations. Compared to [NTf2], the [OTF] series evidenced an even
more pronounced wetting ability on Au and coalescence processes of droplets highly intense on
ITO. Higher homogeneity and film cohesion were found for cationic groups associated with larger
alkyl side chains. An island growth was observed on both Ag and ITO substrates independently of
the cation alkyl chain length. The Ag surface promoted the formation of smaller-size droplets. A
quantitative analysis of the number of microdroplets formed on Ag and ITO revealed a trend shift
around [C6C1im][OTF], emphasizing the effect of the nanostructuration intensification due to the
formation of nonpolar continuous domains.

Keywords: ionic liquids; triflate; imidazolium; physical vapor deposition; thin films; nanodroplets;
nucleation; coalescence; Knudsen effusion; SEM; interfacial tension

1. Introduction

Ionic liquids (ILs) are a class of compounds constituted by ionic species that are stable
in the liquid phase at a given temperature. ILs are formed from the association of organic
cations and organic or inorganic anions and commonly display an asymmetric structure
and delocalized electrostatic charges. They exhibit well-organized nanostructures with
polar and nonpolar regions that influence their physical–chemical properties [1–5]. ILs have
become a hot research subject in multidisciplinary fields such as chemistry, physics, biology,
and materials engineering [6–10]. In particular, ILs are used in electrochemical energy
applications and are increasingly being studied by researchers who have been exploring
their unique properties since they are easily manipulable, and their use involves fewer en-
ergy costs when compared to common salts that have higher melting temperatures [11,12].
ILs can be used as low-environmental-impact solvents due to their low vapor pressure
promoting sustainability [13–15]. The properties of ILs can be tuned with the combination
of different cation–anion pairs. Most ILs share common characteristics such as high ionic
conductivity, high viscosity, low vapor pressure at room temperature, chemical and thermal
stability, a wide electrochemical range, and a particular wetting behavior [16–20]. The
most common low-volatile ILs are constituted by an alkylimidazolium cation [21–23]. The
properties of the ILs strongly depend on the size of the alkyl chains associated with the
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cationic group and the symmetry [24–28]. The nanostructures of ILs consist of the bonding
of nonpolar domains and aliphatic chains, with aromatic groups that form polar domains
together with the anions. Depending on the size of the alkyl chain, the nanosegregation
between polar and nonpolar domains is highly dependent on the alkyl side chain length:
for shorter alkyl chains connected to the polar group, the contribution of the nonpolar
domains to the structural organization, because they are small, is less relevant; for larger
alkyl chains, both domains have a significant impact on the structural organization of the
ionic liquid [2,29]. Different authors showed that for alkylimidazolium cations, there is
a critical alkyl size (CAS) at around C6 for the asymmetric series [CnC1im]—this interest-
ing characteristic of the ILs is verified through extensive studies of their thermophysical
properties such as the enthalpy of vaporization [16,26], surface tension [17], and thermal
behavior [30,31]. Consistent and accurate measurements of these properties have proved
the nanostructural modifications of an ionic liquid at the CAS. The structural modifications
were also observed for thin films of bis(trifluoromethylsulfonyl)imide([NTf2])-based ILs
([CnC1im][NTf2] series) [32,33]. To progress further, this work aims to investigate the
structural/morphological modifications at the microscale for the triflate([OTF])-based ILs
([CnC1im][OTF] series). Thin ionic liquid films consist of multiple monolayers (ML, closed
layers of ion pairs with cations and anions on top of each other [34]), and their morphology
and structure depend on the nanostructuration of the ILs as well on the film deposition
process and the nature of the substrate. Vapor deposition is a very reproducible method
for depositing low-volatile ionic liquids [32,33,35–40]. The formation of a thin ionic liquid
film starts with the process of nucleation, which is conditioned by a minimum free area
to promote nucleation (MFAN) and depends on the strong or weak substrate–ionic liquid
interaction [32,35,41–44]. After the formation of stable clusters, the film grows by two main
processes: (1) coalescence of native clusters increases the size of stable clusters—the first
order of coalescence; (2) coalescence between droplets that had already coalesced—second
order of coalescence [35]. The mechanisms of nucleation and growth of thin ionic liquid
films also reflect the structural changes due to the varied sizes of the alkyl chains associated
with the cation and are observable in the droplets formed after the deposition and on the
wettability. The coalescence of clusters on solvophobic surfaces leads to the formation of
droplets that have an elevated level of sphericity [33,35], and the analysis of the contact
angle is used to evaluate this as well as the affinity of the IL substrate (wettability of the
surfaces) [32]. For a macroscopic droplet, Young’s equation (γs−v= γs−l +γl−v cos(θc))
correlates the contact angle (θc) with the different interfacial tensions of the system: sur-
face tension of the substrate (γs−v); surface tension of liquid (γl−v); substrate–ionic liquid
interfacial tension (γs−l) [45,46]. Young’s equation assumes that the substrates are ideal,
i.e., flat, rigid, perfectly smooth, and chemically homogeneous and inert. Furthermore,
it assumes that the system is stable (there is no chemical interaction between the liquid
and the substrate) and macroscopic. As the presented criteria are difficult to achieve, it is
admitted that this contact angle is static, for a simpler and faster approach. The contact
angle/wetting behavior also depends on the type of surface roughness, which affects the
total surface energy [47–49]. At a nanoscale level, a modified Young’s equation should be
considered as detailed elsewhere [50,51]. Contact angles of nanodroplets can be measured
from the height profiles obtained through a high-precision atomic force microscopy (AFM)
characterization as reported in recent work [32].

