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Abstract: This work is devoted to the presentation of a Wireless Sensor System implementation for
upper limb rehabilitation to function as a complementary system for a patient’s progress supervision
during rehabilitation exercises. A cost effective motion capture sensor node composed by a 9 Degrees-
of-Freedom (DoF) Inertial Measurement Unit (IMU) is mounted on the patient’s upper limb segments
and sends wirelessly the corresponding measured signals to a base station. The sensor orientation
and the upper limb individual segments movement in 3-Dimensional (3D) space are derived by
processing the sensors’ raw data. For the latter purpose, a biomechanical model which resembles
that of a kinematic model of a robotic arm based on the Denavit-Hartenberg (DH) configuration is
used to approximate in real time the upper limb movements. The joint angles of the upper limb
model are estimated from the extracted sensor node’s orientation angles. The experimental results
of a human performing common rehabilitation exercises using the proposed motion capture sensor
node are compared with the ones using an off-the-shelf sensor. This comparison results to very low
error rates with the root mean square error (RMSE) being about 0.02 m.

Keywords: wireless sensors; upper limb kinematic model; upper limb rehabilitation; physiotherapy

1. Introduction

In the rehabilitation process, the patient is expected to perform sets of physical ex-
ercises and activities under the supervision of the corresponding medical staff, in order
to achieve a functioning level of body segments, which may have been impaired by an
accident or a surgery, or as a consequence of pathological conditions, such as in case of
a stroke. The objective in these circumstances is to decrease the recovery time for the
patient by rehabilitating his physiological motor capabilities. Research studies and clinical
results have shown that intensive rehabilitation can lead to optimal outcomes in terms
of the patient’s motor capabilities and of the corresponding recovery time as well [1,2].
Within this challenging field in the broader context of medical science, human motion
science and selected fields of biomedical engineering have contributed to the advancement
of movement rehabilitation techniques by taking into account quantitative measurements
and parametric models of human movements [3,4].

1.1. Types of Upper Limb Rehabilitation Systems

In the field of upper limb rehabilitation, a wide range of systems along with a variety
of technologies and methodologies are presented in the literature. Human Motion Tracking
systems, have been introduced in the rehabilitation supervision procedure [4]. However,
the accurate localization that such systems perform are in direct conflict with their high
cost. Furthermore, occlusion problems and the issues regarding the line-of-sight (LoS)
during experimental process are drawbacks that reduce the effectiveness of these systems.
On the other side, robot-based systems, where the patient installs his body segments,
for rehabilitation purposes are extensively used in cases of severe disabilities [5–7]. Such
systems are able to move, guide, even apply resistance to the limb motion, aiming at
muscles strengthening and functionality improvement of the affected body segment.
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Taking into account the issues inherent to visual-based systems, such as LoS, occlusion
cases [4] and the problems related to the expensive robot assisting devices, which are
cumbersome and require specialized medical staff, the alternative of lower cost, small-size
sensor nodes to be used in motion tracking [3,8] was risen. In sensor-based integrations,
such nodes are worn by the patient and gather, in an unobtrusive way, motion, position and
physiological state data, without interfering with the patient’s normal behavior. This low
cost technology is motivated by the several benefits regarding self organization, flexibility
and the ability to provide long-term monitoring. The technical challenges of WSN within
this application field of rehabilitation are presented in [9].

1.2. WSN-Based Upper Limb Rehabilitation Systems

WSN-based Rehabilitation Systems for the Upper Limb have been introduced in the
literature since 2010, indicating that WSN rehabilitation applications is a recent field of
research. The sensor nodes that are attached to human body segments, forming a Body Area
Network, consist of specific sensor units [10]. Individual accelerometers, gyroscopes and
magnetometers or directly a unified Inertial Measurement Unit (IMU) can be integrated
into these nodes. These systems rely on both custom-made sensor nodes [11–13] and
off-the-shelf items [14,15].

These sensors nodes collect data, such as accelerations or angular velocities, in order to
extract information about the position, the motion and/or the direction of body segments.
Apart from the IMU, the optical linear encoder (OLE) [16] is another type of sensor that is
met in the literature regarding WSN-based rehabilitation applications. It can provide direct
information about a joint angle (only 1 DoF), but it is necessary to be combined with an
accelerometer at least, to derive further information for the rest of the rotations, which are
performed by this joint [17,18].

