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Abstract: The Middle Pleistocene fluvial channel site of the Upper Fossil-bearing Interval at Mata
Menge in the So’a Basin, Flores, Indonesia, has yielded the earliest fossil evidence for Homo floresiensis
in association with stone artefacts and fossils of highly endemic insular fauna, including Stegodon,
giant rats, crocodiles, Komodo dragons, and various birds. A preliminary taphonomic review of the
fossil material here aimed to provide additional context for the hominin remains in this bonebed.
Analysis was performed on two subsets of material from the same fluvial sandstone layer. Subset 1
comprised all material from two adjacent one-metre square quadrants (n = 91), and Subset 2 all
Stegodon long limb bones excavated from the same layer (n = 17). Key analytical parameters included
species and skeletal element identification; fossil size measurements and fragmentation; weathering
stages; bone fracture characteristics; and other biological and geological bone surface modifications.
Analysis of Subset 1 material identified a highly fragmented assemblage with a significant bias
towards Stegodon. A large portion of these bones were likely fractured by trampling prior to entering
the fluvial channel and were transported away from the death-site, undergoing surface modification
causing rounding. Subset 2 material was less likely to have been transported far based on its limited
susceptibility to fluvial transport. There was no significant difference in weathering for the long limb
bones and fragments, with the highest portion exhibiting Stage 2 weathering, indicating that prior
to final burial, all material was exposed to prolonged periods of surface exposure. Approximately
10% of all material have characteristics of fracturing on fresh bone, contributing to the taphonomic
context for this bonebed; however insufficient evidence was found for anthropogenic modification.

Keywords: taphonomy; Stegodon; Middle Pleistocene; hominins; Flores; fluvial; bonebed; Mata
Menge; southeast Asia

1. Introduction

Extensive excavations from the early Middle Pleistocene archaeological site of Mata
Menge, located near the northwestern margin of the So’a Basin, a ~400 km2 depression
on the island of Flores, Indonesia (Figure 1), have yielded in situ lithic artefacts and
fossil vertebrate remains. The island is situated between the zoogeographical boundaries
recognised as Wallace’s Line in the west and Lydecker’s Line in the east, in the region
known as Wallacea. Flores has remained isolated from other landmasses even during
periods of maximum low sea levels. The resultant low diversity fossil fauna was first
examined in the 1950s when large fossilised bones, exposed by erosion, were excavated
by Father Theodore Verhoeven, a priest affiliated with a nearby seminary, and identified
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as Stegodon trigonocephalus florensis [1,2]. The continued work for more than two decades
uncovered a large assemblage of Stegodon remains, other vertebrate fauna, and stone
artefacts at various localities, including Mata Menge (Figure 1), the site that is the focus
of our paper [3–5]. Analysis of the abundant fossil material allowed the attribution of
the Flores Stegodon to a distinct species, Stegodon florensis, which is smaller than Stegodon
trigonocephalus from Java [6]. During the 1980s and 1990s, an Indonesian-Dutch team
carried out investigations into the claims of Verhoeven that hominins had colonised Flores
during the Pleistocene [5,7]. Since 1997, systematic excavations at Mata Menge and other
sites have occurred, leading to chronometric age determinations and further validation
of Verhoeven’s findings, including details on the endemic insular fauna associated with
stone artefacts embedded in stratigraphy representing over a million years [3,8–14]. Clear
evidence for hominin occupation on Flores has been identified at various sites, including
at two stratigraphic levels at Mata Menge, separated by 10 m of stratigraphy. A Zircon
Fission-track age of 0.80 ± 0.07 Ma for the Lower Fossil-bearing Interval (LFI) has been
reported [13]. A more recent palaeomagnetic study [15] revealed that the LFI has a normal
polarity and corresponds with the base of the Brunhes Normal Epoch. The LFI is therefore
thought to be slightly younger than the Matuyama-Brunhes boundary at 0.773 Ma, which is
within the error range of the ZFT age. The Upper Fossil-bearing Interval (UFI) is bracketed
by ages of 0.78 and 0.65 Ma [10,13,15]. At the nearby site Wolo Sege, stone artefacts occur
directly below a widespread pumice tuff layer, dated at 1.0 Ma [9] and, combined with the
evidence from Liang Bua [16], indicates hominin occupation on the island for at least one
million years.

However, only limited detailed taphonomic analysis of all fossils located in the LFI
and UFI has occurred. A taphonomic study on Stegodon fossils from the LFI suggested
that the Stegodon bones had been affected by fluvial transport [4]. Two additional studies
focusing on avian remains from the LFI found several bone surface modifications, including
parallel grooves, spindle-like striations, and rows of pits, but no unambiguous evidence
for modifications made by hominins [17,18]. Taphonomic observations and analysis of
the fossilised material, as well as the study of sedimentological features, can improve the
interpretation of the context and significance of the hominin activities.

As mentioned, to date, no proof has been found that the Mata Menge hominins were
involved in scavenging or hunting activities of fauna despite the co-occurrence of stone
artefacts [10,17]. In 2014 the UFI yielded a fragment of mandible and six isolated teeth
from at least three small-bodied hominins [14], which consolidated previous evidence for
the presence of hominins at Mata Menge. These fossils established Mata Menge as the
site containing the oldest hominin remains on Flores that likely represent the ancestral
population of Homo florensiensis [14], the small-bodied hominin from the Late Pleistocene
of Liang Bua cave, which is located 70 km WNW of Mata Menge. Here we present a
preliminary taphonomic analysis of the Mata Menge vertebrate fossils to clarify some
of the taphonomic processes that have contributed to the formation of the bonebed and
investigate potential evidence of hominin modification of the Stegodon bones.
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Figure 1. (A) Location of Flores (red rectangle) within the Indonesian archipelago. The orange line 
represents Wallace’s Line; the yellow line represents Lydekker’s Line; the white line connecting 
them represents the southern boundary of Wallacea [19]. (B) Location of the Indonesian archipelago. 
(C) Location of the So’a Basin (blue rectangle) on Flores, (D) Location of Mata Menge (red star) and 
Liang Bua (orange star) in the So’a Basin. (Map made with GeoMapApp (www.geomapapp.org)/CC 
BY (accessed on 15 February 2021)). 

