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and László Makó 1

����������
�������

Citation: Tapody, R.O.; Sümegi, P.;

Molnár, D.; Karlik, M.; Törőcsik, T.;
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Abstract: This paper presents the results of comparative sedimentological and geochemical analysis
of the mire at Sânpaul, Round Lake (Kerek-tó). The palaeoecological site is situated in the western
foothill area of the Eastern Carpathians in Romania. The primary objective of this study was to
analyse the accumulation of major and trace elements in a 7500 year-long peat and lake deposition.
The concentrations of 13 elements were determined by using handheld XRF. This paper presents
the results of a multidisciplinary study, for which the principal aims were to examine the long-
term relationship between land degradation in the Homoród Hills using various palaeoecological
techniques, primarily comparative geochemical analyses. The PCA of elemental concentrations
suggests that Round Lake is mainly controlled by the input of inorganic mineral matter and the
LOI550 of peat. However, some elements are influenced by biological processes of vegetation and
groundwater. Geohistorical studies compared with vegetation changes and elemental distribution
helped the detection of erosion phases in the level of 12 prehistoric cultures.

Keywords: handheld XRF; geochemistry; human impact; peat; paleoenvironment reconstruction

1. Introduction

Peats are accumulated and formed by the partial decomposition of mosses and other
bryophytes, sedges, grasses, shrubs and trees under waterlogged conditions [1]. Peatlands
are important paleoenvironmental archives, enclosing plant matter, soil deposition, atmo-
spheric particles and anthropogenic aerosols. Geochemical analysis of these objects has
an important role in paleoenvironmental and palaeoclimatological investigations because
major and trace elements are the indicators of natural environmental and anthropogenic
processes. Their presence can be attributed to the soil, vegetation, atmospheric precipitation
and groundwater supply [1–7].

Round Lake is a dried-up, human-made rainwater reservoir lake, used for watering
livestock at the end of the 19th century. This protected the Holocene 7500 year-long peat
and lake record from dehydration and degradation, rendering it ideal for absolute dated
palaeoecological and paleoenvironmental studies. Moreover, as there are Medieval, Roman
Imperial and even older settlements in the vicinity of the site, potential records of human
impact on the site must have been preserved as well. The peat and sediment layers of the
lake basin provide a record of climatic, palaeoecological and hydrological changes and
are suitable to reconstruct the relationship between prehistoric human communities and
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their surrounding environment. Today Round Lake is surrounded by a wet meadow with
shrubs and trees [8]. Our work was mainly motivated by the fact that the examined site
is located near the lower part of the mid-mountain zone and up to now Transylvanian
environmental historical works, based on geochemistry and pollen analyses, focused solely
on high mountains or hilly-alluvial areas [9–20].

2. Materials and Methods
2.1. Site Location

Round Lake is situated in the southwestern foothills of Hargita Mountains in the
Eastern Carpathians at an altitude of 547 m above sea level (Figure 1). The area of the
former lake, which was located 2 km northeast of Sânpaul (Transylvania, Romania), may
have been approximately 2–3 hectares. The wider surrounding of the bedrock consists of
tertiary silty clay layers at the bottom, overlain by Late Tertiary-Quaternary volcanic tuff
and tuffite [21,22].
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Figure 1. Map of Romania within the studied site Round Lake at Sănpaul (edited by Réka Orsolya Tapody adapted from:
mapsland.com and Google Maps—accessed on 30 April 2021). (a) The location of the site in Romania (b) The vicinity
of the site in a topographic map (which is roughly 1 × 1 km2); (c) and in an aerial view (the distance of the site and
Homoródszentpál (Sânpaul) is 2 km).

The foothill surfaces around Sânpaul are comprised of middle Miocene (primary Sar-
matian) siliciclastics, while along the valleys Quaternary alluvial deposits occur (Figure 2).
The topmost part of the hills, hence the limbs of the anticline consist of Sarmatian marls,
sandstone and few centimetre-thick tuff layers [23,24]. The folds, observable around
Sânpaul, were formed as a result of a large, basin-scale late Miocene (primary Sarmatian)
gravitational slide which affected the whole Transylvanian Basin [24]. The salt pushed

mapsland.com
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the covering Sarmatian sedimentary record on different scales, but in several places, like
Sânpaul, the salty subsoil water extruded to the surface [25] in the alluvial surfaces of
the Quaternary valleys. During the Quaternary the climate changes and the sediment
supply vs. rivers low base level and transport capacity filled up the valleys, generating
wetlands in the floodplain (lakes and swamps within salty lakes) [26–28]. The catchment
basin of Round Lake is surrounded by an extensive pastureland surface with some pine
forests and degraded, eroded soil blanket. Based on the excavations at the edge of the
pastureland, the original soil may have been brown earth. The original vegetation has been
completely changed to pastures and subordinately arable land. The current vegetation of
the surroundings of the catchment basin can be defined as a mixture of pine patches and
strips, and overgrazed meadows. In addition to the deforestation activities as basic human
impact [29], the soil erosion intensified–similar to the regressive valley evolution, can be
observed in the area–by the strong tectonic uplift of the Eastern Carpathians-including
Seklerland and Subcarpatii Homoroadelor regions [30–32].
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Figure 2. The 6 × 6 km2 geology map of the environment of the Round Lake. Symbols 1: Miocene
marin marl, 2: Miocene marin marl with dacite tuff layers, 3: Holocene alluvia, 4: Dacite tuff and
conglomerate, 5: Capronita bearing limestone and conglomerate, 6: Tithonian limestone, 7: Kim-
meridgian limestone, 8: Triassic limestone, 9: Settlement, 10: Creek, 11: Road, Star: points the
investigated site, RL: the abbreviation of Round Lake.
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This region forms a contact area between the so-called Transylvanian Plain and the
foothill region of the Hargita Mountains, characterized by 500–700 m high hills, and a large
antecedent valley system within fishponds and a few salty lakes. Today, the climate in the
region is temperate continental, and can be characterized by 7–9 ◦C annual mean tempera-
ture and 550–600 mm annual mean precipitation (Figure 3) with the highest values in boreal
spring and summer [26]. The climate data on which the Walter-Lieth diagram is based,
have been interpreted for the Round Lake of Sânpaul l because there is no climate station
with standard, public data. Based on the climate data, the natural vegetation–without
human impact–would be suggested as a temperate closed forest (beeches, hornbeam with
beeches) with well-developed brown forest soil. Due to the human impact, the natural
forest cover is completely missing. The soil cover has been transformed into anthrasol and
earthy barren soil [33].
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Figure 3. Climate data on Walter-Lieth diagram of the Round Lake (A: mean maximum precipitation,
B: mean minimum precipitation, C: mean maximum temperatures, D: mean minimum temperatures).

2.2. Sampling

Coring was accomplished by a 5 cm diameter sealed liner tube Russian peat corer [34,35]
in the centre of the former lake in June 2015. Two overlapping cores were extracted, con-
forming to the general practice in Quaternary paleoenvironmental studies [35]. After
transportation to the lab, they were cut in half lengthwise. Sections for sedimentological,
geochemical and palaeobotanical analysis were stored at 4 ◦C by the international standard.
The core was sliced into 4-cm intervals for geochemical analysis.

2.3. Magnetic Susceptibility Analysis

Environmental magnetic analyses were carried out on bulk samples [36–39]. Samples
were collected at 1–4 cm intervals. Before the start of the measurement, all samples were
crushed in a glass mortar after weighing. At that time samples were cased in plastic boxes
and dried in air in an oven at 40 ◦C for 24 h. Afterwards, magnetic susceptibilities were
measured at a frequency of 2 kHz using an MS2 Bartington magnetic susceptibility meter
with an MS2E high-resolution sensor [40,41]. All of the samples were measured three times,
and the average values of magnetic susceptibility were computed and reported. The MS is
used to detect paleosol layers in loess sediments [36,39,42–44]. In our case, the presence of
magnetic minerals in the mire was used for the appearance of soil and rock erosion [45].
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2.4. Sedimentological Analysis and Lithological Description

Grain-size composition was determined using the Mie method. Samples were pre-
treated with 1 M HCl and H2O2 to remove CaCO3 and LOI550, respectively. For a more
detailed description of the pre-treatment process, see [46]. All the samples were measured
for 42 size intervals between 0.0001 and 0.5 mm using a Laser Particle Size Analyzer type
Easy Sizer 2.0 and Fritsch sieves at the Geoarchaeological and Palaeoecological Lab of the
Department of Geology and Palaeontology, University of Szeged, Hungary.