The main focus of this work is the wetting behavior of alkylimidazolium ionic liquids
belonging to the [OTF] series (Figure 1) by varying the alkyl chain size of the cation
and changing the deposition surface: indium tin oxide (ITO); silver (Ag); gold (Au). It
is an innovative study since the morphological study of the [CnC1im][OTF] series at
micro-/nanoscale, to date, has never been studied in such detail as, for example, the [NTf2]
series [32–40]. This work shows that the size of the alkyl chain highly affects the wetting
behavior of the ILs, which was reflected in the film formation and respective morphology,
differently on the three surfaces. The morphology, shape, and droplet size distribution were
investigated for one coverage: 50 ML. The deposition of each ionic liquid was made
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simultaneously onto ITO, Ag, and Au surfaces. A high-resolution scanning electron
microscope (SEM) was used to provide detailed images of the micro-/nanodroplets or
coalesced films. The overall comparison of SEM images obtained at the same magnification
and the analysis of the droplet size distribution provided relevant insights into the different
nucleation and coalescence mechanisms of the ionic liquids. An excellent wettability
behavior was found on the Au surface, especially for the long-chain ILs that revealed a
strong ability for the formation of a homogenous and compact coalesced film. ITO and
Ag surfaces were found to be more solvophobic surfaces to the ILs as indicated by the
preferential 3D growth (island growth) exhibited for all the ILs on these surfaces. The Ag
surface exhibited a lower MFAN (larger number of micro/nanodroplets formed) and better
wettability for ionic liquids with a larger alkyl chain compared to the ITO surface. The
morphological analysis showed substantial changes between short- and long-chain ILs. A
trend shift around C6 (CAS) was observed. The differences in the wetting behavior are truly
relevant for the applications of ILs. In particular, controlling the wettability of solid surfaces
to the ILs is relevant for the development of materials with good interface-controlled
behavior. The wetting properties of ILs are of relevant interest for many applications such
as sensors, electrochemical devices, lubrification, separation technologies, and catalysis,
among others [10–20].
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Figure 1. Molecular structure of the studied triflate-based ionic liquids and the adopted acronyms
(A): 1-decyl-3-methylimidazolium triflate, [C10C1im][OTF]; 1-octyl-3-methylimidazolium triflate,
[C8C1im][OTF]; 1-hexyl-3-methylimidazolium triflate, [C6C1im][OTF]; 1-butyl-3-methylimidazolium
triflate, [C4C1im][OTF]; 1-ethyl-3-methylimidazolium triflate, [C2C1im][OTF]. Schematic represen-
tation of the effusion process (T1 and T2 denote the evaporation temperature and the substrate
temperature, respectively) of the ionic liquids from the Knudsen cell (B). Scheme of the thin-film
architectures fabricated (C): substrate ITO/glass coated with ionic liquid (1); substrate Ag/ITO/glass
coated with ionic liquid (2); substrate Au/ITO/glass coated with ionic liquid (3).

2. Materials and Methods

Five different ILs were studied to evaluate the behavior of the [CnC1im][OTF] series
with the change in length of one of the alkyl chains. The following ILs were purchased from
Iolitec, with a state of purity of >99%, and used in this work: 1-ethyl-3-methylimidazolium
triflate, [C2C1im][OTF]; 1-butyl-3-methylimidazolium triflate, [C4C1im][OTF]; 1-hexyl-3-
methylimidazolium triflate, [C6C1im][OTF]; 1-octyl-3-methylimidazolium triflate,
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[C8C1im][OTF]; 1-decyl-3-methylimidazolium triflate, [C10C1im][OTF]. The volatile con-
tent of the ILs was removed by low-pressure (p < 0.1 Pa) thermal evaporation at T = 423 K.
Figure 1 depicts the molecular structure of the cation–anion pairs and schematizes the
effusion process of the ILs from the Knudsen cell and the thin film architectures fabricated.