1.1. Geological Context 
The stratigraphic sequence that fills the So’a Basin consists of a basement substrate 

known as the Ola Kile Formation (OKF) deposited by volcanic events with a total thick-
ness of at least 100 m [4,9]. A fission track age of 1.86 ± 0.12 Ma for a tuff located at the top 
of OKF provides maximum age for the basin-fill sequence [13]. The Ola Bula Formation 
(OBF) sits unconformably on the slightly dipping OKF, with a maximum thickness of 120 
m of volcaniclastic, fluviatile, and lacustrine deposits [10] (Figure 2). 

Figure 1. (A) Location of Flores (red rectangle) within the Indonesian archipelago. The orange line
represents Wallace’s Line; the yellow line represents Lydekker’s Line; the white line connecting
them represents the southern boundary of Wallacea [19]. (B) Location of the Indonesian archipelago.
(C) Location of the So’a Basin (blue rectangle) on Flores, (D) Location of Mata Menge (red star) and
Liang Bua (orange star) in the So’a Basin. (Map made with GeoMapApp (www.geomapapp.org)/CC
BY (accessed on 15 February 2021)).

1.1. Geological Context

The stratigraphic sequence that fills the So’a Basin consists of a basement substrate
known as the Ola Kile Formation (OKF) deposited by volcanic events with a total thickness
of at least 100 m [4,9]. A fission track age of 1.86 ± 0.12 Ma for a tuff located at the top of
OKF provides maximum age for the basin-fill sequence [13]. The Ola Bula Formation (OBF)
sits unconformably on the slightly dipping OKF, with a maximum thickness of 120 m of
volcaniclastic, fluviatile, and lacustrine deposits [10] (Figure 2).

www.geomapapp.org
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Figure 2. (A) Stratigraphy and chronology of the main fossil-bearing intervals at Mata Menge (Up-
per Fossil-bearing Interval, UFI, and Lower Fossil-bearing Interval LFI) as well as several basin-
wide key marker tephra beds. (B) Photos and line drawings of the excavation baulks of Sector 32C 
(see also Materials and Methods for a plan view) in the UFI. The upper photo shows the view to-
wards the SW corner of Sector 32C in 2015 when the up to ~30 cm thick sandstone lens that consti-
tutes the main bonebed in the UFI (Layer II) was partly exposed. Layer II is overlaid by a sequence 
of massive, clay-rich mudflows (Layers Ia–e). Layer II has an erosional base and is deposited on top 
of a reddish paleosol (Layer III) with an irregular top surface, an elevated part of which is exposed 
in the corner. The line drawing in the middle shows the profiles of the south and west baulks in 
2016 when Layer II was fully exposed in Sector 32C. (C) The bottom photo shows a detail of the west 
baulk. Two Stegodon pelvis bones and a humerus diaphysis are partly embedded in the sandstone 
of Layer II and are covered by the base of a 10 cm thick mudflow, Layer I-e, which contains abundant 
intraclasts eroded from the underlying strata and small fossils. Layer 1-d is not developed in Sector 
32C, and Layer 1-e is here directly overlain by the massive mudflow unit Layer 1-c. 

The OBF basal Tuff Member is characterised by an alternation of felsic pumice mass-
flow layers and air-fall tephras, reworked tuffaceous silts, sandstones, and conglomerate 
lenses [13,20]. This part of the sequence was deposited by infrequent volcanic events and 
braided river systems, with minor lacustrine/palustrine conditions. However, deposition 
was interrupted by long periods of non-deposition, as evidenced by the development of 
pronounced palaeosols [4,10]. A widespread marker bed located within this basal Tuff 
Member named the Wolo Sege Ignimbrite has been 40Ar/39Ar dated at 1.01 (±0.02) Ma 
[9,10]. Only a single bonebed at the site Tangi Talo has been discovered within the Tuff 
Member, whereas stone artefacts have been shown to occur in fluvial conglomerates and 
associated overbank deposits just below the Wolo Sege Ignimbrite, providing a minimum 
age of ~1 Ma for the presence of hominins on the island [9]. The fauna from the bonebed 
at the locality Tangi Talo is characterised by few vertebrate taxa, with a giant tortoise, a 1 
m tall pygmy proboscidean (Stegodon sondaari), and Komodo dragons (Varanus komodoen-
sis), indicative of insular conditions [6,9,21]. 

The middle OBF Sandstone Member is characterised by sheet flow deposits, tuffa-
ceous fluvial sandstones and siltstones, mudflow deposits, conglomerates, and a few 

Figure 2. (A) Stratigraphy and chronology of the main fossil-bearing intervals at Mata Menge (Upper
Fossil-bearing Interval, UFI, and Lower Fossil-bearing Interval LFI) as well as several basin-wide
key marker tephra beds. (B) Photos and line drawings of the excavation baulks of Sector 32C (see
also Materials and Methods for a plan view) in the UFI. The upper photo shows the view towards
the SW corner of Sector 32C in 2015 when the up to ~30 cm thick sandstone lens that constitutes
the main bonebed in the UFI (Layer II) was partly exposed. Layer II is overlaid by a sequence of
massive, clay-rich mudflows (Layers Ia–e). Layer II has an erosional base and is deposited on top of a
reddish paleosol (Layer III) with an irregular top surface, an elevated part of which is exposed in the
corner. The line drawing in the middle shows the profiles of the south and west baulks in 2016 when
Layer II was fully exposed in Sector 32C. (C) The bottom photo shows a detail of the west baulk. Two
Stegodon pelvis bones and a humerus diaphysis are partly embedded in the sandstone of Layer II and
are covered by the base of a 10 cm thick mudflow, Layer I-e, which contains abundant intraclasts
eroded from the underlying strata and small fossils. Layer 1-d is not developed in Sector 32C, and
Layer 1-e is here directly overlain by the massive mudflow unit Layer 1-c.