The lithostratigraphic description of the samples followed the system of Troels-
Smith [47–49], which was developed for unconsolidated sediments. The basis of the
system is the consideration of Quaternary lake, swamp and peat sediments as a mixture
of a specified number of components and grouping them into six categories according to
their genetics.

2.5. Loss-On Ignition

For LOI examination sub-samples were taken at every 2 cm intervals and the loss on
ignition method was applied, commonly used for the analysis of LOI550 and carbonate
content of calcareous sediments [50–52]. In the first step, the samples are prepared for
analysis by drying (60 ◦C) and grounding. Approximately 1 g of sample was weighed
accurately into a porcelain crucible, which was weighed before and after heating and
the two weights compared. The sample placed in a previously weighed crucible, and
oven-drying at 105 ◦C (24 h) to constant weight. The cooled samples are then weighed
to obtain the weight of the air-dry sample. In the second phase, the samples are heated
at 550 ◦C (2.5 h), to combust the LOI550. The LOI550 content is calculated from the the
following equation.

LOI550 = ((DW105 − DW550)/DW105) × 100

In the third and final phase, the sample is heated at 950 ◦C (DEAN 1974, HEIRI et al.,
2001) [52,53], to evolve the carbonate content. Calculated as:

LOI950 = ((DW550 − DW950)/DW105) × 100

According to Santiteban et al., 2004. [54] we use LOI550, LOI950 and LOI res (residum)
expressions for different stages of measurements.

2.6. Sample Preparation and Geochemical Analysis

The element composition analysis of samples was performed with Spectro xSort
COMBI HH03 handheld X-ray fluorescence spectrometer (pXRF), equipped with a Rh tube
and SSD detector. During the measurements, the handheld XRF was placed in a docking
station. The element compositions (Mg to U) were measured with Mining FP calibration.
This calibration tested with certificated CRM geological standards samples.

Samples were prepared for measurement by drying at 105 ◦C to constant weight, then
grinded to less than 63 micrometre particle size. Each sample prepared 3 times to parallel
measurements. To the measurement 5 gram sample infused to the plastic sample holder
following the Spectro sample preparation guide. The uniform density of the samples was
guaranteed by pressure. The measurement time with two filter 180 s/sample. Measurement
results were evaluated using the XRF Analyzer Pro program. After each sample series we
plotted the cal. concentration and net count data as a cross plot. The fitted equation R2
parameter more than 0.9.

2.7. Statistical Analysis and PCA

Statistical analysis was performed by using SPSS 25.0 statistical software package and
PAST 3X Paleontological Data Analysis [53]. Spearman rho correlation coefficient was used
for the XRF data. Principal Component analysis was used to identify the main factors that
control elemental distribution in the core section. The PCA was performed in the correlation
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mode and a varimax rotation to maximize the loadings of the variables in the components.
Before analysis all data were converted to Z-scores calculated as (Xi − Xavg)/Xstd, where Xi
is the variable and Xavg and Xstd are the series average and standard deviation, respectively,
of the variable Xi [54,55].

2.8. Radiocarbon Dating

AMS 14C dating was performed in the Hertelendi Laboratory of Environmental Stud-
ies in the Nuclear Research Center of the Hungarian Academy of Sciences in Debrecen
(Hungary) and Direct AMS Laboratory in Seattle (USA) on ten samples for plants and peat
samples from the core sequence. The preparation of the samples and the actual steps of
the measurement followed the methods of Hertelendi et al. [56–68] and Molnár et al. [59]).
The-depth model was generated using Bacon [60,61]. Conventional radiocarbon ages
were converted to calendar ages using IntCal20 calibration curve [62]. Calibrated ages are
reported at the 2-sigma confidence level (95.4%).

2.9. Pollen Analysis

The undisturbed core sequence was sampled for pollen at 4-cm intervals. Samples
of 1 cm3 wet sediment were prepared for pollen analysis in the pollen laboratory of the
Department of Geology and Palaeontology at Szeged University using standard methods
and micro-sieving at 10 um [63]. Lycopodium spore tablets of known concentrations were
added to each sample [64] to work out pollen concentrations. Pollen and spores were
identified and counted under a light microscope at 400–1000× magnification. Minimum
500 pollen grains were counted. For the identification of pollen and spores, the reference
database of the Department of Geology and Palaeontology at Szeged University and pollen
atlases and keys were used [65–68]. The palaeovegetation was reconstructed using the
works of Sugita [69], Soepboer et al. [70], Jacobson and Bradshaw [71], Prentice [72] and
Magyari et al. [73,74]. Statistical analysis and plotting of the pollen data were done using
the software package Psimpoll [75,76].

3. Results

The characteristics of Round Lake peat are various; thus, 6 different sediment types
and 16 layers can be distinguished [77]. The dominant botanical composition of the peat is
reed and sedge peat, and two Sphagnum peat layers present in two sections (320–362 cm
and 510–530 cm). In terms of its evolution, the sequence can be divided into a lake sediment
zone (0–104 cm), a mire zone (198–560 cm) and the upper part of the mire zone can be
defined as a geochemical transition zone (104–198 cm).

3.1. Sedimentological Results and Undisturbed Core Sequence Description

Based on the macroscopic observations on the profile, the particle size distribution, the
loss on ignition and magnetic susceptibility measurements (279 samples), 16 sedimentary
units could be distinguished (Table 1).

The bottom layer of the borehole consists of slightly carbonaceous peat (Troels-Smith:
Th3As1) with 75%–82% organic content by LOI550 (Table 1). Unfortunately, despite the
extraordinary effort made during the fieldwork [77] it was not possible to drill through
the peat layer and reach the bottom layer of the peat series of the lake because of the
extreme pressure and groundwater effect. The bottom of the borehole can be defined as the
slightly pelitic carbonaceous peat layer which was formed between 7500 and 7000 cal BP
(5500–5000 cal BC).

Peat formation continued between 530 and 510 cm but the composition of the peat
changed. Sphagnum taxa appeared in the profile and a dark brown, slightly pelitic car-
bonaceous peat level with significant LOI550 content of more than 80% developed between
7000 and 6500 cal BP/5000–4500 cal BC in the Late Neolithic phase (Table 1).

The third layer, between 510–392 cm (6500 and 5000 cal BP/4500–3000 cal BC), also
consists of peat (Table 1) but Sphagnum disappeared at this level and slightly carbonaceous,
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pelitic-fine silty peat layer developed (Th2Lc1As1) with an LOI550 content of over 80%
from flowering plants (Figure 4).

Table 1. Sediment layers and their description from the undisturbed core sequence of Round Lake. Th: Turfa herbacea
Tb:turfa bryophitica Lc: Limus calcareus As: Agrilla steatodes (Troels-Smith scheme available on https://pg-du.org/troels-
smith-scheme/ (accessed on 19 April 2021)).