Each ionic liquid was deposited onto surfaces of indium tin oxide (ITO)/glass, silver
(Ag)/ITO/glass, and gold(Au)/ITO/glass substrates. The glass substrates
(10 mm × 10 mm × 1.1 mm) coated with a thin film of ITO (180 nm of thickness) were com-
mercially purchased from the Praezisions Glas & Optik GmbH company. These substrates
were cleaned with high-purity ethanol in an ultrasonic bath and dried with ultra-high
purity grade argon (>99.99%). The metallic films (Ag and Au) were deposited onto the
ITO-coated glass substrates by DC magnetron sputtering through the Cressington 108
Auto Sputter Coater instrument. Argon plasma was used, and the sputtering process was
accomplished by using a discharge current of 40 mA. High-purity (>99.9%) Ag and Au
targets were employed. The metallic films were fabricated with an approximate thickness
of 100 nm. Immediately after the deposition of the metallic films, both substrates (ITO,
Ag/ITO, and Au/ITO) were introduced into a clean vacuum system for the deposition
of ILs. Most samples exposed to the atmosphere are subjected to carbon contamination.
Theoretically, metallic films are expected to be less covered with a nanolayer of carbon than
ITO/glass surfaces. We always tried to minimize the time of air exposure to prevent sig-
nificant contamination with adventitious carbon. The substrates were quickly introduced
into the vacuum chamber, which was degassed at 10−4 Pa. Low contamination levels of
carbon for samples exposed to air for less than 2 min have been demonstrated in another
study [52].

Ionic liquids films were fabricated with 50 ML of thickness. The height (h) of one ML
can be estimated as (h = M/(NA× ρ))1/3, where M is the molar mass, ρ is the density, and
NA is Avogadro’s constant: h = 6.77 Å, h = 7.16 Å, h = 7.51 Å, h = 7.81 Å, and h = 8.13 Å
correspond to 1 ML of [C2C1im][OTF], [C4C1im][OTF], [C6C1im][OTF], [C8C1im][OTF],
and [C10C1im][OTF], respectively. For the formation of thin ionic liquid films, a customized
procedure of physical vapor deposition (PVD) based on the Knudsen effusion method,
was used—the ThinFilmVD apparatus (details presented in Figures S1–S3) [53]. This PVD
system provides a film deposition under very reduced pressure (p < 10−4 Pa). A strong
vacuum facilitates the movement of the vapor particles directly reaching the substrate
where these vapors again change to a condensed state, thus forming a thin layer. The
use of Knudsen effusion cells allows very precise control of the mass flow rate. This
method is highly reproducible, and the films formed are very well-defined and with a
rigorously known thickness [32,35,53–56]. Thermal evaporation occurs by placing the ionic
liquid in an effusion cell (Knudsen cell) designed to maintain the substance in equilibrium
under accurate and reproducible temperatures. The dependence of vapor pressure with
temperature is used to derive the mass flow rate effused directly from the Knudsen cell
orifice. The reproducibility and control of this method for the vacuum thermal evaporation
of ILs were detailed and reported in previous work [56].

For the evaluation and control of the film thickness, a quartz crystal microbalance
(QCM), Inficon model STM-2, was used. For this method, the mass flow rate, φ, is ob-
tained according to a derived form of the Knudsen equation, Equation (1): φsubstrate and
φKnudsen cell represent the mass flow rates, g is a geometric factor dependent on the Knud-
sen cell-substrate distance, T represents the evaporation temperature, p the equilibrium
vapor pressure, wo the transmission probability factor, M the molar mass of the effused
vapor, m the mass of the vapor, t the effusion time, and Ao the area of the Knudsen cell
orifice [16,26,32,33,35,36,53–56].

substrate= g · Knudsen cell= g· p · wo·
√

M√
2πRT

= g· m
Ao·t

(1)

[C2C1im][OTF], [C4C1im][OTF], [C6C1im][OTF], [C8C1im][OTF], and [C10C1im][OTF]
were deposited under similar experimental conditions: thickness of 50 ML; each deposition
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simultaneously performed on ITO, Ag, and Au surfaces—maintained at a constant temper-
ature of T = (283.2 ± 0.2) K; deposition rate of φsubstrate = (0.20 ± 0.05) Å/s. [C2C1im][OTF],
[C4C1im][OTF], and [C6C1im][OTF] were evaporated at T = (513.2 ± 0.1) K whereas
[C8C1im][OTF] and [C10C1im][OTF] were evaporated at T = (523.2 ± 0.1) K. For each
experiment, the effusion time was monitored to achieve the desired 50 ML of film thickness.
More details are presented in Table S1. The time of air exposure of the substrates and the
ionic liquid films was always minimized in order to prevent substantial contamination.
The films were stored under an argon atmosphere, and SEM characterization was carried
out ≈1 week after film deposition. Most of the data and conclusions of this work are made
at the microscale, and low levels of carbon contamination do not have a strong impact
on the film morphologies reported. Nonetheless, the presence of adventitious carbon
surface contamination should be considered and could have an additional influence on the
phenomena observed at a nanoscale level [52,57]. In this case, the conclusions drawn from
the experiments must be taken with some care.