The OBF basal Tuff Member is characterised by an alternation of felsic pumice mass-
flow layers and air-fall tephras, reworked tuffaceous silts, sandstones, and conglomerate
lenses [13,20]. This part of the sequence was deposited by infrequent volcanic events and
braided river systems, with minor lacustrine/palustrine conditions. However, deposition
was interrupted by long periods of non-deposition, as evidenced by the development
of pronounced palaeosols [4,10]. A widespread marker bed located within this basal
Tuff Member named the Wolo Sege Ignimbrite has been 40Ar/39Ar dated at 1.01 (±0.02)
Ma [9,10]. Only a single bonebed at the site Tangi Talo has been discovered within the Tuff
Member, whereas stone artefacts have been shown to occur in fluvial conglomerates and
associated overbank deposits just below the Wolo Sege Ignimbrite, providing a minimum
age of ~1 Ma for the presence of hominins on the island [9]. The fauna from the bonebed at
the locality Tangi Talo is characterised by few vertebrate taxa, with a giant tortoise, a 1 m
tall pygmy proboscidean (Stegodon sondaari), and Komodo dragons (Varanus komodoensis),
indicative of insular conditions [6,9,21].

The middle OBF Sandstone Member is characterised by sheet flow deposits, tuffaceous
fluvial sandstones and siltstones, mudflow deposits, conglomerates, and a few mafic
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tuff layers [10,11,22]. This unit was deposited by a fluvial system and includes channel
deposits, overbank deposits, and mudflows, and again frequently overprinted palaeosols.
Compared with the basal Tuff Member, a decrease in volcanic events was noted during
the deposition of this member [4]. More frequent fossil beds are found in the sandstone
member, commonly associated with stone artefacts. Zircon fission-track samples collected
in the Sandstone Member date the deposits between 0.88 ± 0.04 Ma and 0.70 ± 0.07 Ma,
aligning closely with 40Ar/39Ar dated samples at 0.81 ± 0.04 [10,12,13]. Both fossil-bearing
intervals near Mata Menge occur in this stratigraphic unit.

The OBF is capped by the Limestone Member featuring thin-bedded micritic freshwa-
ter limestones, thin-bedded silty clay layers, and numerous predominantly mafic air-fall
tephra layers [10,20]. Deposition in this member was dominated by lacustrine conditions
and volcanic ash influxes [4]. A tephra sample from the top of this member gave an
40Ar/39Ar age of 0.51 ± 0.03 Ma [10] and another sample from the base of this member,
taken at 14 m above the UFI, provided an 40Ar/39Ar age of 0.65 ± 0.02 Ma [10], in accor-
dance with two zircon fission-track samples from within the member that returned ages of
0.68 ± 0.07 Ma and 0.65 ± 0.07 Ma. Along the basin margins, the top of the OBF is overlaid
by volcaniclastics from volcanoes surrounding the basin, some of which are still active [20].

1.2. Stratigraphic Context for Mata Menge

The Lower Fossil-bearing Interval (LFI), bracketed by a maximum age of 0.78 Ma based
on palaeomagnetic evidence and a minimum age of 0.81 Ma [15,23], contains impoverished
vertebrate fauna as well as in situ stone artefacts. The up to 2.2 m thick LFI represents
a fining-upward sequence consisting of an amalgamated complex of sheets and lenses
of sandstone alternating with tuffaceous siltstones and clay-rich mudflows. While no
fossilised hominin remains, or evidence for hominin butchery practice have been identified
from the LFI, simple stone technology excavated from this interval provided proxy evidence
for the presence of hominins [4]. A taphonomic analysis on the Stegodon bone assemblage
from the lower interval indicated that fluvial transport had removed smaller and more
easily transportable bones from the assemblage, especially from the high-energy erosional
basal sandy layer [4]. Additional excavations in the lower interval did not yield any
hominin remains, and during 2013 fieldwork, excavations were expanded to a sandstone
layer 10 m higher in the stratigraphic sequence, to what has been referred to as the c.
100,000 years younger Upper Fossil-bearing Interval (UFI) [10]. The fossil-bearing layer
here comprises a less than 30 cm thick sandstone lens.

The sedimentology of the Upper Fossil-bearing Interval (UFI) has been described
to some extent in a previous paper [10]. The fossils are concentrated in a sandstone
layer (Layer II) with an erosive base, which fills in an irregular topography of a well-
consolidated palaeosol (Layer III; Figure 2). Layer II has a maximum thickness of ~35 cm
and wedges out towards the western margin of the site. Layer II consists of medium-coarse,
poorly sorted sand with scattered rounded pebbles at the base. The average maximum
diameter of the 15 largest pebbles is 91 mm (the largest pebble had a diameter of 115 mm).
Using a Hjullström diagram, this would indicate a current transport velocity of over
100 cm/s to allow transport of such pebbles to the site. Layer II is fining upwards to
medium to fine-grained sand at the top, suggesting decreasing flow velocity when the layer
was deposited. Internal sedimentary structures are generally absent apart from vaguely
preserved parallel laminations at the basal part of the layer. Layer II is covered by a 6.5 m
thick series of massive clay-rich mudflow deposits (Layers I-a to I-f), which also contain
few small fossil bone fragments and rounded mud intraclasts at the base. This sequence
has been interpreted as the deposit of a small stream on a distal volcanic apron, cutting into
consolidated palaeosol deposits, and at some stage rapidly covered by a series of mudflows,
which most likely originated from a caldera structure with a lake directly north of Mata
Menge [10]. It is notable that articulated fossils are very rare and that many Stegodon fossils
show signs of rounding by fluvial transport. Some of the larger Stegodon fossils are half
embedded in the fluvial sandstone and are covered by the mudflow (see Figure 2, lower
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photo). For the assemblage studied here, only fossil specimens from the sandstone Layer II
were included in the analysis.

1.3. Location and Fauna

The isolation of Flores within the zoogeographical borders of Wallacea during maxi-
mum glacial events throughout the Pleistocene restricted access to the island to animals
that could either fly, raft, or swim there (Figure 1) [7]. Endemic vertebrate fauna excavated
from both levels at Mata Menge is restricted to Stegodon florensis, crocodile, Varanus ko-
modoensis, a single giant rat species Hooijeromys nusatenggara, various types of birds, and
frogs [4,10,17,24]. S. florensis is larger than S. sondaari from the underlying Tuff Member and
represents a new immigrant to Flores, replacing S. sondaari. The Mata Menge S. florensis
has been classified as a separate chrono-subspecies that was ancestral to Stegodon florensis
insularis from the Late Pleistocene of Liang Bua [25].