Depth (cm) Troels-Smith
Category

Munsell Color
Category Color Structure Age

(Cal BP Years)

15–0 Lc1As3 10 YR 4/4 greyish red poliedric soil 0

102–15 Lc1As3 10 YR 3/2 reddish grey laminated lake mud 600–0

198–102 Lc1Th1As1 10 YR 3/3 dark brown carbonaceus pelitic sediment 2400–600

254–198 Th2Lc1As1 10 YR 3/2 blackish brown carbonaceus pelitic sediment 3400–2400

260–254 Th3Lc1 10 YR 3/1 dark grey herbaceus peat 3450–3400

284–260 Th2Lc1As1 10 YR 3/2 blackish brown carbonaceus pelitic sediment 3800–3450

290–284 Th3As1 10 YR 3/1 dark grey herbaceus peat 3900–3800

292–290 Th2Lc1As1 10 YR 3/2 blackish brown carbonaceus pelitic sediment 3950–3900

320–292 Th3As1 10 YR 3/1 dark grey herbaceus peat 4150–3950

362–320 Tb3As1 10 YR 2/2 dark brown moss peat 4500–4150

366–362 Th2Lc1As1 10 YR 3/2 blackish brown carbonaceus pelitic sediment 4600–4500

384–366 Th3Lc1 10 YR 3/1 reddish brown herbaceus peat 4800–4600

392–384 Th2Lc1As1 10 YR 3/2 blackish brown carbonaceus pelitic sediment 5000–4800

510–392 Th3As1 10 YR 3/1 reddish brown herbaceus peat 6500–5000

530–510 Tb3As1 10 YR 2/2 dark brown moss peat 7000–6500

530–560 Th3As1 10 YR 3/1 reddish brown herbaceus peat 7500–7000

The fourth level (392–384 cm) consisted of a characteristic leaching, degradation-
accumulation level with notable carbonate content, increased fine silt, coarse silt and sand
content, and less significant (below 40%) LOI550 (Figure 4, Table 1). This characteristic
erosion-accumulation level (392–384 cm) developed between 5000 and 4800 cal BP (3000
to 2800 cal BC) years, at the level of the Late Copper and Early Bronze Age Coţofeni
culture [78].

The erosional sediment level was ended, and peat formation continued in the fifth
level (384–366) (Figure 4, Table 1). As a result, a reddish-brown layer of peat developed,
predominantly consists of flowering plants remains. The LOI550 exceeded 70% and the
LOI950 occurred below 8% in this level (Figure 4).

Between 366–362 cm (4600–4500 cal BP/2600–2500 cal BC years) an erosion-accumulation
level developed again. The development of the erosional level is also supported by the mag-
netic susceptibility (MS signal) values. After the erosion level spans over about 100 calendar
years, peat formation continued in the catchment basin of Round Lake with the development
of a Sphagnum peat level (Tb3As1) between 362–320 cm (4500–4181 cal BP/2500–2181 cal BC
years). The Sphagnum peat level was slightly carbonaceous with a carbonate content of
4%–5% (Figure 3).

The development of peat levels continued between 320–292 cm (4181–3950 cal BP/
2181–1950 cal BC), however instead of Sphagnum remains, flowering plants provided the
major material of this peat level (Th3As1).

Between 292–290 cm (3950–3900 cal BP/1950–1900 cal BC years), a significant erosion-
accumulation level developed with the sharp increase of coarse silt and LOIres. The
presence of this erosion level is also supported by the values of magnetic susceptibility.

https://pg-du.org/troels-smith-scheme/
https://pg-du.org/troels-smith-scheme/
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This short-term erosion level is very significant, the decrease of both LOI550, clay and fine
silt is more than 20% (Figure 4).
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Figure 4. Magnetic susceptibility, grain size and loss on ignition of the Round Lake at Homoródszentpál (Sânpaul, Romania).

Between 290–284 cm (3900–3800 cal BP/1900–1800 cal BC years), the intensity of
erosion decreased and peat formation continued. As a result, a dark gray peat layer
developed with significant LOI550 content (above 60%). Compared to the previous erosion
level, the coarse silt content decreased and fine silt increased with the decrease of the
MS signal.

Between 284–260 cm (3800–3450 cal BP/1800–1840 cal BC), a significant erosion-
accumulation level developed with sharply increased in LOI550, coarse silt and decreased
LOI550 content. This erosion level is also supported by the values of magnetic susceptibility.
This strong-developed erosion level, which has lasted for more than 300 years, can be
characterized by decreased LOI550, clay, fine silt more than 20% (Figure 4).

A peat formation started again between 260–254 cm (3450–3400 cal BP/1450–1400 cal BC)
and a slightly carbonaceous peat level (Th3Lc1) developed with a significant LOI550 content
(Figure 4 and Table 1).
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Between 254–198 cm (3400–1400 cal BP/1400–400 cal BC), dark brown, slightly car-
bonaceous, pelitic peat layer (Th2LcAs1) developed with finely dispersed clay and fine silt
content in it. The LOI550 content gradually decreased in the peat layer, but at this level, it
is still exceeded 40% and fluctuated between 40%–50% with smaller cycles on a decade
scale (Figure 4 and Table 1). This represents a 30%–40% reduction in LOI550 compared to
the bottom peat layer developed at the beginning of the Middle Holocene. In parallel, the
LOI550 content varied between 30%–40%.

The last peat layer of the undisturbed profile can be found between 189–102 cm
(Figure 4 and Table 1). In this layer, the LOI550 content heavily decreased, although it
fluctuates between 10 and 50%. In parallel, inLOI550 and carbonate content also showed
changes (Figure 4 and Table 1).

From 102 cm to 15 cm (between the 14th and 20th centuries AD) finely laminated
pelitic fine silt (containing subordinate LOI550 and carbonaceous clay) accumulated in the
catchment basin.

Characterization of the macroscopical sedimentological layers and loss on ignition
values were interpreted by using the triangular method [79,80]. Clearly visible trends can
be detected on the triangular diagram created by using LOI values (Figure 5). The LOI950
was relatively similar in all samples (varied between 4% and 6%) due to the effect of the
bedrock (marine marl deposited in the Miocene). The most significant LOI550 content
can be detected in the herbaceous peat layer (Th3Lc1, Th3As1,), from which, samples of
Sphagnum peat layers (Tb3As1) cannot be separated. The most significant LOI550 content
(60%–90%) could be detected in the oldest peat layer.
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3.2. Descriptive Statistics and PCA Analysis

The geochemical development of the undisturbed profile was described using the
changes in the composition of 13 elements (Table 2). Spearman’s rank correlation coeffi-
cients matrix was constructed on the basis of the changes in element composition, which
resulted in the definition of two different sedimentary environments on a geochemical basis.
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Table 2. Major and trace elements mean concentration in the Round Lake whole section, compared to
the lake and the peat phases (the positive deviations from the average concentrations are remarked
with bold numbers).

Total Section (0–560 cm) Lake Phase (0–104 cm) Peat Phase (104–560 cm)

Si (%) 16.61 27.40 14.06

Al (%) 4.84 7.52 4.21

Fe (%) 3.78 4.87 3.52

K (%) 1.04 1.71 0.88

Ca (%) 0.87 0.67 0.91

Ti (ppm) 3067.48 5504.38 2491.48

S (%) 0.13 0.00 0.16

P (%) 0.06 0.00 0.07

Mn (ppm) 124.97 348.07 72.24

Cr (ppm) 90.45 106.74 85.95

Rb (ppm) 72.66 113.26 63.06

Zr (ppm) 72.54 161.83 51.43

Sr (ppm) 66.33 95.17 59.51

The two sedimentary environments with different structures show different geo-
chemical properties, which depend on various conditions. According to the elemental
concentration, the major and trace elements in the whole sediment section can be arranged
in a sequence: Si >Al > Fe > K > Ca > Ti > S > P > Mn > Cr > Rb > Zr > Sr. In comparison
with the peat sequence (104–560 cm) calcium (Ca) and potassium (K) changed their place
and zirconium (Zr) with rubidium (Rb), therefore the arranged sequence in the mire section:
Si >Al > Fe > Ca > K > Ti > S > P > Mn > Cr > Rb > Zr. At the lake phase (0–104 cm) the last
seven elements have been completely reordered: Si >Al > Fe > K > Ca > Ti > Mn > Zr > Rb
> Cr > S > P.