Another fundamental point in an upper limb rehabilitation application is the net-
working protocol that is going to be implemented. Within the literature, Wi-Fi [19], Blue-
tooth [14], IEEE 802.15.4 [11], ZigBee [20] and MiWi [13] are proposed, affecting in a varying
degree the energy consumption of the total system, as well as the reliability of the sen-
sors’ data transmission. Depending on the particular application’s objectives, either Time
Division Multiple Access (TDMA) scheduling algorithms for node synchronization are
used [15,20] or Carrier Sense Multiple Access/Collision Detection (CSMA/CA) for collision
avoidance [21]. As far as the packet loss issue is concerned, due to the high sampling rate
of the sensor, a lost data packet does not significantly reduce the accuracy of the collected
data, since the missing information can be restored from neighbor sensors’ data using
sensor fusion methods.

The interdisciplinary research field of rehabilitation procedure supervision using
WSNs appears to be emerging and promising for the future. The achievements and
complete rehabilitation solutions developed by relevant companies, such as Libelium [22],
Deltason [23], Xsens [24], The IoT Marketplace [25] and Shimmer [26] indicate a rising
interest in this field.

1.3. Upper Limb Motion Reconstruction

In reliable WSN-based rehabilitation systems, multiple accelerometers, gyroscopes
and magnetometers collect raw data related to linear accelerations, angular rates and
magnetic field data of the patient body movements. This data and the corresponding
timestamps are transmitted to a base station for accurate estimation of the body segments
movements in a global coordinate reference system [27]. More accurate estimations of the
segments’ orientations can be obtained by taking into account restrictions related to the
feasible orientation directions and ranges of the joint angles. At the next step, the recon-
struction of the posture of the subject takes place, adopting the Denavit-Hartenberg (DH)
configuration [17] or a Quaternion-based [14] approach.

In the final processing stage, using kinematic analysis, the limb posture and orienta-
tion is visualized in a 3-Dimensional (3D) digital representation. Using this representation,
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the extraction of several distinct characteristics, such as the movement amplitude, segments’
range of motion, movement velocity, is accomplished. This could give useful information
during each exercise within a rehabilitation session. Furthermore, in some cases, the ex-
traction of motion patterns is achieved via Principal Component Analysis (PCA) [28] or
Machine Learning algorithms and techniques [19].

1.4. Motivation & Objectives

Several successful examples exist in the literature regarding the estimation of the
upper limb movements using a wide variety of techniques along with IMU sensors. An in-
ertial tracking system can be used in rehabilitation applications to derive the upper limb
movement and its trajectory in real time. Furthermore, such a system can provide ad-
ditional information, such as the movement amplitude, the range of motion, the angles
between upper limb segments, or even the movement velocity. This information allows
the medical stuff and the patient to evaluate the upper limb exercises, either at a medical
center or at home. In the latter case, the patient can be monitored by the therapists without
the need to visit a medical facility.

In this work a sensor system for monitoring the upper limb rehabilitation procedure is
presented. The core of this system is a 9 Degrees of Freedom (DoF) IMU. Thus, the sensor
node is aimed to be attached on various human body segments for motion capturing
purposes. Regarding the specific case of upper limb, such sensors can be mounted on
upper arm, forearm and hand, gather measurements and transmit the data to a base
station. Further processing and filtering of these raw data result to each segment individual
orientation, while the estimation of the upper limb joints and segments position and
orientation in the 3D space, is accomplished by a reconstruction procedure based on the
upper limb model.

The overall processing procedure includes a series of well defined mathematical
expressions for the calculation of the upper limb’s joint angles in closed form. This is
performed by exploiting the extracted orientation of the individual segments. Then, these
joint angles represent the DoFs angles of a biomechanical model of the upper limb structure
based on the Denavit-Hartenberg configuration. The efficiency of this methodology is eval-
uated by experimental studies on some common rehabilitation exercises, which are applied
on a human’s upper limb. Furthermore, the comparison between the cost effective motion
capture sensor node, that is proposed in this work, and an off-the-shelf sensor, emphasizes
the effectiveness of the proposed system along with the total processing methodology.

The present work is an extension of our previous paper [29], where a custom-made sensor
node was used for motion acquisition and 3D reconstruction of the upper limb segments
movement. Here, the sensor fusion algorithm has been improved, in order to account for the
relationship between the Euler angles’ time rates of change and the angular velocity resolved
in the body fixed frame, as is presented in [30]. Moreover, we turn the previous device into a
low-cost wearable device that did not exceed the cost of 20 dollars. Rehabilitation exercises
were performed wearing the device to ensure that it is comfortable for the patient. Finally,
motion capturing results using this sensor node and a much more expensive off-the-shelf
device are compared to verify the validity of the custom-made device.