From the thousands of fossils already excavated on Flores, no evidence for the presence
of large mammalian predators has been found to date. Between 2010 and 2019, over
33,000 fossils were unearthed from excavation sites across the So’a Basin [26]. Of the
fossil assemblage excavated from the UFI at Mata Menge until 2015, the largest portion
comprised unidentified bone fragments (~44%), while the remainder of the fossils could
be identified to the class taxonomic level. These relative proportions changed little after
additionally incorporating the UFI fossils excavated during the period 2016–2019, totalling
15,535 specimens, which can be attributed as follows: unidentifiable fragments (42.9%);
Stegodon (33.9%); Murine rodents (19.0%); Crocodilia (2.0%); Varanidae (0.68%); other
Reptilia (0.7%); Aves (0.56%); Anura (0.28%); and Hominin 0.06% [26].

The bonebed at Mata Menge is important for interpreting formation processes of
bonebeds that have no modifications made by mammalian carnivores. There are many
continental examples of proboscidean bonebeds that have been modified by mammalian
carnivores to various degrees, largely through disarticulation and dispersal of carcasses and
bone surface modifications such as teeth punctures or gnawing on bone ends [27–30]. At
Mata Menge, reptiles were the primary faunal predators. Reptilian predators can remove
bones completely from the assemblage through digestion [31,32], or residual bones may
retain bone surface modifications. Some researchers have suggested that the V-shaped
linear grooves made by crocodile teeth cannot always be distinguished from those made
by stone tools [33] unless advanced statistical tests are applied [34].

The question of whether hominins were involved with the accumulation of faunal
remains here or what other agents led to their preservation remains unresolved at this
time. Large numbers of Stegodon fossils, some with reported cutmarks, and evidence
of anthropogenic bone accumulation of insular fauna attributed to H. floresiensis were
identified at Liang Bua, revealing substantiation of hominin modification of Stegodon
remains during the Late Pleistocene [35]. Whether hominins used stone artefacts with
similar technology identified in both locations, which are separated in time by ~600,000
years [8,10], to hunt, scavenge/butcher, and consume Stegodon is one of the key motivators
of this research. Stegodon, the largest fauna element on Flores during the Middle Pleistocene,
could have provided substantial amounts of meat to hominins, which may have contributed
to the decision to hunt this species. However, evidence for meat consumption by the
Early to Middle Pleistocene hominins has so far not been uncovered at Mata Menge. In
order to begin to interpret the material from the UFI at Mata Menge, analysis for this
research was focused on identifying the presence of fractures on fresh bones, bone surface
modifications and subsequently identifying the extent of surface exposure and possible
fluvial transportation of the bones, processes that may have obliterated bone surface
modifications.

1.4. Taphonomic Processes

Biological processes, including modifications made by hominins for food procurement
and butchery [8,36–39], the use of bones as tools [40,41], and anthropogenic bone accumula-
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tion [25,42], have characteristics recognisable through the analysis of bone fracturing, bone
surface modification, and location of bones in a bonebed. Similarly, faunal modifications
are identified by characteristics on the bones that are associated with predation and feeding.
Vertebrate tooth marks [31,34,43,44], disarticulation patterns such as those from large rep-
tiles [34,43], and even the absence of bone material from the site when bones are completely
removed through digestive corrosion [34], can provide additionalcontext and contribute to
the identification of vertebrate modification of bones. Additionally, proboscidean assem-
blages may include taphonomic modifications through the process of trampling. Based
on observations of modern elephants, Stegodon are likely to have repositioned bones of
deceased animals with their feet and trunks. The fracturing of complete elements and
increased fragmentation through continued trampling on the bones is highly likely to
have occurred. Fully or partially submerging of bones below the ground surface due to
trampling may have caused variable exposure to weathering for both the whole carcass
as well as the individual skeletal elements. This is an additional taphonomic processing
possibility [45].

Non-biological taphonomic processes likewise have characteristic features that are
observable on fossilised material from bonebeds. Significantly for the Upper Interval at
Mata Menge, evidence to support deposition by a small sinuous stream tributary identified
by the occurrence of in situ water-worn volcanic pebbles, as well as locally faint parallel
laminations in the lower part of Layer II, was previously reported [10]. Bones deposited
in fluvial systems experience characteristic modifications, including bone rounding and
abrasion of the bone surface, causing loss of anatomical features and other taphonomic
surface modifications [46–48]. Bones entering a fluvial system are also susceptible to
transport potential based on the type and size of element or body part [47–51], the intact
nature of the bone [52], and the fluvial velocity [53]. Analysis of the extent of weathering
on the bone while on the surface was performed to evaluate the consistency of weathering
from across the site as an indicator of the amount of exposure the fossils experienced prior
to either partial or final burial [49,54–56]. All the potential pre-burial taphonomic processes
at Mata Menge are thought to have ceased abruptly after 6.5 m thick mudflows sealed off
the sandstone layer and the bones that were present on the surface at the time.

2. Materials and Methods
2.1. Materials

Material from this preliminary study was excavated between 2013 and 2018 by a
team of Indonesian and Australian researchers and is stored at the Geological Museum
Bandung. Two representative subsets were selected for detailed analysis. Subset 1 included
all vertebrate fossils excavated from two adjacent one-metre quadrants on the eastern
margin of a 3-metre-wide stream gully infill (Layer II, quadrants O5-O6; see Figure 3). At
this sampling spot, Layer II laps on against an elevated crest of the erosional subsurface
palaeosol (Layer III), and three of the five hominin fossils that were not recovered during
wet sieving, were retrieved from this stream gully infill, including a premolar from quadrant
O6. Therefore, this area was chosen for the Subset 1 sample because the taphonomic
analysis might provide clues as to why the hominin fossils were concentrated in this
gully. The sample also contains fossils of all the most abundant taxa at Mata Menge
and is representative of the fauna present in Layer II. Subset 2 included all Stegodon long
limb bones and limb bone fragments excavated from Layer II of the Upper Interval at
Mata Menge (n = 17). Although axial skeletal elements, ribs, and bones of the manus
and pes are present in the assemblage, only the long limb bones (femur, tibia, fibula,
humerus, radius, ulna) were chosen because certain types of butchery marks and indicators
of hominin food procurement can be preserved on these representative proboscidean
skeletal elements [41,57–61]. Accessing the medullar cavity for the consumption of highly
nutritious marrow has been claimed at other proboscidean kill sites, and such activities
could have left diagnostic fresh bone impact marks and fracture patterns on the long
limb bones [60–62].
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Figure 3. Plan view of the sectors of Excavation 32 in the Upper Fossil-bearing Interval at Mata
Menge. Green circles indicate locations of Subset 2 long limb bones used in this study; red crosses
indicate hominin fossil locations; grey crosses represent locations of all fossil specimens. The blue
dotted line indicates the western termination of Layer II, where it pinches out against the elevated
substratum of Layer III. This has been interpreted as the lateral bank of the fluvial stream channel.
The black dotted rectangle indicates the location of the Subset 1 assemblage. Blue squares represent
1 m2. Note that the northern half of Sector 32A and Sector 32B have been excavated to the base of
Layer II, hence showing less dense spacing between finds. The area indicated with a red dashed line
represents an elevated part of the eroded substratum of Layer III, where Layer II is thinner or absent,
thus showing fewer fossils. Grey areas were not excavated.