The same sedimentological picture is confirmed by the principal component analysis
of the sedimentological and geochemical data of the samples (PCA), which makes clear the
differences between the samples (279 pcs) described in detail macroscopically (Figure 6).
We applied PCA to the MS, LOI550. LOI950, LOIres, all grainsize data and all analysed
elements. We applied Z—Score transformation in the SPSS 25.0 statistical software package
and PAST 3X. The two components have explained 78.9% of the total variance. The PC1
accounted for 63.45% of the total variance and PC2 component accounted for 15.45% the
factor loading in Table 3. The results are well supported by the Cluster analysis of variables
performed in PAST 3X using the Paired Group (UPGMA) algorithm and the Manhattan
similarity index. (Figure 6).

Table 3. Factor loadings for PC1 and PC2 (PC1 represents the lake phase, PC2 represents the peat
phase, based on the higher values (bold) of loading values.

Variables PC 1 PC 2

Al 0.85128 0.22037
Si 0.92565 0.32804
S −0.53187 0.65016
P 0.24036 0.79389
K 0.91266 0.3497
Ca −0.13402 0.81413
Ti 0.92628 0.25136
Cr 0.74713 0.5794
Mn 0.84944 −0.2622
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Table 3. Cont.

Variables PC 1 PC 2

Fe 0.77234 0.50753
Rb 0.90968 0.28342
Sr 0.89265 0.32182
Zr 0.97298 −0.063781
MS 0.92041 −0.15484
LOI550 −0.94313 0.025909
LOI950 −0.72301 0.17593
LOIres 0.94396 −0.031808
Clay −0.57733 0.21615
Fine silt −0.78114 0.36674
Coarse silt 0.68392 −0.28212
Vf sand 0.80249 −0.37068
Fine sand 0.77815 −0.38445
M. sand 0.7565 −0.39059
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3.3. Chronological Results

Results from the 12 radiocarbon (AMS) dates (Table 4, Figures 7 and 8) indicate an
almost linear relationship of sediment deposition with time. The age-depth model with
sedimentation rates (SR) was established by linear interpolation between the calibrated
radiocarbon dates (Table 4). When indicating the age of a level where no radiocarbon date
is available, we refer to the results of the linear interpolation.

Table 4. 12 AMS data from undisturbing core sequence of the Round Lake.

Lab Code Material Depth
(cm)

14C Age yr
(BP)

± cal yr BP ± AD/BC Years

DeA-11893 charcoal 59 230 21 227 72 1643–1799 AD

D-AMS 015575 charcoal 100 566 22 584 53 1303–1419 AD

DeA-13155 peat 140 1084 24 998 34 894–1013 AD

DeA-11892 peat 199 1869 26 1799 74 77–222 AD

DeA-11891 peat 211 2528 25 2621 123 794–547 BC

DeA-12029 peat 231 2947 28 3089 86 1054–1226 BC
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Table 4. Cont.

Lab Code Material Depth
(cm)

14C Age yr
(BP)

± cal yr BP ± AD/BC Years

D-AMS 015574 peat 236 3015 26 3207 127 1131–1385 BC

DeA-13157 peat 320 3799 28 4183 53 4283–4090 BC

D-AMS 015577 peat 416 4602 28 5269 179 3141–3499 BC

DeA-11889 peat 489 5615 31 6386 76 4361–4512 BC

DeA-11888 peat 511 5916 33 6742 90 4713–4892 BC

D-AMS 015576 peat 560 6575 29 7495 65 5480–5610 BC
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Figure 7. Bayesian age-depth model using 14C age tie points and calculated sedimentation rates for
sampled intervals using Bacon [60] for core Round Lake at Sânpaul, Romania. Top left: Markov Chain
Monte Carlo model iterations. Top middle: prior (green line) and posterior (solid gray) distribution
of accumulation rate. Top right: prior (heavy green line) and posterior (solid gray) distribution of
the model memory. Bottom, calibrated 14C dates in blue and the age–depth model. Grey stippled
lines show 95% confidence intervals. The central dotted red curve is the ‘best’ model based on the
weighted mean age.
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The 560 cm long sequence involved approximately 7500 cal BP years (5500 cal BC years),
Accumulation rates were estimated at the 1-cm resolution along with 95% CI to assess un-
certainty, which gave the best result. Prior accumulations rates of 10 yr/cm with a gamma
distribution of 1.5 shows a good correspondence with and the calculated 12 y/cm. Based on
the chronological data and sedimentation rates, four levels of different accumulation rates
were detected in the profile covers the last 7500 calendars [8]. In Figure 8, Inverse accumula-
tion rates (sedimentation times expressed as year/cm) were estimated from Markov Chain
Monte Carlo (MCMC) iterations, and these rates form the age-depth model. Accordingly,
as the sedimentation time increases then the rate of accumulation decreases. It can be seen
in the figure that within the different stages there are several SR decreases (AR increases)
around 7300 cal BP, 6300 cal BP 4000 and 500 cal BP.

4. Discussion

The two different sediment records of Round Lake indicate many interesting changes
and processes in stratigraphy and geochemistry. In this study, using the elements ex-
amined above, we attempted to use environmental proxies that have been accepted in
previous studies.

4.1. Factors Affecting the Elemental Composition of the Round Lake

The correlation matrix was calculated for 13 elements from the total section of Round
Lake (Table 5). A strong positive correlation can be noticed between the elements with inor-
ganic mineral origin: Si, Al, K, Ti, Mn, Fe, Zr, Cr, Rb, Sr and between the plant-derived ele-
ments: S, P, Ca. Therefore, the elements can be classified into two groups, an allochthonous
terrigenous fraction which correlates with the in LOIres content and an autochthonous
chemically biogenically deposited fraction which correlate with LOI550 content.

Based on the PCA, the macroscopic description of the samples was correct, thus
Troels-Smith [35] categories indicate an unconsolidated sediment environment in the mars-
lake-swamp area indeed. The samples of the medieval-modern lake phase, the peat levels
and the pelitic layers formed by different degrees of erosion, were excellently separated
and reflect clearly the former sedimentary environment (Figure 9).
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Table 5. Spearman’s rank correlation coefficients matrix between the concentrations of analysed elements. Bold fond shows
a significant correlation at the 0.01 level (2-tailed). The underlined correlation coefficients are higher than 0.6.

Al Si P S K Ca Ti Cr Mn Fe Rb Sr

Si 0.913

P −0.513 −0.472

S −0.704 −0.626 0.896

K 0.877 0.967 −0.455 −0.560

Ca −0.456 −0.352 0.905 0.873 −0.325

Ti 0.844 0.946 −0.448 −0.567 0.965 −0.310

Cr 0.787 0.766 −0.324 −0.446 0.788 −0.243 0.777

Mn 0.683 0.798 −0.417 −0.528 0.794 −0.270 0.855 0.604

Fe 0.777 0.759 −0.339 −0.558 0.712 −0.234 0.661 0.679 0.568

Rb 0.932 0.911 −0.602 −0.746 0.901 −0.520 0.857 0.775 0.679 0.816

Sr 0.710 0.879 −0.360 −0.482 0.861 −0.178 0.867 0.607 0.768 0.678 0.764

Zr 0.897 0.925 −0.616 −0.780 0.880 −0.516 0.883 0.712 0.747 0.771 0.952 0.819
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Figure 9. Principal components analysis (PCA) biplot of selected environmental variables and
samples with Troels-Smith [35] categories (1. laminated lacustrine mud, 2. calcareous pelitic peat,
3. herbaceous peat, 4. moss peat).

Figure 9 demonstrates that PCA1 has the greatest positive loadings with minerogenic
-binding elements, MS and coarse particle size. Therefore, this refers to mineral sediment
input from soil and rock erosion. At the same time, PCA1 has four significant negative
weights for, LOI550, LOI950 and the finer fractions (fine silt, clay). PC2 has a high positive
loading of P, S, Ca. All this indicates that LOI550 binds to organic matter (P, S), and a similar
direction of Ca, fine particles and LOI 950 may indicate the local plant origin of carbonate.
The figure shows the 95% CI ellipses associated with the data of the 4 lithological groups
(1. laminated lacustrine mud, 2. calcareous pelitic peat, 3. herbaceous peat, 4. moss peat).
Ellipses 3 and 4 overlaps well, 1 is connected to the lake sediments which are separate and
represent only the upper 1 m.