The upper limb model representation based on the Denavit-Hartenberg configuration,
is adopted to achieve the 3D motion reconstruction of the upper limb motion, and, is
presented in Section 2. In Section 3, the followed methodology regarding the gathering,
processing and filtering of sensor nodes’ inertial measurements is described. This results
to the calculation of the links/segments orientation, where the sensor nodes are attached
to. The estimation of the joints’ angles for the upper limb model using this orientations, is
also presented for each segment of the upper limb. In Section 4, the experimental results
of a human performing a set of typical rehabilitation exercises are shown. Based on the
motion capture sensor node raw data, the proposed methodology is utilized to provide
the upper limb segments trajectories. The estimated 3D trajectories are compared with
the trajectories that are concurrently derived by Shimmer3 motion capture sensor nodes.
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Finally, a discussion on the proposed methodology and over the experimental results is
given in Section 5, followed by the conclusions.

2. Upper Limb Modeling
2.1. Upper Limb Kinematic Model

Anatomically, the upper limb consists of the pectoral girdle, the upper arm, the forearm
and the hand [31]. The three joints of the upper limb are: the glenohumeral joint, the elbow,
and the wrist joint. Hence, the upper limb could be modeled as a kinematic chain consisting
of these three joints along with the corresponding DoFs, which account for the feasible
rotations for each joint.

Related configuration of upper limb for motion tracking, based on the DH parameters
can be found in the literature. In [32], the authors studied the movement of the shoulder
and the elbow, and they designed a 4 DoF kinematic chain to express only the shoulder
glenohumeral rotations and the elbow flexion. In [17], the human upper limb is also
represented by rigid links connected with joints, where the upper limb kinematics are
described with a 7 DoF model. This model has the shoulder as the origin of the kinematic
chain and represents the shoulder joint mobility by 3 DoFs, the elbow joint by only 1 DoF,
and the wrist joint by 3 DoFs. The latter correspond to wrist flexion-extension and deviation
and the third one, is the forearm pronation-supination motion. In our work, the forearm
pronation-supination has been defined as a wrist joint rotational DoF.

In [33], the authors assume a 7 DoF model of the left upper limb. The motions
of the scapula and clavicle are also modeled by means of the humerus head ability to
elevate and retract. This concludes to two extra DoFs that represent the clavicle elevation-
depression and profusion-retraction, respectively. In this model, 3 rotational DoFs account
for the shoulder abduction-adduction, internal rotation, and flexion-extension, followed
by the 2 elbow DoFs performing the elbow flexion-extension and the forearm pronation-
supination. The wrist joint DoFs is omitted in this model. Hense, this work is focused on
the clavicle range of motion and on the shoulder joint DoFs.

In [34], the authors proposed a more complex kinematic model, based on the DH
parameters, as well. This refers to the total upper body of a rower along with the seat rail
for the case of an indoor rowing performance assessment. Each upper limb is represented
as a 7 DoF kinematic chain with 3 revolute joints for the shoulder abduction-adduction,
rotation and flexion-extension, 2 DoFs for the elbow representing flexion-extension and
rotation and, 2 DoFs for the wrist abduction-adduction and flexion-extension. Moreover,
this model accounts for the clavicle DoF, representing it as a revolute one.

In the present paper the forward kinematics were extracted for the human upper
limb, which was designed as a kinematic chain consisting of three joints, namely, the shoul-
der, the elbow and the wrist and 7 DoFs. The shoulder/glenohumeral joint formed by
the humeral head of the scapula and the glenoid cavity [35], performs three rotational
DoFs: the flexion-extension one, abduction-adduction, and at last the internal-external
rotation. The elbow can be represented as a hinge joint permitting elbow flexion-extension.
The bones, muscles and ligaments structure in the elbow joint close area restricts its mobil-
ity. Nevertheless, a second DoF that originates a bit distal from the elbow is responsible for
the pronation-supination of the forearm. Regarding the wrist joint, two DoFs are present,
performing flexion-extension and deviation, respectively. The described kinematic chain
used to model the human upper limb, is illustrated in Figure 1.