2.2. Taphonomic Analysis

Identification of fossilised material was undertaken at the Geological Museum Ban-
dung using E. maximus and E. hysudrindicus material for comparison. Fragments of bone
with a cortical thickness greater than 4 mm were examined for characteristic crocodilian
growth rings [63] and, if absent, the fragment was attributed to Stegodon. Enamel and tusk
fragments were identified by their colour, texture, and shape, distinguishing them from
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fragmented bone. Stegodon enamel, usually thicker than 1 mm, has a translucent, double-
layered, and wrinkled appearance [6] and is usually easy to distinguish from tooth enamel
of other vertebrates, even tiny fragments. Stegodon tusk consists entirely of dentine, which
is not covered with enamel but has a regular intersecting arcuate pattern in cross-section,
referred to as Schreger Bands [64], which enabled macroscopic identification.

All fossils were examined macroscopically and, where required, with a handheld
lens at 10× magnification. A caliper was used to take size measurements of all materials.
The fossils of Subset 1 were measured along the longest length of the fossil to determine
the Fragmentation Size Class [59]. The extent of fragmentation within a bonebed can be
measured by comparing the number of Whole Bones and Part Bones with the remaining
number of fragmented bones in the bonebed. Whole Bones are complete and unbroken
(including complete teeth), whereas Part Bones represent fossils that constitute more than
half of a recognisable bone element [58]. For example, a proximal portion of a long limb
bone that was at least half of the original element was classed as a Part Bone. All material
was assigned to one of ten size classes, based on the completeness of the bone element or
its length (>10 mm, 10–20 mm, 20–30 mm, 30–40 mm, 40–50 mm, 50–60 mm, 60–70 mm,
70–80 mm, Part Bone, and Whole Bone).

Bone fractures were compared with descriptions defined by Outram [65] and were
allocated a Fracture Freshness Index score of FFI 0–6. Although this analysis technique
was not developed using proboscidean material, successful application has been observed
on several large mammal species, including a preliminary review of mammoth mate-
rial [66–71]. Criteria to define the FFI are Fracture Angle, Fracture Outline, and Fracture
Texture, and were based on visual examination. For each of these three criteria, a score
of 0, 1, or 2 was allocated for each specimen. A score of 0 was given if the fossil had only
features indicative for fresh bone fracturing, a score of 1 if mixed fresh and unfresh fracture
characteristics were present on a single specimen, and a score of 2 if only unfresh fractures
could be determined. Consequently, a combined minimum FFI score of 0 would indicate all
fractures occurred while the bone was fresh; alternatively, a maximum score of 6 indicates
all fractures occurred while the bone was dry or fossilised.

Any fractures or surface modification attributed to sullegic or trephic processes were
not included in FFI (or other palaeontological) analysis but were recorded separately. These
modifications were clearly identifiable due to their characteristic fracturing patterns on
fossilised material, usually following existing drying cracks and as a result of vibrations
resulting from hammers and chisels used to break through the cemented sandstone in
which the fossils were embedded. This process then exposed underlying material that was
typically a different colour when compared with the outside of the fossil or old fractures.

All bones from both subsets were allocated a Stage of Weathering based on their
physical characteristics described by Behrensmeyer [54], Stage 0–5:

Stage 0—No signs of cracking or flaking, bone may have tissue attached;
Stage 1—Cracking usually seen parallel to fibre structure, also mosaic cracking;
Stage 2—Outer bone show flaking, long thin to extensive flaking;
Stage 3—External bone patchy to mostly removed;
Stage 4—Coarsely fibrous rough bone surface, cracks well opened; or
Stage 5—Bone is fragile and easily broken, loss of original bone shape possible.

Other surface modifications, including biting and gnawing marks, dynamic impact
marks, striation marks, corrosion, and abrasive rounding, were noted as absent or present.
Residual sediment attached to Subset 1 fossils was macroscopically assessed for and
allocated into very coarse to coarse, medium, or fine-grained to very-fine-grained sand
categories according to the Wentworth Scale.

3. Results
3.1. Subset 1-Assemblage

The Subset 1 material attributed to Stegodon was 78 out of 91 (86%) fossils. The
second-highest portion was Murinae (9%), followed by Crocodilus (4%) and hominin (1%).
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Approximately 54% of the highly fragmented Stegodon material was represented by uniden-
tifiable bone fragments, where the provenance of the skeletal element was impossible to
determine. The next highest portion of identifiable Stegodon fragments were very small
fragments of tusk (21%) and tooth enamel (11%), but no complete or partially complete
Stegodon tusks or teeth were identified from the subset (although scattered complete dental
elements are present in Layer II). The remaining Stegodon fragments were small fragments
of costa (5%), cranium (5%, consisting of cranial fragments characterised by thin-walled
pneumatic bone tissue), and a single complete hyoid bone. Of the Murinae fossil material,
74% were either tooth or long bone fragments.