For the morphological characterization of the samples, a high-resolution scanning
electron microscope (SEM, FEI Quanta 400 FEG ESEM instrument) was used. Topographic
images of the micro-/nanodroplets or coalesced films of the ILs deposited on the different
solid surfaces were obtained at different magnifications. Micrographs were acquired using
two detectors: a backscattered electron detector (BSE) and a secondary electron detector
(SE). The accelerating voltage was 10 kV, and the detector was placed at a working distance
of 10 mm. Magnifications of 500×, 2000×, and 5000× were used to obtain the images. The
shape, surface coverage, and size distribution of the micro-/nanodroplets observed in the
SEM images were analyzed with ImageJ software [58].

3. Results

A detailed morphological analysis of the SEM images was used to evaluate the nu-
cleation and growth tendency of the five different ILs at a microscale level. The typical
processes of nucleation and growth of ILs are schematized in Figure S4. The experi-
mental results were further analyzed by image processing with ImageJ software, which
allowed us to obtain the droplet size distribution and respective surface coverage of the
micro-/nanodroplets formed. Figures 2–4 show the morphology of the different ILs (50 ML)
deposited under the same experimental conditions on the three solid surfaces: ITO/glass;
Ag/ITO/glass; Au/ITO/glass. SEM images of the surfaces are presented in Figure S5. The
topography of the surfaces appeared to be quite similar, suggesting that the roughness
factor did not significantly influence the results obtained. The high-magnification images
(on the left of each figure) were acquired by secondary electron imaging and provided
details on the three-dimensional appearance of the droplets. SEM micrographs acquired by
backscattered electron imaging (low magnification SEM image on the center of each figure)
were used to characterize a large area of the film surface and, hence, they are more repre-
sentative of the system under study. The histograms displaying the droplet distribution
were obtained by image processing from those micrographs (on the right of each figure).
There were no significant changes in the droplet size distribution depending on the time
after ionic liquid deposition. In fact, the microdroplets formed by thermal evaporation
of ILs constituted by an alkylimidazolium cation and the [OTF] or [NTF2] anions were
very stable, and no coalescence effects occurred without the use of surface treatments with
energetic particles [33]. Wetting behavior studies of ILs at macroscopic and mesoscopic
scales revealed a reduced impact of heat exposure on the morphology of the ionic liquid
droplets [32]. On the other hand, time-dependent changes in the adsorption/desorption of
the ILs on metal surfaces have been reported to a few layers deposited on the substrate [59].
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Figure 2. Micrographs acquired through high-resolution scanning electron microscopy of thin ionic
liquid films (50 monolayers, ML) of [C2C1im][OTF] (A1,A2), [C4C1im][OTF] (B1,B2), [C6C1im][OTF]
(C1,C2), [C8C1im][OTF] (D1,D2), and [C10C1im][OTF] (E1,E2) deposited onto surfaces of ITO/glass.
Lateral views at 45◦ (magnification of 5000×) obtained by secondary electron imaging (A1–E1)
and top views (magnification of 500×) obtained by backscattered electron imaging (A2–E2). The
histograms (inserts 1, 2, 3, 4 and 5) present the droplet’s size distribution for each sample.
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Figure 3. Micrographs acquired through high-resolution scanning electron microscopy of thin
ionic liquid films (50 monolayers, ML) of [C2C1im][OTF] (A1,A2), [C4C1im][OTF] (B1,B2),
[C6C1im][OTF] (C1,C2), [C8C1im][OTF] (D1,D2), and [C10C1im][OTF] (E1,E2) deposited onto sur-
faces of Ag/ITO/glass. Lateral views at 45◦ (magnification of 5000×) obtained by secondary electron
imaging (A1–E1) and top views (magnification of 500×) obtained by backscattered electron imaging
(A2–E2). The histograms (inserts 1, 2, 3, 4 and 5) present the droplet’s size distribution for each
sample.
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Figure 4. Micrographs acquired through high-resolution scanning electron microscopy of thin ionic 
liquid films (50 monolayers, ML) of [C2C1im][OTF] (A1,A2), [C4C1im][OTF] (B1,B2), [C6C1im][OTF] 
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Au/ITO/glass. Lateral views at 45° (magnification of 5000×) obtained by secondary electron imaging 
(A1–E1) and top views (magnification of 500×) obtained by backscattered electron imaging (A2–E2). 

Figure 4. Micrographs acquired through high-resolution scanning electron microscopy of thin
ionic liquid films (50 monolayers, ML) of [C2C1im][OTF] (A1,A2), [C4C1im][OTF] (B1,B2),
[C6C1im][OTF] (C1,C2), [C8C1im][OTF] (D1,D2), and [C10C1im][OTF] (E1,E2) deposited onto sur-
faces of Au/ITO/glass. Lateral views at 45◦ (magnification of 5000×) obtained by secondary elec-
tron imaging (A1–E1) and top views (magnification of 500×) obtained by backscattered electron
imaging (A2–E2).
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In general, through direct analysis of the SEM micrographs, there was a formation
of micro-/nanodroplets on Ag and ITO surfaces whereas the Au surfaces promoted a
formation of coalesced films of ILs. In addition, on both ITO and Ag surfaces, the size
and distribution of micro-/nanodroplets were clearly dependent on the length of the alkyl
chain: an increase in the cation alkyl chain reflects a larger size of the droplets formed.