The coordinate frames were defined for each DoF, with respect to a set of rules from
robotics theory and the DH configuration convention. These are presented in Figure 1 and
summarized in Table 1. The origin point of the kinematic chain is located at the human’s
chest. The corresponding coordinate frame is noted as {C} and is also regarded as the origin
one. The shoulder joint’s 3 DoFs follow with the frames {S1}, {S2} and {S3} assigned on
them denoting the flexion-extension, abduction-adduction and internal-external rotation,
accordingly. The elbow rotational DoFs are depicted as {E1} and {E2} frames accounting for
the flexion-extension and pronation-supination DoFs, while {W1} and {W2} frames stand
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for the wrist joint DoFs, namely flexion-extension and deviation. The end-effector position
and orientation correspond to the ones of the tip of the hand.
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Figure 1. Upper limb representation as a robotic arm.

Table 1. Frames of the upper limb model.

Location Description

Chest {C} Chest Position—Origin Frame
Shoulder {S1} Flexion and Extension
Shoulder {S2} Ab- and Adduction
Shoulder {S3} In- and External Rotation

Elbow {E1} Flexion and Extension
Elbow {E2} Pronation and Supination
Wrist {W1} Flexion and Extension
Wrist {W2} Deviation

Hand {End-effector} End-effector

2.2. Range of Motion for the Upper Limb Model

In [36], the shoulder’s joint motion is explained in detail, while defining the corre-
sponding ranges of motion. From an anatomic point of view the shoulder girdle consists
of the clavicle, the scapula and the humerus. The shoulder joint motion is determined by
a combination of these body parts distinct motions, making the analysis more complex.
A ball-and-socket joint is adopted to model the shoulder girdle motion ability. Hence,
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the shoulder is described by 3 DoFs, permitting shoulder abduction-adduction motion,
flexion-extension and internal-external rotation.

The elevation plain of upper limb defines the kind of exercise that the subject exe-
cutes. The elevation plane of 0◦ denotes the upper limb elevation over the frontal plane.
In this case, the abduction-adduction of the upper limb occurs with the corresponding
range of motion being [0◦, 180◦]. The elevation plane of 90◦ indicates that the shoulder
flexion-extension takes place. The corresponding range of motion is [0◦, 180◦] during
elevation through flexion and [0◦,−60◦] for the shoulder’s elevation through extension
(hyperextension). In both cases, the rotation of 0◦ is defined for an upper limb posture with
its shaft parallel to the thorax vertical axis. The upper arm internal-external rotation is
performed when the shoulder’s elevation angle is 0◦ and the elbow is flexed at 90◦, leading
the forearm to be lying in the sagittal plane. The range of motion for this shoulder’s DoF
that accomplishes the upper arm internal-external rotation is [−90◦, 20◦], with the negative
value being when the upper arm rotates internally towards the human body.

The elbow joint main rotation is performed around a fixed axis that is located among
the center point of the trochlear sulcus and the center point of the capitulum of the humerus.
This DoF permits the elbow flexion-extension with a range of 0◦ for the case of the full
extension for the elbow to 130◦ depicting its flexion. Furthermore, a second rotation occurs
a bit distal from the elbow joint, which is responsible for the forearm pronation-supination
motion. In this case, the forearm rotates around an axis that is defined among the center
points of the radial head and the distal ulna. The range of this motion is 90◦ for the
pronation case to −90◦ for the supination one. The forearm neutral position, where its
rotation is 0◦, occurs when having the shoulder and also the wrist at their neutral positions,
the hand is lying in the sagittal plane.

At last, the motion of the wrist joint around the axes that are defined in [37], allow for
the wrist flexion-extension and wrist deviation. The first ranges from −70◦ for the case of
extension to 70◦ for the wrist flexion. The wrist deviation is defined as radial and ulnar.
In the radial, the wrist deviates internally towards the body and till −10◦, while during
the ulnar deviation the wrist deviates outwards of the body and to an upper limit of 25◦.
The neutral position of 0◦ for both flexion and deviation DoFs of the wrist occurs when the
third metacarpal and the longitudinal axis of the forearm are aligned.

Taking into account the previous assumptions, the ranges of motion for the upper
limb degrees of freedom of our model are summarized in Table 2.

Table 2. Upper limb DoFs ranges of motion.