Quaternary 2021, 4, 18 15 of 29

4.2. Major and Trace Element Distribution

The P, S are tightly bound to the LOI550 (Figure S1) and their concentration profiles
have similar trends. The P, S are tightly bound to the LOI550 (Figure S1) and their con-
centration profiles have similar trends. Ca follows P and S with a similar trend. They
show a relatively low concentration at the bottom of the peat section between 560–450 cm
except for two peaks at 560 cm and at the border of Tb3As1 and Th3As1layer between
500–510 cm. They reached the highest concentration between 400 and 300 cm. In this
section the peat composition is various and there are several significant peaks (394–400 cm,
380–385 cm, 355–360 cm 255–260 cm) which is the same for all three biogenic elements. In
the geochemical transition zone (198–100 cm), the concentration of these three elements
decreased. Between 104 and 115 cm, there is a significant peak in P and Ca concentration
which coincidence the water table level (at 104 cm). In the Lake phase (0–104 cm) the P
and S fell below the detection limit therefore they were not traceable, and the Ca shows the
lowest concentration (0.5%–0.8%) here.

It is conspicuous that both LOI550 and LOI950 decreased in parallel with the increase
of LOIres. LOI950 does not appear to be related to surface erosion, it is more likely that
the wall of the catchment basin was formed by Miocene marine calcareous marl where the
carbonate originated from. Furthermore, Ca is a well-known biophilic element [81].

The terrigenous, mineral-derived elements in the peat section (560–198 cm) show a
similar distribution trend, while, from the level of the geochemical transition zone (198 cm),
they show different fluctuations. Between 560–450 cm the elements remain low (Si 5%,
K 0.2%, Al 2%) but above the Tb3As1 layer (−500–490 cm) there is a sharp peak, similar
with biogenic elements. The highest LOI550 and plant composition in the peat section
(between 450–325 cm) have several significant peaks. The double peak between 392–362 cm
coincides with the Th2Lc1As1 levels where the sand fraction also appears (Figure S1 and
Figure 4). In the transition zone, there is a double peak between 190–210 cm and a sharp
peak between 150–160 cm which correlates with the organic elements (P, S, Ca). At the
water table level, all three elements drop due to diluting. This decline can also be traced
in the fine-grained sediment. In the lake phase Si, K, Al, graphs are similar in the whole
section. They maintain the same level (Si 27%, Al 7%, K 1,7%) no significant fluctuations
were observed.

The Ti, Zr, Cr concentration are decreasing with depth. In the peat and transition zone,
their distribution is parallel with other inorganic elements. Cr shows a different trend
in the transition phase than the other mineral elements. There is no significant peak like
Ti, Zr in the Lc1Th1As2 layer (between 150–160 cm), its concentration ranges from 90 to
120 ppm. In the Lake phase the three elements drop in the water table level, in the upper
80 cm maintain in the same level (Ti 550 ppm, Zr 160 ppm, Cr 107 ppm).

In the peat phase, between 560 and 280 cm, the Fe content is below 4%. At this stage,
the LOI550 content is over 75%. Significant peaks are found between 500–490 cm and
coincide with the appearance of Th2Lc1As2 layers where a coarse-grained fraction appears.
In the lake phase, the iron (Fe) content is stable between 4%–6%, falling only at the water
level (104 cm).

Mn is stable throughout the peat layer, falling to 6 ppm between 506–502 cm at the
top of the Tb3As1 layer. From the transition phase (Lc1Th1As2), Mn increase from 40 ppm
to 350 ppm. In the lake phase, the highest values of Mn can be detected above the water
level (500–350 ppm).

As Rb can bind to potassium [82], its trend is very similar. In contrast, Sr binds to
Ca-containing minerals [82], but a significant correlation was detected between them. The
two elements Sr Rb are similar in the mire phase, while they differ in the lake phase. In
the peat phase, Rb and Sr increase continuously from bottom to top, with significant peaks
coinciding with other minerogens. At the water table level Rb drops significantly, Sr shows
no significant change. Rb is stable in the lake phase (100–120 ppm), Sr rises from 80 to
120 ppm towards the surface.
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4.3. Comparative Analyses of Geochemical and Pollen Results

Pollen analyses were not performed as a stand-alone study, but to understand the
background of the geochemical changes from a perspective of vegetation. It is necessary as
climate-induced vegetational changes and the anthropogenic impacts of it can be described
more accurately based on pollen analytical data than from a geochemical viewpoint [83–94].

A comparative analysis of the geochemical and pollen analytical samples, converted
from the meter scale to the time scale by 12 radiocarbon measurements [8], was performed
based on literature [89,90,95,96]. The bases of the comparisons were the works of Willis
et al. [88,94,95], and one of our aims was to test the suggestion of Willis et al. [90] about
the connection between human impact and erosion levels based on the analysis of a simi-
lar mars-lake catchment basin with sedimentological, pollen analytical and geochemical
methods. Land degradation is the physical and chemical depletion of the soil resulted from
processes such as erosion, acidification, depletion of plant nutrients and reduction of LOI550
content [88,96]. The following palaeoecological phases can be separated on a chronological
scale by the comparative analyses of geochemical-pollen analytical data. To make it com-
parable with other studies, the relative abundance of the studied elements expressed as
concentration of oxides per sediment volume are given in Supplementary Figure S2.

The first geohistorical level formed between 7500–6500 cal BP (Figure 10). Inorganic
geochemical components of mineral origin show low values at this level, except for Al2O3.
It can be connected to the continuous clay deposition from the degradation of the brown
forest soil formed under closed deciduous forest (reconstructed based on pollen data
(Supplementary Figure S2) [88,95,97,98] in the vicinity of the Round Lake catchment basin.
The Ca content can be related to the effect of the bedrock and the element content of the
significant plant phytomass that forms peat [95,99,100]. Elements depend on the organic
components in the forms of CaCO3 and P2O5, have three maxima in this stage, which
show three maxima in biogenic accumulation and peat formation [101,102]. SO3 and
MnO2 content were also significant in these levels [88,103–105]. Based on the elemental
composition, the reductive mire environment can be characterized by rich vegetation,
the appearance of Sphagnum plants, negligible element transport and significant water
coverage on the surface [88,95,104–107]. In this phase, the catchment basin was dominated
by biogenic sediment accumulation and peat formation.
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Between 6750–6500 cal BP years, the quantity of elements of mineral origin (Al, Si,
K, Cr, Rb) increased, and organic components decreased in the erosion phase deposited
to the peat level (Figure 10). The proportion of pollen of deciduous woody plants also
decreased during this period, indicating a decrease in forest cover. The stability of the
surface vegetation cover was changed [88,108], which resulted in the leaching of several
inorganic components towards the mire. This change was obviously the result of human
impact by deforesting the woody plants [88]. In addition to the decrease in the proportion
of arboreal elements (Figure S2), and the advance of herbaceous plants, an erosion phase
developed in the sediment.

Between 6500–6000 cal BP years, the maximum of the maximum of SO3, MnO2 and
CaO developed, the proportion of the elements correlated to inorganic sediment and
erosion decreased. The proportion of arboreal pollen also increased. These attributes
indicate a phase of forest regeneration and the reduction of erosional sediment supply
to the Round Lake catchment basin. At this time the mire can be characterized by high
water level and intensive biogenic accumulation. This is also supported by the presence of
Sphagnum taxa detected at this level [109–111].

Between 6000–4750 cal BP years the quantity of the elements released from the washing
in of inorganic sediment increase continuously in parallel with the decrease of the reductive
mire environment-indicator elements Fe2O3 and MnO2 [88,95,104–107]. Arboreal pollen
proportion also decreased drastically (Figure S1) in addition to the sharp increase of
the proportion of herbaceous pollen. The element content indicating an erosion and
degradation of the soils covering the surroundings and the decrease of mire environment-
indicator elements suggest another erosion level and vegetation breakdown.