On the ITO surface (Figure 2), an increase in the non-polar domains of the ionic
liquid (increasing the cation alkyl side chain length) led to strong morphological differ-
entiations in the size, shape, and number of droplets formed. For [C2C1im][OTF], the
predominant diameter size was between 0.8 and 1.0 µm (graph 1); for [C4C1im][OTF], be-
tween 1.0 and 1.3 µm (graph 2); and for [C6C1im][OTF] (graph 3), between 1.2 and 1.6 µm.
For these ILs, there were no visible droplets with diameters greater than 4 µm. A more
noticeable differentiation in the droplet size was observed for [C8C1im][OTF] (graph 4)
and [C10C1im][OTF] (graph 5) since very large droplets, whose diameter exceeded 20 µm,
were formed (Figure 2D,E). For both samples, no predominant droplet size was observed.
However, there was an increase in the intermediate sizes and the formation of various small
droplets. These results may denote that the processes of coalescence are more significant
for ILs with larger non-polar domains because the most frequent droplet size increases.
When coalescence was intense, as in the cases of [C8C1im] and [C10C1im], there was a
formation of many nanodroplets since empty spaces were left exposed. Nevertheless, the
more intense coalescence mechanisms for imidazolium-based ILs comprising long alkyl
side chains did not lead to a much better wettability: surface coverages of 34 ± 1, 35 ± 2,
39 ± 1, 41 ± 1, and 40 ± 2% were obtained for 50 ML of [C2C1im][OTF], [C4C1im][OTF],
[C6C1im][OTF], [C8C1im][OTF], and [C10C1im][OTF], respectively. For the ITO surface,
we can also conclude that the increase in the alkyl chain changed the morphology of the
droplets on the surface—the droplets become larger and more irregular. These morphologi-
cal characteristics may be explained by intense processes of coalescence. The irregularity
was more evident in the [C10C1im][OTF] sample, where the droplets were much larger and
seemed to have smaller contact angles (Figure 2E1). Despite having an apparent smaller
contact angle, the ionic liquid film still did not cover most of the surface area. Although
having a lower surface tension, a characteristic of the long-chain alkylimidazolium-based
ILs [17], the interfacial tension of ITO-ionic liquid might still be high enough to not allow a
complete wetting of the IL, i.e., the wettability remained poor. Although the ITO surfaces
had a weak wettability to the films studied, the ionic liquid droplets might be well adsorbed
to the surface, highlighting the existence of some ionic liquid–substrate interaction. On the
other hand, some irregular shapes of the droplets might be affected by the surface topology
of the ITO substrate. Preferential nucleation at the step edges of the ITO surface should be
considered as it could have some impact on the droplet morphology/shape [60].

For the Ag surface (Figure 3), two conclusions can be drawn: the number of droplets
formed was much higher and the droplets were smaller although they occupied a larger
percentage area of the substrate, i.e., higher surface coverage, compared to the ITO. The
five different ILs, on the Ag surface, when compared to the ITO, formed droplets with
approximate sizes (small and intermediate); therefore, the MFAN may be lower for Ag
than for the ITO. This observation can be derived through the higher number of counts
when compared to the ITO surface. The total number of counts/mm2 on the Ag surface
was found to be 1.54, 1.73, and 1.74 times higher than that observed for the ITO surface for
[C2C1im][OTF], [C4C1im][OTF], and [C6C1im][OTF], respectively. The Ag surface seems
to be a more favorable substrate for the nucleation process, which translates into a better
wettability for the imidazolium-based ILs [32], and the coalescence processes of native
droplets were delayed on this surface. The surface coverages for 50 ML of ionic liquid
deposited onto Ag were 39 ± 1, 37 ± 2, 37 ± 1, 47 ± 2, and 45 ± 4% for [C2C1im][OTF],
[C4C1im][OTF], [C6C1im][OTF], [C8C1im][OTF], and [C10C1im][OTF], respectively. The
droplets occupied a larger surface area in comparison to the ITO. For [C2C1im][OTF],
the predominant diameter size was between 0.7 and 0.9 µm (graph 1); for [C4C1im][OTF],
between 0.8 and 1.0 µm (graph 2); and for [C6C1im][OTF], between 1.0 and 1.3 µm (graph 3).
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For [C8C1im][OTF], the droplets started to have an intermediate size–great size distribution
(graph 4) and for [C10C1im][OTF], there was no significant differentiation in the droplet
count for diameters up to 2 µm (graph 5). Droplets with diameters greater than 4 µm
were not formed for any of the ILs deposited on the Ag surface. Hence, for this substrate,
the increasing size of the alkyl chain did not change, significantly, the morphology of the
droplets on the surface (smaller-sized droplets) was highly circular. This change in the
circularity of the droplets may indicate that the second-order coalescence mechanisms, on
this surface were not as intense as those on the ITO surface.