Motion DoF Range

Shoulder extension-flexion −60◦–180◦

Shoulder adduction-abduction 0◦–180◦

Shoulder internal-external rotation −90◦–20◦

Elbow extension-flexion 0◦–130◦

Elbow supination-pronation −90◦–90◦

Wrist extension-flexion −70◦–70◦

Wrist radial-ulnar deviation −10◦–25◦

2.3. Dh Parameters of Upper Limb Model

To describe the forward kinematics of the upper limb model, the DH parameters
have to be derived. A quadruple of such parameters represent the relation among two
sequential coordinate frames of the kinematic chain model. In Table 3, the DH parameters
are presented, describing the model configuration that is depicted in Figure 1. The variables
lc, lua, l f a and lh stand for the length from the chest to the shoulder joint, the upper arm
length and the forearm and hand lengths, respectively. The estimation of these lengths
is based on biomechanics literature [35] and correspond to appropriate fractions of the
human height H. Hence, if these parameters cannot be measured, the estimation of the
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upper limb segments’ lengths are given by: lc = 0.129 ∗ H, lua = 0.186 ∗ H, l f a = 0.146 ∗ H
and lh = 0.108 ∗ H.

Table 3. DH parameters for the 7 DoF robotic arm.

Frames Links ai αi di θi

{C} 0 0 0 lc −90°

{S1} 1 0 90° 0 θ1 + 90°

{S2} 2 0 90° 0 θ2 + 90°

{S3} 3 0 90° −lua θ3 + 90°

{E1} 4 0 90° 0 θ4 + 180°

{E2} 5 0 −90° −l f a θ5

{W1} 6 0 90° 0 θ6 − 90°

{W2} 7 −lh 90° 0 θ7

The Ai
i−1 of Equation (1) corresponds to the transformation matrix between the two

sequential coordinate frames i− 1 and i:

Ai
i−1 =


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aicθi
0 sαi cαi di
0 0 0 1

 (1)

where s and c represent sine and cosine of the corresponding angle and the four quantities
θi, αi, di, and ai are parameters associated with link i and joint i. These four parameters of
Equation (1) are generally given the names joint angle, link twist, link offset and link length,
respectively, and represent specific aspects of the geometric relationship between two
coordinate frames [38]. Since the matrix Ai

i−1 is a function of a single variable, as shown
in Table 3, it concludes that the three out of the four parameters for a link have constant
values and the only variable is θi or di in case of a revolute or a prismatic joint, accordingly.

The transformation matrix from the chest position, where the origin frame is assumed,
to the end-effector T7

0 is given by Equation (2).

T7
0 = ∏7

i=0 Ai
i−1 (2)

3. DoFs Angles Estimation

Having modeled the upper limb as described in the previous Section, we present
a methodology to estimate the angles’ values of the defined DoFs for the upper limb
model. This methodology starts using the inertial sensors measurements. If a 9-DoF inertial
sensor is attached on a link of upper limb, the gathered measurements during this link’s
motion could give the link orientation in the 3D space. The calculation approach, which is
described in the sequel, assumes that the coordinate frames of the sensor node resemble
these of the MPU-9150 [39]. In case of a different sensor or coordinate frames configuration,
the mathematical equations should be modified accordingly. Furthermore, an important
step before the extraction of the orientation is the filtering process, as these are calculated
by the raw sensors data, which suffer from gyroscopes drifting and accelerometers noise.

Nevertheless, the calculation of each individual segment orientation is insufficient for
the estimation of the human upper limb posture and orientation in the 3D space. Hence,
in the proposed methodology, the orientation of each upper limb link is initially estimated
individually based on the corresponding sensor node. Then, as each link is a part of the
described in the previous Section upper limb model, we manage to get the related DoFs
angles in a closed form. The intermediate calculation steps for each upper limb segment
and the corresponding joints angles (3 DoFs for shoulder, 2 for elbow and 2 for wrist)
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are presented in Sections 3.2–3.4. At the last step, the calculated joint angles θi are used
to solve the Forward Kinematics of the upper limb model, following the procedure that
was presented in Section 2. Thus, the reconstruction and representation of the upper limb
motion in the 3D space is finally accomplished.

3.1. Sensor Fusion and Orientation Estimation

The sensor node orientation can be estimated either by integrating the angular veloci-
ties or by processing the accelerometer measurements and estimating the gravity vector.
However, to avoid the accumulative errors due to the integration of the gyroscope measure-
ments and to minimize the noise in the orientation vector derived from the accelerometer
signal, both estimators are implemented and fused over a complementary filter [40,41].
Although, there are improved versions of the complementary filter [42–44], we used this
simpler version, which concludes to satisfactory results regarding the experimental test
cases, while it also provides quick and accurate performance [45]. In the sequel, the es-
timation and filtering procedure that concludes to the calculation of links orientation is
presented in detail.