3.1.1. Fragmentation Analysis

Of the 91 fossils in Subset 1, extensive fragmentation was identified (94%). The 6%
that was not fragmented included Part Bone classified teeth from Crocodilus and Murinae,
as well as a single complete Stegodon hyoid bone. The majority of fragments were in
the 10–20 mm class, followed by the 20–30 mm class and the <10 mm class, respectively.
Combined, these classes represented 86% of all the fossils from Subset 1 and, additionally,
75% of fragments under 30 mm in length were attributed to the largest animal in the
bonebed, Stegodon, based on the thickness of the cortical bone (Figure 4).
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Figure 4. Results for analysis of the Fragmentation Classes of bone complete elements and bone
fragments for Subset 1 (n = 91 NISP). Classes up to 80 mm are bone fragments. Part bone is more than
half the original bone, and whole bone is entirely unbroken bone element. Portions of the column in
various colours are representative of each identified species.

3.1.2. Weathering

None of the Subset 1 material was found to be in fresh or unweathered condition. The
highest portion of fossils was Stage 2 weathering (56%), followed by Stage 1 (21%) and
Stage 3 (16%); the remaining (3%) were each Stage 4 and Stage 5 (Figure 5). A significant
difference was found ((χ2 (4,91) = 13.135, p = 0.01, n = 91) when attributing fragmented
material to a skeletal element for less weathered fragments, indicating that an increase
in weathering on fossils reduces the likelihood of it being identified. No fragment from
Subset 1 was identified to a skeletal element in Stage 4 or Stage 5 weathering.
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3.1.3. Bone Surface Modifications

No evidence of any biting or gnawing marks on the material was observed. No
dynamic impact marks were observed on bone material that was likely to have been
anthropogenic. The three incidents of crush style fractures had characteristics consistent
with dry bone fracturing, and therefore are likely to have been caused by trampling. There
were three Stegodon bone fragments with one or more linear surface marks. One costa
fragment in weathering Stage 1 had multiple curved surface scraping style marks as well
as two perpendicular parallel marks that contained in situ matrix within them (Figure 6).
No evidence of any digestive corrosion was seen on any material. Moderate to heavy black
staining penetrating the fossil bone surface up to 5 mm was seen on 55% of all material.
These findings suggest that the bones have been exposed to dissolved manganese minerals
in the water in which they were (intermittently) submerged [17]. There were incidents
of dissolution circular pitting seen on the hominin premolar and some fossil surfaces
(Figure 7). Some fragments presented with completely rounded edges, likely the result of
abrasion during fluvial transportation, but further microscopic analysis would be required
to confirm this (Figure 8). Macroscopic grain size assessment of the residual matrix on the
Subset 1 fossils showed that 84% of the fossils had a matrix consisting of fine-grained sand,
indicating that these fossils originated from the top of Layer II. A total of 14% was poorly
sorted coarse-grained sand, and the remaining 2% was medium-grained sand.
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From the Subset 2 Stegodon long limb bone analysis (n = 17), 3 bones were complete 
elements, 10 were classified as Part Bones, consisting of at least half of the original ele-
ment, and the remaining 4 were bone fragments. No elements from this subset were lo-
cated in articulation. The most abundant element was the humerus, with three left and 
three right-side identified. There was a single complete humerus, and the remaining five 
were Part Bones. One left and one right complete femur was found; however, these were 
from different individuals as there was more than a 10 cm difference in length. Un-
published data from this site based on the identification of dental elements suggest an 
MNI of at least 35 individuals. The loss of postcranial material through transportation and 
fragmentation, following from the analysis of Subset 1 from this site, is therefore likely. 

3.2.2. Weathering 
From the weathering analysis of Subset 2, no fossil was found completely unweath-
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(28%), both Stage 1 and Stage 4 (11%), and the remaining was Stage 5 (6%). In order to 
refine the analysis of weathering on the bone only material, enamel and tusk fragments 

Figure 7. Examples of dissolution circular pitting from Subset 1 assemblage. (A) Fossil ID MM14-F149 small fossilised
Stegodon tusk fragment showing irregular dissolution pattern. (B) Fossil ID SOA-MM5, Hominin premolar with dissolution
circular pitting (orange arrow) (Photo source: Kaifu 2016). (C) Fossil ID MM14-F1316, Stegodon bone fragment with multiple
circular dissolution pits (orange arrows).
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(A) Fossil ID MM14-F348, Stegodon bone fragment. (B) Fossil ID MM14-F487, Stegodon bone fragment, (C) Fossil ID
MM14-F1413, Stegodon bone fragment.

3.2. Subset 2-Long Limb Bones
3.2.1. Identification

From the Subset 2 Stegodon long limb bone analysis (n = 17), 3 bones were complete
elements, 10 were classified as Part Bones, consisting of at least half of the original element,
and the remaining 4 were bone fragments. No elements from this subset were located
in articulation. The most abundant element was the humerus, with three left and three
right-side identified. There was a single complete humerus, and the remaining five were
Part Bones. One left and one right complete femur was found; however, these were from
different individuals as there was more than a 10 cm difference in length. Unpublished
data from this site based on the identification of dental elements suggest an MNI of at least
35 individuals. The loss of postcranial material through transportation and fragmentation,
following from the analysis of Subset 1 from this site, is therefore likely.

3.2.2. Weathering

From the weathering analysis of Subset 2, no fossil was found completely unweathered
(Stage 0 weathering). The highest proportion was Stage 2 (44%), followed by Stage 3
(28%), both Stage 1 and Stage 4 (11%), and the remaining was Stage 5 (6%). In order to
refine the analysis of weathering on the bone only material, enamel and tusk fragments
from the Subset 1 data set were removed, and statistical analysis was performed. There
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was no statistical difference identified between Subset 1 and Subset 2 for weathering
(χ2

(4,74) = 4.832, p = 0.30, n = 74). There was no statistical difference identified for Stegodon
only bone material between Subset 1 and Subset 2 for weathering (χ2(4,68) = 5.053, p = 0.28,
n = 68). Two incidences of differential weathering were observed on the proximal and
distal ends of two left ulnae from Subset 2. Both bones were Stage 2 proximally and Stage
4 or Stage 5 distally (Figure 9).
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Figure 9. Differential weathering on two left ulna bones. Both proximal ends are less weathered when compared with
the more pronounced weathering on the broken distal ends. Fossil ID MM13-F072 (A) Proximal. (B) Distal. Fossil ID
MM13-F721 (C) Proximal. (D) Distal.