For the Au surface (Figure 4), all the ILs spread very well, forming isolated droplets
with a large size and small contact angle; a significant percentage of the substrate area
was filled with the ionic liquid or a fully coalesced thin film. For these samples, secondary
electron imaging was especially useful for the inspection of the topography of the sample’s
surface, allowing us to infer the tridimensional appearance of the films/droplets. For
instance, Figure 4A1 displays ionic liquid droplets with a reduced contact angle; this is not
visible by looking at the corresponding backscattered electron image (Figure 4A2). There
were almost no small droplets around the bigger ones because of the coalescence, which
also contributed to good wettability (droplets with lower height and higher width). For
[C2C1im][OTF] and [C4C1im][OTF], there was a preferential formation of 3D droplets as
clearly evidenced by Figure 4A,B, whereas [C6C1im][OTF] (Figure 4C), [C8C1im][OTF]
(Figure 4D), and [C10C1im][OTF] (Figure 4E) exhibited a very smooth morphology, high-
lighting the formation of a highly cohesive coalesced film. The PVD process of ILs on
Au surfaces could lead to the formation of nanodroplets with low contact angles (<10 de-
grees) and high proximity, i.e., very low MFAN [32]. The droplets might be more spread
out due to the low interfacial tension or good affinity between the IL and the substrate.
Independently of the anion type ([OTF] or [NTf2]), the imidazolium-based ILs exhibited
an excellent affinity for the Au surface. The formation of 3D droplets for the short-chain
ionic liquids might be derived from the higher surface tension of these ILs. For ILs formed
by a long alkyl chain associated with the imidazolium cation, both ionic liquid/vapor
and ionic liquid/Au interfacial tensions could be lower [17,32]. These characteristics
could induce a formation of a film with a low contact angle and, hence, the wettability
of the Au substrate to the thin ionic liquid film was even more improved. Additional
details on the morphological characterization of the thin ionic liquid films can be found in
Figures S6–S11.

4. Discussion

The wetting behavior at the microscale of ILs belonging to the [CnC1im][OTF] series
agrees with the achievements recently reported for the [CnCnim][NTf2] series [32], revealing
the higher contribution of the substrate nature as well as the imidazolium alkyl side
chain length, rather than the [NTf2] or [OTF] anions, for the wettability of solid surfaces
(ITO/glass, and metallic substrates) to the ILs.

Considering the ITO surface, for both [OTF] and [NTf2] series, the increase in the alkyl
side chain length contributes to the formation of larger-size droplets. A more significant
droplet coalescence mechanism does not lead to the formation of coalesced films for any
of the ILs deposited by PVD. The coalescence of droplets, with special emphasis on the
second-order mechanisms, might be more intense for the [OTF]-series as indicated by the
film heterogeneity, low circularity, and larger size of the droplets formed for the long-chain
alkylimidazolium triflate ILs. Glass and ITO substrates are more solvophobic than metal
surfaces to the imidazolium-based ionic liquids [32,33,35,36,61–65]. On these surfaces, the
island growth could usually be preferred to 2D independently of the length of the alkyl
chain associated with the cationic group. The deposition of ILs by PVD onto ITO/glass
substrates usually generates a film with low surface coverage constituted by microdroplets
with a contact angle of ≈20 degrees [32,33,35]. On the Ag surface, the vacuum thermal
evaporation of the [OTF]-based ILs produced a film with a higher total droplet count
combined with smaller droplet size. This morphological differentiation of the ionic liquid
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droplets formed simultaneously on the ITO and Ag surfaces was also reported for the
[NTf2] series [32]. This work emphasizes that independently of the anion nature, Ag
might be a more favorable substrate, rather than ITO, for the nucleation process of the ILs
and a more homogeneous droplet size distribution along the entire surface. In addition,
contrary to that observed for the ITO surface, the increase in the cation alkyl side chain
length led to a higher surface coverage of the droplets/better wettability. For the first
ML deposited (on the molecular scale), it is well established that the imidazolium cations
lie parallel to the metal surfaces in a highly ordered adsorption geometry [65–67]. This
behavior could contribute to the lower MFAN observed. The higher MFAN observed for
ITO/glass surfaces could arise from weak adsorption and the consequent high mobility
of cation–anion pairs and small clusters. For the long-chain alkylimidazolium-ILs, some
authors reported that the alkyl moieties also lie flat on the Ag surface, thus maximizing
the interaction with the metallic surface [64]. Overall, a better affinity of Ag to the ILs
may be expressed by a low MFAN and less intense mechanisms of coalescence between
3D droplets.