In the subsequently early Bronze Age level (between 4750–4250 cal BP years), the
catchment basin is characterized by environmental stability. The erosion-indicator element
content was in its average and based on the pollen analysis (Figure S2), the forest environ-
ment was regenerated. The continuous peat formation is also confirmed by the presence
of Sphagnum remains in the sediment (Tb3As1). The beech pollen maximum in the pollen
composition and the appearance of Sphagnum suggested cooler and wetter climate in the
terminal phase of Coţofen culture in the transition of the early and middle Bronze Age.
Similar cooler and wetter climate phase were detected, based on isotope analyses, in Asia
Minor [112] and the Middle East [113] in the same chronological zone.

Sphagnum remains disappeared from the sediment between 4250–4000 cal BP years
(Figure 10). Sharp changes also can be observed in the pollen material. Arboreal pollen propor-
tion (Alnus, Betula, Tilia, Quercus) decreased below 60% (Supplementary Figure S3) [73,74,114–116].
Among herbaceous plants, the proportion of Artemisia, Chenopodicea, Secale, Cyperecea began
to increase. Mineral content suddenly dropped, then started to increase for a short time. The in-
creased proportion of MnO2 indicates oxidative conditions, and the maximum of P2O5 suggests
decomposition processes-although this may also come from the vicinity of the catchment basin
by the intensification of soil leaching [95] (Figure S2). This latter is also indicated by an increase
in magnetic susceptibility (Figure 4). The changes in the pollen composition, the decrease of
arboreal pollen and the appearance of cereals, rye (Secale) among the herbaceous pollens clearly
show the agricultural production in the surroundings of the mire.

Geochemical analyses suggest the drying up of the mire environment, which may
be related to a global event at 4.3 kyr [117]. The available AMS-based chronological
data also support this idea (Table 2). Global investigations dated the Meghalayan phase
(4250–4050 cal BP/2250–2050 cal BC years), identified in the northeast of India by us-
ing isotope analyses on stalagmites, approximately to this chronological-climatic phase.
This climatic event had an extraordinary impact on the high cultures of Africa and Eura-
sia [118–120]. In any case, the global dry event of the mentioned Meghalayan phase
coincides with the transition of early and middle Bronze Age in the Carpathian Basin.
Based on the archaeological and environmental historical analyses [121–128] it is evident,
that human communities respond to environmental impact and crises with cultural and
technical transformations and a coincidence can be noted between the dry climate event of
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the Meghalayan phase and the transition of early/middle Bronze Age phase. In our cases,
this coincidence requires further investigation.

At the next level, between 350–300 cm (4000–3500 cal BP/2000–1500 cal BC years),
the pollen proportion of arboreal species ranged between 60%–70%. The closed forest,
stabilized at the early Holocene, was replaced by a forest-steppe with loose hornbeam-
beech forests, grazed and herbaceous patches [73,74,114–116]. As a result of this loosely
structured vegetation cover, erosion became continuous in this stage, identifiable with the
Middle Bronze Age. Two smaller stages of mire regeneration also can be detected. The
geochemical parameters indicate a constant surface erosion (Figure S1) in parallel with the
continuous decrease of arboreal species (Figures S2 and S3), and the strong soil leaching
and deposition resulted in the formation of pelitic peat levels.

4.4. Paleoenvironmental Changes during the Past 7500 Years

The distribution of P, S and Ca elements are influenced by the composition of LOI550
and the surrounding vegetation. Even though calcium is originally derived from bedrock,
it still correlates better with LOI550. Presumably because Ca is a well-known biophilic
element [81] it is essential for growth in plants which could derive from the deciduous tree
fallen leaves [83]. It can be noticed that the peaks of the biogenic elements (P, S, Ca) can be
found in the middle part of a thicker, homogeneous peat layer. This can be influenced by
several factors, including the sedimentation rate, which affects the deposition and depth of
the stratum, thus can be related to decomposition and maturation processes. Shifts and
fluctuations of geochemical elements can be attributed to plant uptake and transport. Some
peaks coincide with elements from the mineral grain. The observed peaks correlate with
layer boundaries, indicating the transformation of the mire environment.

The Si, Al, K, Ti are strongly correlated with mineral matter. Si and Al are the most
abundant elements in the Earth’s crust and principle constituents of rock-forming minerals.
Potassium is essential to growing plants, therefore it rapidly lost from peats [2].

The Mn and Fe are highly mobile in anoxic environments from very acidic to moder-
ately alkaline pH [129–132]. This can be observed in the peat section between 560–150 cm.
In addition, the distribution of Mn can be related to the activity of microbes and can take
part in the degradation of organic and inorganic compounds [133–135]. Fe shows no
significant change between both oxic and anoxic conditions, while Mn shows the highest
concentration above the water table level (104 cm). The distribution of Cr can be controlled
by the botanical composition and LOI550. In anoxic conditions, organic compounds can
reduce in aqueous solution [7,82]. The highest concentration of Cr was detected between
150–400 cm, and it was not detectable at the bottom of the core section.

4.5. Paleoenvironment Changes from the Aspect of Human Impact

One of our aims was to examine the possibility of reconstructing the productive
activity of former cultures and communities [88] by study the erosion development of the
catchment basin on the basis of sedimentological, geochemical and pollen analytical results
dated by radiocarbon data. By using this method, the agricultural activity and the impact
of the civilization on the environment at the level of the given cultures can be reconstructed.
Even though the depth of the Round Lake catchment basin did not reach the depth of the
Kis-Mohos, detailed in the works of [88,95], and the sedimentation cannot date back to the
end of the Ice Age, comparison can be carried out in the last 7500 calendar years. It must
be noted that archaeological database on the topographic survey of sites in the vicinity of
Kelemér are not available.

Nonetheless, the following erosion events and mire-forest-regeneration phases could
be separated by sedimentological, geochemical and pollen analytical methods, in the
undisturbed borehole profile of the Round Lake at Homoródszentpál (Table 6).

Previous studies [89,95,108,136] have indicated that increases in the abundance of ele-
ments such as Si, Al, K, Rb, Cr, Sr and inorganic material are indicative of both physical and
chemical weathering associated with soil erosion. These elements represent silicate miner-
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als eroded from the surrounding soils and rocks. This material is carried by throughflow,
and overland flow washing material into the lake basin and can be used as an indicator
of local land degradation and erosion process [88]. S, P, Fe, Mn elements and organic
content show a maximum in the mire regeneration phase of peat levels, thus, erosion
levels and mire regeneration phases can be distinguished based on the abundance of the
two element groups (Table 6). Due to the steepness of the slope and the steep bank of
the catchment basin, formed by landslide processes, clay fraction from the surrounding
soils and carbonate from the bedrock washed in subordinately but continuously to the
catchment basin. Si, Al, K, Rb, Cr, Sr, inorganic content, an increasing ratio of coarse silt
and sandy fraction can be used as an indicator of erosion phases.

Table 6. Age, erosion and peat regeneration phases within archaeological and cultural data-historical data around the
analysed catchment basin archaeological remains in the Homoród Hills based on [137–156].