3.2.3. Fracturing

For both Subset 1 and Subset 2 fossils, the Fracture Freshness Index (FFI) score of 6
accounted for approximately 75% of the material. This indicates that all observed fractures
occurred while the bone was either dry or fossilised, likely a result of non-anthropogenic
modification. Of the remaining Subset 1 material, approximately 10% scored 3 or 4 on
the FFI with both fresh and non-fresh fracture characteristics (Figure 10). No uniformity
was detected in the fractures or their location on the Subset 1 fossils. For the FFI criterion
Fracture Outline, a helically shaped fracture was observed on each of five humeri from
Subset 2 (Figure 11). The humeri presented with the proximal portion of the bone missing
and a helically shaped fracture differentially located along the shaft. In all cases, the
anterior-medial aspect of the bone is the highest point of the fracture, and the lateral aspect
is the lowest. Fractures were observed both proximal and distal to the deltoid tuberosity
(Figure 11). However, the FFI characteristic evidence alone observed in either subset is not
sufficient to confirm that the fractures occurred while the bone was fresh.
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4. Discussion

The analysis of the Subset 1 fossils from Mata Menge Upper Interval (UFI) has re-
vealed a significant bias towards bone fragments of the largest taxon present. This is not
surprising, as the comparatively robust nature of the Stegodon bones has contributed to
their preferred preservation, representing 86% of the assemblage, despite the fact that
many of these Stegodon fossils represent small broken fragments of unidentifiable elements.
Smaller vertebrates are mostly absent from the fossil record here, likely because of their
susceptibility to rapid degradation caused by weathering after Stage 2. This commonly
observed feature was recognised by Behrensmeyer (1978), who noted that animals under
100 kg, and especially those under 15 kg, after undergoing surface weathering are usually
under-represented in fossil assemblages. During Mid Pleistocene in the So’a Basin, many
birds, reptiles, and murids would be classified in the small vertebrate class size, therefore
likely undergoing fast decay and rapid full bone degradation during surface exposure.

More than half of the Stegodon fragments are fragments of cortical bone, similar to
observations made at other proboscidean assemblages where large numbers of fragmented
cortical bone were located [40,72]. No other species in the So’a Basin during the Mid Pleis-
tocene were large enough to have cortical bone of this size [6,73]. The highly fragmented
nature of the Stegodon material in the bonebed contributed to difficulties in attributing
bone fragments to a skeletal element. There was no increase in the successful identifi-
cation of fragments to a skeletal element as their size increased. No fragment could be
identified when showing Stage 4 or Stage 5 weathering. Fragments without any recog-
nisable skeletal bone characteristics have undergone considerable surface modifications
such as those seen in weathered material; however, abrasion and rounding caused during
fluvial transportation certainly contributed considerably to modifications observed on
these fossils.

Fractures on fresh bones have a close association with the biological dispersal of a
carcass [74,75]. Biological agents in the Soa Basin are represented by either a reptilian
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carnivore, trampling, or other modification of dispersal by Stegodon or hominin. During
Mid Pleistocene in the So’a Basin, the only faunal predators large enough to disarticulate
and consume Stegodon included crocodiles and Komodo dragons [10]. However, these
predators rarely fracture bones during feeding, preferring to either consume large disar-
ticulated portions or complete smaller animals [31,33]. No evidence was found for any
puncture style marks attributable to crocodile teeth. Ziphodont teeth of Komodo dragons
are suitable for cutting flesh and not for puncturing bone. Based on the highly fragmented
material in Subset 1 when compared to the selected complete element material from Sub-
set 2, it is clear that the two subsets were exposed to different taphonomic processes by
agents prior to entering the fluvial channel.

Five Stegodon humeri were observed with helical-shaped fractures located at various
positions along the diaphysis of the bone. Observed fractures are located both proximally
and distally to the deltoid tuberosity resulting in the differing presentations of these
elements. While the helical nature of this fracture may not present sufficient evidence
for the identification of a fracture occurring on fresh bone, the edges of these fractures
were exposed to further taphonomic processes, including weathering and natural abrasion.
These secondary processes have likely altered the fracture edge and reducing diagnostic
interpretability. It is likely these fractures were the result of trampling, similarly observed
on trampling fractures of modern elephants [45].

During recent actualistic experimentation and fieldwork observations in Africa with
modern elephant bones (Loxodonta africana), the effects of trampling resulting in bone
fractures were described [45]. Fractures due to trampling were observed in association with
other bone surface marks, including scratches, grazes, and other marks distinguishable
from cut marks. The fine-grained sand observed at the experiment location in Africa
caused shallow, narrow, flat bottom marks that were multidirectional [45]. Acquisition
of these marks was attributed to elephant trampling. While the characteristic trampling
marks were not macroscopically observed on the fractured humeri from Mata Menge or
on any of the long limb bones, conceivably, weathering and ablation may have obliterated
scratches and grazes on the bone surface. The relatively well-preserved costa fragment from
Subset 1 identified with multiple scrape marks were consistent with the description from
experimental conditions and, therefore, likely the result of trampling; however, further
microscopic analysis may provide additional context for this material.

Additionally, elephants frequently partially submerge bones in the sand surface, result-
ing in vertically reorientating the bones [45]. Some evidence supporting likely trampling-
induced reorientation of bones was identified at Mata Menge with differential weathering
observed on the proximal and distal ends of two Stegodon left ulna bones. Both ulnas had
well-preserved Stage 2 weathering on the proximal end, while the distal ends of both bones
were Stage 5 weathering. Intuitively, it is likely that the heavier and larger proximal end of
the ulna bone could remain submerged after being pushed into the surface by force exerted
by Stegodon feet, and therefore the proximal end remained protected from the exposure
taphonomy of weathering.