The wettability of Au surfaces to the [CnC1im][OTF]-based ILs is also similar to that
observed for the [NTf2]-congeners. Large droplets with reduced contact angles are formed
when the ionic liquid is more polar (n < 6) [32] and a compact, more homogeneous, and
coalesced nanofilm was observed for the ILs constituted by large non-polar domains (n > 6).
The low interfacial tension of ionic liquid/Au may result from the excellent adsorption
efficiency of the cation–anion pairs on Au, including the alkyl chains, as proved by many
authors [65–73]. The cation–anion pairs are considered to interact with the Au surface
through the formation of image dipoles [73]. The MFAN of the ILs on Au surfaces is even
more reduced due to the characteristics of the deposition/effusion process—the ion pairs
are homogeneously deposited onto the entire surface—a coalesced film is easily formed,
even for small thicknesses (50 ML). The nucleation and growth mechanisms of imidazolium
triflate ILs on Au seem to follow the 2D mode with special emphasis on the long-chain
alkylimidazolium-based ILs since the long-alkyl chains attached to the Au surface could
favor the dispersive interactions with the subsequent alkyl chains deposited. An increase
in the film thickness corroborates a tendency for island growth for the more polar ILs.

These results emphasize that the surface where the ILs are thermally evaporated has
the greatest influence on the wetting behavior at the microscale. Overall, the Au surfaces
have excellent wettability for the ILs as proved by the formation of a thin film with a
negligible contact angle due to a reduced solid–liquid interfacial tension. A comparison
of the interfacial tension of the ILs with the substrates used should be made with some
care since there is a possibility of the formation of a closed wetting layer of ionic liquid
(undetectable by SEM) on metal oxides and metals. An example was shown by Rietzler
et al. for [C2C1im][OTF] [34]. The formation of a closed wetting layer on metal surfaces
was reported for various imidazolium-based ILs comprising [NTf2] or [PF6] anions [65].
The growth of the ionic liquid film on top of the wetting layer may depend on the na-
ture of the cation–anion pairs and the substrates, as demonstrated in this work for the
triflate-based ILs.

For a deeper evaluation of the impact of the length of the cation alkyl side chain on
the nucleation and growth of ionic liquid droplets formed on both ITO and Ag surfaces,
Figure 5 shows a graphical representation correlating the total number of ionic liquid
microdroplets formed as a function of the cation alkyl chain length in the [CnC1im][OTF]
series. To infer the coalescence trend of each ionic liquid, these representations quantify the
number of droplets with a diameter greater than 1 µm.
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Figure 5. Schematic representation of the number of ionic liquid microdroplets (diameter greater
than 1 µm) formed per mm2 of surface area (ITO—blue circles, Ag—red squares) as a function of
each ionic liquid in the [CnC1im][OTF] series.

Through the observation of the trends for both surfaces, there is a clear shift in the
behavior around C6, the CAS. The same shift is also perceived from the dependence of
the surface coverage of the microdroplets with the cation alkyl chain length (details are
presented in Figure S12). The results/trends for the [CnC1im][OTF] series, quantified in
this work, are very similar to those already published by our group for the [CnC1im][NTf2]
series [33]. A trend shift at C6 may be related to the well-known nanostructural differentia-
tion of alkylimidazolium-based ILs [2]. The effect of the alkyl chain length (trend shift at
the CAS) is especially visible for the Ag surface since due to a lower MFAN, the droplet
coalescence processes could slow down, which allows us a better observation of this trend
change. In general, on ITO, the behavior of the ILs with smaller alkyl chains is similar
for both [OTF] and [NTf2] families. The number of microdroplets increased from C2 to
C6. Curiously, if all the droplet counts exhibited by the histograms were considered (from
0.2 µm of diameter), an inverse relation would be obtained—a decrease in the number of
droplets by increasing the length of the alkyl chains, since the formation of larger droplets
presupposes the coalescence of numerous small ones reducing their number. The long-
chain ILs of the [OTF] series might have a complex nanostructural organization on the ITO
surface. There is a greater differentiation of the coalescence behavior of the droplets formed
on the ITO and Ag surfaces. The clear decrease in the number of microdroplets is a result of
intense second-order coalescence mechanisms resulting in the formation of large droplets.
These mechanisms are particularly highly noticeable for [C10C1im][OTF]. Due to a weak
affinity/interaction ionic liquid-ITO, the ionic liquids deposited could have great mobil-
ity on the surface, which makes the coalescence mechanisms very intense—the different
droplets tend to merge to be more stable, resulting in poor wettability. For the Ag surface,
the ionic liquid might have a greater affinity, which decreases the mobility, delaying this
mechanism—the first-order coalesced droplets are well adsorbed to the substrate and do
not have enough mobility to produce second-order coalesced droplets. On the Au surface,
there is not only the formation of isolated droplets but there is also the formation of a coa-
lesced film (with all ionic liquids) and the formation of agglomerates of ionic liquid, which
tend to decrease in size until a coalesced and homogeneous film is formed (this happens as
the alkyl chain of the ionic liquid increases). The Au surface revealed an excellent affinity
to the long-chain ILs, resulting in excellent wettability. The nanodroplets exhibit very
low contact angles and high proximity. The first- and second-order coalescence processes
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could occur faster, and a coalesced film formed easily. The experimental trends obtained
are related to the structure of the ILs at a molecular level. Nanometer-scale structuring
for different classes of ILs has been observed by several authors by using experimental
and theoretical models [2,16,20,29]. The nucleation process of ionic liquid clusters may be
conditioned by the surface diffusion of the cation–anion pairs on the surface. Both nucle-
ation and coalescence processes are strongly dependent on the relative volumes occupied
by the polar and non-polar moieties (alkyl chains) of the ILs. For small alkyl chains, the
nonpolar domains are characterized as isolated islands in a continuous polar domain. These
nonpolar domains start to coalesce when the alkyl chain length is increased [2,29]. This
fundamental description may explain the formation of the first ML of the thin ionic liquid
films and supports the experimental data obtained, showing an increase in the number of
microdroplets formed from C2 to C6. The successive coalescence of the nonpolar domains
leads to the creation of a bicontinuous fluid phase. This structural modification occurs at
the CAS and might emphasize the effect of the nanostructuration intensification due to the
formation of nonpolar continuous domains.