Age (Cal BP Years) Age (Cal BC/AD Years) Erosion/Peat Phases Archeological Stage
(Age) Cultures and Phases

200–0 1600–2000 strong erosion phase Modern Magyars

700–200 1300–1800 pond phase Terminal
Medieval Magyars

1000–700 1000–1300 AD strong erosion phase Medieval Magyars

1100–1000 900–1000 AD strong erosion phase Terminal
Migration Magyars

1300–1100 700–900 AD strong erosion phase Migration Avars

1600–1300 400–700 AD peat regeneration phase Migration Gepids, Huns. Goths

1900–1600 400 BC–1400 AD strong erosion phase Imperial Romans

3100–1900 1100 BC–100 AD solid but continuous erosion Iron Dacians, La Téne, Scytians,
Prescythians, Mezőcsát

3450–3100 1450–1100 strong erosion phase Late Bronze Gáva, Noua

3800–3450 1800–1450 strong erosion phase Middle Bronze III Classical Wietenberg

3900–3800 1900–1800 peat regeneration phase Middle Bronze II Formative Wietenberg

3950–3900 1950–1900 strong erosion phase Middle Bronze I Formative Wietenberg

4183–3950 2193–1950 strong erosion phase Early Bronze III Gornea-Foci

4500–4183 2500–2183 peat regeneration phase within
Sphagnum taxa Early Bronze II Schneckenberg

4600–4500 2600–2500 strong erosion phase Early Bronze I Globular Amphora-Late
Coţofeni

4800–4600 2800–2600 strong erosion phase Copper/Bronze Coţofeni/Pit Grave

5000–4800 3000–2800 human impact, vegetation
disturbed, erosion phase Late Copper Late Cucuteni B–Tripolje

BIII

6500–5000 4500–3000 peat regeneration phase within
Sphagnum taxa Copper Erősd-Cucuteni B–Tripolje

BI-II

7000–6500 5000–4500 vegetation
disturbed, solid erosion phase Late Neolithic/Copper

Erősd–Precucuteni–
Cucuteni A1

Tripolje A

7500–7000 5500–5000 high organic content, peat forming,
solid clay inwashing phase Middle Neolithic Linnear Pottery

The bottom of the undisturbed core drilling consists of a reddish-brown peat level,
which formed between 7500–7000 cal BP/5500–5000 cal BC.

The first geohistorical level formed between 7500–6500 cal BP in the middle of the
Holocene [154,155] or the Middle Neolithic-from an archaeological point of view. For this
reason, the influence of communities with agricultural activities must be taken into account.

The first significant soil erosion phase can be dated back to the transition of the Late
Neolithic/Copper Age, in the chronological horizon of the Erősd-Precucuteni-Tripolje
culture complex (between 7000–6500 cal BP/5000–4500 cal BC). In this chronological-
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cultural horizon, hundreds of years of preurban settlements can be observed connecting
with the Erősdi culture [156,157], as an evidence of the Late Neolithic-Copper Age economic
spatial structure in the Transylvanian Basin. The study area could have been located in the
outer livestock zone, where pasturelands were established. It must be noted that in the
chronological horizon of this cultural level wheeled vehicles models were already have
appeared in the wider environment of the studied region [158]. For this reason, the existence
of a gradually developing commercial and agricultural network, a Late Neolithic economic
spatial structure can be considered. These activities had a strong erosion-amplifying effect.

Between 6500–5000 cal BP (4500–3000 cal BC) years, the proportion of erosion-indicating
elements decreased as a result of the decrease of human impact and the former climate,
a peat- and forest regeneration phase developed at that time. Our data clearly confirm
previous geohistorical models that throughflow and overland flow processes and inwash
decreased because of the extension of closed forest in the area of the catchment basin and
peat formation persisted [86–89,95,159].

The second erosion level occurred at the end of the Copper Age, in the chronologi-
cal horizon of Late Cucuteni B-Tripolje BIII culture complex (between 5000–4800 cal BP/
3000–2800 cal BC years) (Table 5). In the wider environment of the studied area, the settle-
ment of the communities of the Coţofen culture was also confirmed [160,161]. In addition
to the increase of the elements indicating erosion, bedrock and soil leaching, this pro-
cess is also indicated by the rapid and abrupt increase of coarse silt and sand fraction
(Table 1, Figure 4). Deforestation is also proven by the decrease of the pollen proportion
of Quercus, Carpinus, Fagus and the rapid increase of Betula and Alnus in the cleared areas
(Figure 10). Based on the increase in the proportion of herbaceous plants, mainly grasses
(Poaceae = Gramineae) and Asteraceae pollens, grazing areas can be reconstructed, sub-
ordinately beside rye cultivation and local arable lands. Vegetation disturbance was less
intensive at this stage, in contrast, geochemical data suggest that it was more significant
than in the first erosion level. It cannot be ruled out, that the pond existed in the catchment
basin of Round Lake, was used as a watering pond for animals. The erosion near the lake
intensified by the trampling of these animals.

The next erosion phase in the vicinity of Round Lake may have been connected
to the establishment of pasturelands by Coţofeni/Pit Grave cultures at the end of the
Copper Age/beginning of the Bronze Age. The earlier thermophilous, mesophilous forest
species (Tilia, Ulmus, Corylus) retreated surrounding the lake and there is a marked Fagus
increase detected which indicated a cooler wetter climate. The pastoral communities of
the Pit Grave Culture, large animal keepers from the Eastern European Plain appeared in
several waves [162–165] in both the Carpathian and Transylvanian Basin [166]. Thus, the
pastureland formation at the end of the Copper Age/beginning of the Bronze age (between
4800–4600 cal BC) can be linked to a younger wave of the communities of Pit Grave Culture
(so-called III. infiltration wave) [167,168]. As communities of Coţofeni culture also existed
in the transitional level of Copper/Bronze Age, it is not possible to link the establishment
of pasturelands precisely to a culture. However, the pasture farming had still existed in the
area at the I. phase of Early Bronze Age (4600–4500 cal BP = 2600–2500 cal BC years), when
the Pit Grave culture communities were no longer, but Coţofen culture communities were
still presented in the study area.

Between 4500–2150 cal BP (2500–2150 cal BC) years, human disturbance was mini-
mized. The Round Lake area was covered with beech and hornbeam forest and a well-
developed peat layer formed beside the presence of Sphagnum (Tb3As1). These circum-
stances suggest a forest and mire regeneration phase with a cool and wet climate. Between
4150–3950 cal BP (2225–1950 cal BC), another vegetation disturbance and erosion were
presented, based on sedimentological, geochemical and pollen analytical results. The
human impact was so strong (Table 5) that the reconstruction of the exact climate phase
was impossible, thus this level cannot be correlated with the Meghalayan phase detected
globally between 4250–4050 cal BP (2250–2050 cal BC). At the same time, it cannot be ruled
out that the intensified human influences and population growth in the mid-mountain
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region between 500–600 m were caused by the moving of the communities towards higher
and wetter regions of the Transylvanian Central Mountains.

At the beginning of the Middle Bronze Age (3900–3800 cal BP = 1900–1800 cal BC),
erosion receded, human disturbance of the vegetation was stopped. Beech forest closed,
and a peat layer developed in the catchment basin resulted in another forest and mire
regeneration phase.

During the Middle Bronze Age, at the time of the communities of the Classical Wi-
etenberg culture, while a diverse weed vegetation (Artemisia, Centaurea, Chenopodiaceae,
Plantago, Polygonum, Rumex, Urticum, Verbascum taxa) developed. The decline in the propor-
tion of arboreal pollens and the increasing of the herbaceous ones, the strong deforestation,
the increasing abundance of the geochemical elements proving soil and bedrock erosion,
the changes in grain composition indicate the presence of an extremely strong human
impact in this erosion phase. The Wietenberg culture developed an important economic
and social spatial structure and pasturelands in the hilly mid-mountainous region [169].
The zones with different economical roles may have been connected by road networks since
most of the prehistoric wagon models were found from the sites of this culture [158]. The
existence of road networks and roads are factors that increase erosion [88]. Geohistorical
and chronological data show that this level of erosion was associated with the high culture
level at the Middle Bronze Age.

The human-influenced forest-steppe may have been maintained during the Late
Bronze Age by the communities of Noua and Gava cultures. Data indicate the existence
and production of a significant number of communities in the Central Mountain region of
Transylvania. As a result of their activities, the strong disturbance of forest vegetation and
erosion was persisted during the Middle Bronze Age. Our data show that the studied area
may have been in edge position as a peripheral part of the advanced production system
of Transylvania.

Despite the continuous human disturbance in the level of all cultures and communities
(Table 6) of the Iron Age, the human impact and erosion did not reach that level of the
second half of the Bronze Age. Rather, a continuous, less significant disturbance–despite
the more advanced tools-can be described. Sharply decreased population density can be
suggested during the Iron Age compared to the Bronze Age-the area was placed on the
periphery of the socio-economic system of the Iron Age.