Significant to the context for this bonebed is a further interpretation of the previously
identified fluvial channel in which the fossils were preserved [10]. The sedimentology,
identification of freshwater gastropods and water-worn volcanic pebbles led previous
researchers to conclude that Layer II was deposited in a small stream [10]. The tapho-
nomic analysis of the fossil assemblage is in accordance with this interpretation. The
fragmented material in Subset 1 has undergone significant abrasion taphonomy and re-
sulted in modified surface features caused by the significant removal of bone material
in flowing water. The long limb bones underwent somewhat less abrasion in the fluvial
channel, by comparison, resulting in some bone surface reduction, particularly on bone
processus. Further interpretation of the two presentations of bone wear observed in this
bonebed requires analysis of the mechanisms of the abrasion seen here. The mechanisms
rely on the increasing hardness of the material and increasing velocity; however, whether
the bone material was fresh or dry will influence the resultant abrasion [76]. Abrasion on
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bone material that is more ductile, such as fresh bone, is a result of sharp, angular cutting
from the sediment and results in ablation-induced surface bone removal. Abrasion on
dry bone is the result of deformation around existing cracks and impact points on the less
elastic bone; subsequently, intersecting cracks lead to fragmentation and detachment of
material [76]. These described conditions are exacerbated by the length of exposure time
in the fluvial environment. The Mata Menge UFI bonebed is made up of material with
multiple taphonomic histories, including: condition of bone entering the fluvial channel;
dry or fresh; and interval of exposure to the fluvial conditions and post mortem breakage,
much of which should be attributed to trampling.

Susceptibility to transportation in a fluvial system was also observed here. Maxi-
mum cortical bone thickness is considered to positively influence the transportability of
fragments in a fluvial environment [52]. The over-representation of Stegodon material, as
opposed to fossils of smaller taxa, would therefore be in accordance with a fluvial setting.
It is probable that smaller bone material, including cancellous bone fragments and material
from smaller vertebrates, was transported away from this site, further contributing to the
bias identified here. Dry bones have a high transportation potential [50] as they are inclined
to float when compared to fresh bones, whose high moisture content makes them more
likely to become submerged. The high density of comparable bone fragments in both size
and type in the assemblage reveals the likelihood of fragmented bone entering the fluvial
channel following significant fracturing processes. The fine-grained sand adhering to the
majority of the fossil fragments indicates that they originate from the upper part of Layer
II. Fine-grained sand related to slower fluvial transportation [46] is associated with more
bone edge rounding on fresh bone when compared with either dry or fossilised material in
experimental research [77]. Based on the accumulation and deposition of the comparable
sized and processed fragments, it is likely that following a significant fracturing event
on fresh bone, considerable rounding by abrasion occurred in fluvial transportation by
fine-grained sands. The fragments were also exposed to some surface exposure taphonomy
resulting in typical Stage 2 bone weathering. The combination of both surface weathering
and fluvial transportation has resulted in the loss of much of the original surface of the
bone fragments.

The mostly Whole Bone and Part Bone Stegodon material of Subset 2 was likely trans-
ported over relatively short distances compared to the many small bone fragments from
Subset 1, based on the susceptibility of bones to fluvial transport described by Voorhies [48].
Voorhies foundation experiments used disarticulated coyote and sheep skeletons to mea-
sure characteristic susceptibility to transport; however, further experimentation by Frison
and Todd (1986) [47] using bones of a modern elephant augmented proboscidean fluvial
transportation susceptibility. The resultant Fluvial Transport Index (FTI) grouped elephant
bones based on their transport potential: a high FTI corresponds with high transport
potential and a low FTI with low transport potential with a range of 1–100. Frison and Todd
(1986) observed similar patterns to those of Voorhies and aligned an FTI of greater than 75
with the Voorhies Group 1 (sacrum, patella, astragalus, calcaneus, all vertebrae excluding
atlas), FTI 50-74 with Voorhies Group 2 (ribs, scapula, humerus, tibia, metacarpals), and
FTI less than 50 with Voorhies Group 3 (cranium, mandible, atlas, pelvis, femur, radius,
ulna) [47].

Subset 2 long limb bones, selected as representing a potential indicator of hominin food
procurement, corresponding with Voorhies Group 2/3 and FTI ranging between 50–100,
have potential transport characteristics of bones gradually or intermittently moving in
periods of higher velocity river discharge while staying in contact with the bottom. The long
limb bones were less rounded when compared with the Subset 1 material; however, some
loss of surface features was observed, such as rounding on protruding muscle attachments,
tuberosities, and epiphyseal ends. Rounding was likely caused during water flow, caused
by the bone abrading with particles on the bottom of the channel, and as particles moved
above the bone as it remained settled on the base of the channel.
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5. Conclusions

The present taphonomic analysis of the Upper Fossil-bearing Interval at Mata Menge
supports previous interpretations that the site represents a stream channel. The analysis
further suggests that fluvial transport has affected the assemblage, causing significant
obliteration of bone surface characteristics and rounding during fluvial transport. This is
particularly noted in the small fragments of bone for which the original skeletal element
could not be identified due to their small size but that were attributed to Stegodon based on
cortical bone thickness. While the possibility of identifying additional hominin material in
this assemblage is high, it is very unlikely that any remains would be found in articulation.
The high density of small fragments of bone that have undergone significant modification
by weathering, fragmentation, and fluvial abrasion do align with the characteristics of the
existing hominin fossils found at the UFI at Mata Menge, and additional material would
likely present these same characteristics. The taphonomic processes identified from this
study would likely have a significant effect on the remains of the small-bodied hominin,
Homo floresiensis, identified from this location. The resultant disarticulation, fragmentation,
transportation, and bone surface modifications certainly remove the likelihood of locating
a fully or partially articulated hominin skeleton.

Overall the two examined subsets reveal an observed consistency in the extent of
weathering for the examined material, with most material exhibiting Stage 2 weathering.
Some evidence for Stegodon trampling bone modifications were identified with differential
weathering observed on the proximal and distal ends of two ulna bones. It appears that
the material in each subset is the result of different taphonomic processing after the death
of the animal, with Subset 1 material exposed to further fragmentation processing, while
Subset 2 remained mostly intact. Approximately 10% of all material scored 3 or 4 on the
FFI, characteristic of fracturing on fresh and unfresh bone; however, extensive rounding,
weathering, and further dry bone fracturing has possibly obscured any initial fresh bone
fracturing. Subset 1 material was consistently highly fragmented, with more than half
being unidentifiable bone fragments <30 mm in length with rounded fractured edges likely
abraded in significant fluvial transportation. This preliminary taphonomic analysis at
Mata Menge has identified differential presentation of material here, indicating multiple
taphonomic processing events contributing to the formation of this bonebed.
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