5. Conclusions

This work contributed to the knowledge of the wetting behavior at the microscale of
different ionic liquids (ILs) composed of the triflate anion ([OTF]) and an alkylimidazolium
cation ([CnC1im]) when deposited by vapor deposition onto different solid substrates.
The morphological differentiation between short-chain or long-chain alkylimidazolium-
based ILs was investigated, for the first time, for an extended [CnC1im][OTF] series. The
analysis of the droplet size distribution was used to derive important insights into the
different nucleation and growth mechanisms of the ILs. The results showed that the wetting
behavior on three different surfaces—ITO, Ag/ITO, and Au/ITO—of imidazolium-based
ILs, is strongly influenced by the length of the cation alkyl chain. On both Ag and ITO
surfaces, the ILs did not form a coalesced thin film, in any of the studied cases, under the
established conditions, unlike for the surface of Au. On the Au surface, it was visible that
the formation of a thin film with only 50 ML of ionic liquid deposited, especially for the
ILs with larger nonpolar domains, for which a very compact, cohesive, and homogenous
film was formed. This experimental observation reveals an excellent wetting behavior that
might be derived from a low interfacial tension substrate-IL, the low contact angle of the
films, and large surface coverage, highlighting a great affinity between the Au surface and
the ILs. On the Ag surface, with 50 ML of ionic liquid deposited, the results showed the
formation of a higher number of droplets with a large surface coverage in comparison to
the ITO. The most frequent droplet sizes of the ILs were lower for the Ag substrate, which
indicates that the Ag surface may promote a lower MFAN for the ILs. The similarity of
the results obtained in this work for the [CnC1im][OTF] series with those reported for the
[CnC1im][NTf2] reveals the higher contribution of the deposition surface and the cation
alkyl side chain length, rather than the anion type, for the wettability of metallic surfaces
to the alkylimidazolium-based ILs. The [OTF]-series, especially those ILs constituted by
long-chain alkylimidazolium cations, revealed a higher propensity for the formation of very
large and more irregular 3D droplets onto ITO/glass surfaces. Both series, [OTF]-based ILs
and [NTf2]-based ILs, are similar concerning their properties when the IL was deposited
in the three solid surfaces studied—both presented a clear trend shift around the C6. The
knowledge of the structural and morphological differentiations reported is truly relevant
in the nanosurface science and technology of thin ionic liquid films. The different adhesion
and wettability characteristics of the ILs reported here are of relevance in applications
requiring a well-interface-controlled behavior of electrically conductive surfaces coated
by ILs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/colloids6030046/s1, Figure S1: Schematic representation of the
vapor deposition methodology; Figure S2: Scheme and images of the ovens of the ThinFilmVD appa-
ratus; Figure S3: Images of the substrate support system; Figure S4: Illustration of the mechanisms of

https://www.mdpi.com/article/10.3390/colloids6030046/s1
https://www.mdpi.com/article/10.3390/colloids6030046/s1


Colloids Interfaces 2022, 6, 46 14 of 16

nucleation and growth of ionic liquid films; Figure S5: Morphology of the substrates; Figure S6: Micro-
graphs of vapor-deposited [C2C1im][OTF]; Figure S7: Micrographs of vapor-deposited [C4C1im][OTF];
Figure S8: Micrographs of vapor-deposited [C6C1im][OTF]; Figure S9: Micrographs of vapor-
deposited [C8C1im][OTF]; Figure S10: Micrographs of vapor-deposited [C10C1im][OTF];
Figure S11: Droplet size distribution of vapor-deposited ionic liquids; Figure S12: Schematic repre-
sentation of the number of ionic liquid microdroplets formed and the respective surface coverage as
a function of each ionic liquid in the [CnC1im][OTF] series; Table S1: Experimental conditions for the
physical vapor deposition of each ionic liquid.
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