During the Roman Empire (1900–1600 cal BP-106–271 AD), the most powerful erosion
and disturbance can be observed in the vicinity of Round Lake at Sânpaul, which exceeds
all previous human influences. These impacts include the developed Roman agriculture,
roads, network of settlements, but the local reason for the erosion and deforestation was
the construction of a Roman fortress in the 2nd century AD on the surface of the transverse
crack (Orom hill), formed by landslide processes. Forests were cleared around the fortress
for protective reasons, and erosion developed in the absence of forest vegetation. Deforested
areas have been used for agricultural production, as weeds, the typical vegetation of
pastures, trampled surfaces and cultivated fields were detected by pollen analysis.

During the early Migration period (reign of Goths, Huns, Gepids), the proportion of
woody pollens increased exponentially, erosion dropped drastically and another peat layer
developed in the catchment basin. Based on historical sources [170], a significant number of
Goths communities settled in the Transylvanian basin and established a diverse economy-
this is also supported by our Transylvanian geohistorical data [171]. The loosely structured
settlements of the Goths were established on the alluvium of streams and rivers [171,172],
but the forest and mire regeneration of the studied area suggest that an uninhabited band
may have been formed between the interiors of the Transylvanian basin and the Eastern
European Plains. This band may have stretched through the study area-this may explain
the sudden and complete absence of human impact and the complete regeneration of the
forest and mire environment after the Roman Imperial phase in the early Migration period
(3–7th century AD/1600–1300 cal BP years).
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The forest and mire regeneration phase after the 7th century AD (1300 cal BP years)
ended and another erosion phase developed with vegetation change and the reduction of
arboreal pollen (from 60% to 40%) and a culture steppe formed. Both historical sources
and archaeological find show that this time the Avars had already lived [142,145,173] in
Transylvania, which was part of the Avar Kaganath. Thus, the significant environmental
change that took place in the second half of the Migration period can be linked to the
Avar communities.

The most important characteristic of this level of vegetation change and erosion is
that it does not show a decline in the 8–9th centuries, but constantly evolving into the
next chronological horizon, the level of the Magyars Conquest. A correct AMS data is also
connected to this latter. Our data indicate that agricultural production in this area has
developed continuously from the end of the Avar Empire to the Magyars Conquest. As a
result, continuity can be observed between the two ethnic groups–with a strong emphasis
on the level of agricultural production and human impacts.

Another phase of environmental transformations developed in the study area in the
period of the Magyars Conquest. The proportion of arboreal pollen decreased to 40% and
a cultivated steppe developed around the catchment basin. Erosion was continuous, the
elements indicating erosion increased again and remained significant after the Magyars
Conquest, throughout the Middle Age. It should be mentioned that the Magyars Conquest
strongly affected the mid-mountain zone of the Eastern Carpathians and in addition to
animal husbandry, arable lands (crop production) were also established based on the grain
pollens. These geohistorical data show a good correlation with previous data [88]. It can be
concluded that a significant population grew after the settlement participated in the process
of Magyars Conquest [88] and a notable part of it took part in crop production [88,174]. The
increasing human impacts during the Árpádian period suggest that the region was continu-
ously inhabited between the 7–14th centuries AD. Thus, even if there was uninhabited and
non-productive grassland area in the Eastern Carpathians mid-mountain region during the
Magyars Conquest, our study area did not belong to it. At the end of the Árpádian Age,
an artificial pond was formed in the depression of the catchment basin, which completely
changed the sedimentation by this human influence. This pond was filled up by the end of
the 17th/18th centuries AD and turned into a cyclically drying swamp. This swamp was
transformed into a rainwater reservoir lake in 1907 by the Gazdakör (Farmers’ association)
in parallel with the improvement of the pasture. The water level of the lake was controllable
by sluices and dams. It was used for watering livestock [175,176]. Unfortunately, in the
second part of the 20th century, this system was completely destroyed, and the pasture
was abandoned.

5. Conclusions

This paper describes the complex geochemical data analysis of Round Lake to define
paleoenvironmental conditions over the past 7500 years. Chemical changes in the peat are
the result of the complex processes that are not only affected by external influences but also
by biological and chemical processes in the mire. We found that:

(1). The sedimentological data make clear that the sediment series with a length of 560 cm–
accumulated during the last 7500 years–do not differ much in terms of grain composi-
tion, sediment samples are fairly homogeneous. Only the lake sediment samples of
the medieval-modern era differed from each other, as well as the ones that indicating
erosion. The peat samples formed a completely overlapping set in terms of particle
composition. Sphagnum moss peat and herbaceous peat samples are completely
identical in terms of sedimentology, they can only be distinguished based on their
vegetation content.

(2). Among the examined elements, two groups can be distinguished well. The one
derived from organic material (P, S, Ca, LOI550, LOI950) and another one from
minerogenic material (Si, Al, K, Mn, Fe, Ti, Zr, Cr, Rb, Sr, LOIres, MS), however, some
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elements are transported by vegetation (K, Cr, Rb) and groundwater (Fe, Mn) within
the peat.

(3). Summarizing our geohistorical studies, erosion phases can be detected at the level
of 12 cultures, and these observations (and the disturbance of the forest vegetation)
can also be seen in the case of similar studies about the prehistoric horizons of
the Subcarpathian region of the Northern Carpathians [91]. In addition, significant
differences between the human impacts can be noted for the last 2000 years due to
the different history and demography of the two areas.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/quat4020018/s1, Figure S1. The elemental distribution at Round Lake compared to LOI (ash,
LOI550 and carbonate content) from Tapody et al. [3]. Figure S2. The elemental distribution at Round
Lake calculated to oxid forms plotted against cal BP year. Figure S3. Percentage pollen diagram of
selected arbor and non-arbor pollen taxa in the Holocene profile plotted against calibrated BP years.
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8. Tapody, R.O.; Gulyás, S.; Törőcsik, T.; Sümegi, P.; Molnár, D.; Sümegi, B.; Molnár, M. Radiocarbon-dated peat development:

Anthropogenic and climatic signals in a Holocene raised mire and lake profile from the Eastern part of the Carpathian Basin.
Radiocarbon 2018, 60, 1215–1226. [CrossRef]
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ősláp hipotézis). Jósa András Múzeum Évkönyve 1993, 33–35, 335–366. (In Hungarian)
105. Sümegi, P. The results of paleoenvironmental reconstruction and comparative geoarcheological analysis for the examined area. In

The Geohistory of Bátorliget Marshland; Sümegi, P., Gulyás, S., Eds.; Archaeolingua Press: Budapest, Hungary, 2004; pp. 301–348.
106. Sümegi, P. Régészeti Geológia—Tudományos Interdiszciplinák Találkozása [Archaeogeology—Encounter of Scientific Interdisci-

ples]. Habilitation Thesis, Szegedi Tudományegyetem, Szeged, Hungary, 2003. (In Hungarian)
107. Dániel, P. Geochemical analysis. In The Geohistory of Bátorliget Marshland; Sümegi, P., Gulyás, S., Eds.; Archaeolingua Press:

Budapest, Hungary, 2004; pp. 52–57.
108. Engström, D.R.; Wright, H.E., Jr. Chemical stratigraphy of lake sediments as a record of environmental change. In Lake Sediments

and Environmental History. Studies in Paleolimnology and Paleoecology; Haworth, E.Y., Lund, J.W.G., Eds.; Leicester University Press:
Leicester, England, 1984; pp. 11–67.

109. Magyari, E.; Jakab, G.; Rudner, E.; Sümegi, P. Palynological and plant macrofossil data on Late Pleistocene short-term climatic
oscillations in NE-Hungary. Acta Palaeobot. Suppl. 1999, 2, 491–502.

110. Magyari, E.; Jakab, G.; Sümegi, P. Holocene vegetation dynamics in the Bereg Plain, NE Hungary—The Báb-tava pollen and plant
macrofossil record. Acta GeogrDebrecina 2008, 42, 39–56.
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