The simplest method to extract the orientation angles of an IMU-based sensor node is
by integrating the measurements of its gyroscope adopting the first-order approximation
of Taylor series:

φ[n] = φ[n− 1] +
δφg[n]

δt
T

θ[n] = θ[n− 1] +
δθg[n]

δt
T

ψ[n] = ψ[n− 1] +
δψg[n]

δt
T

(3)

where φ, θ and ψ are the roll, pitch and yaw rotations around y—the longitudinal, x—the
transverse and z—the vertical axes of the sensor, and T is the sampling period. In our
implementation the value of T is constant, but filtering with variable sampling periods can
also be adopted.

The rates of Euler angles that are presented as coefficients in Equation (3), are given
by the first-order differential equations [30] as:

δφg
δt

δθg
δt

δψg
δt

 =


sφasθa

cθa
1 cφasθa

cθa

cφa 0 −sφa

sφa
cθa

0 cφa
cθa




Gx

Gy

Gz

 (4)

where Gx, Gy, Gz are the measurements of the gyroscope for x, y and z axis, respectively
and s and c represent sine and cosine of the corresponding angle.

The transformation from the raw gyroscope measurements with respect to the sensor
body axis coordinate system to the fixed coordinate system is derived from the direction
cosine matrix shown in Equation (4). This relation allowed to update the orientation of
the upper limb link with time, improving also its accuracy, compared to the previous
implementation [29], where we used the raw gyroscope measurements in the calculations.
Using the raw measurements, we get the angular velocities with respect to the moving body
frame and not the fixed 3-dimensional global frame that is defined. This is the reason which
restricted us from testing successively the full range of the motions, which were presented
in our previous work, and instead we presented the half range of motions, compared to
the results that we will present in the sequel, in Section 4.

The parameters φa, θa and ψa are the orientation Euler angles that are estimated from
the accelerometer measurements. Due to the discrete integration (Equation (3)), the errors
and the sensor noise result to the angular error, known as drift.
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These orientation angles can be retrieved by identifying the direction of the gravity
vector for a Ry(φ)Rx(θ)Rz(ψ) configuration [46] as:

φa = atan2
(

Ax

Az

)
θa = atan2

(
Ay√

A2
x + A2

z

) (5)

where Ax, Ay, Az correspond to accelerometer measurements over x, y and z axis. The

atan2(Y, X) denotes the operation arctan
(

Y
X

)
of inverse tangent, which accept solutions

in the angle range of
[
−π

2 , π
2
]
. The estimation of the rotation ψa in z axis is derived from

the compass measurements along with the already estimated orientation angles φa and θa,
as shown in the following equation. This is performed in order to improve the accuracy of
the rotation estimation in this axis:

ψa = atan2
(
Cy, Cx

)
(6)

where

Cx = Mx cos (φa) + My sin (φa) sin (θa) + Mz sin (φa) cos (θa)

Cy = My cos (θa)−Mz sin (φa)
(7)

and the parameters Mx, My, and Mz represent the compass measurements along the
corresponding axes.

Subsequently, sensors’ orientation can be estimated based on the gyroscope mea-
surements on a short-term horizon, due to the resulting drifting, and by relying on the
accelerometer and magnetometer measurements for a long-term orientation estimation.

A complementary filter is suggested, in order to provide more accurate estimations of
the orientation angles for the sensor node. This filter accounts for drifting compensation
and noise reduction and is formed as:

φ[n] =

[
φ[n− 1] +

δφg[n]
δt

T

]
k + (1− k)φa[n]

θ[n] =

[
θ[n− 1] +

δθg[n]
δt

T

]
k + (1− k)θa[n]

ψ[n] =

[
ψ[n− 1] +

δψg[n]
δt

T

]
k + (1− k)ψa[n]

(8)

Thus, concluding to the next form taking into account the Equations (3), (5) and (6):

φ[n] =

[
φ[n− 1] +

δφg[n]
δt

T

]
k + (1− k)atan2

(
Ax[n]
Az[n]

)

θ[n] =

[
θ[n− 1] +

δθg[n]
δt

T

]
k + (1− k)atan2

(
Ay[n],

√
Ax[n]2 + Az[n]2

)

ψ[n] =

[
ψ[n− 1] +

δψg[n]
δt

T

]
k + (1− k)atan2

(
Cy[n], Cx[n]

)
(9)

where k ∈ (0.5, 1) is a variable weighting the effect of its term and its typical value is close
to 1.
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3.2. Estimation of the Shoulder Joint Angles

The collected motion data from the IMU, mounted on the upper limb segments,
are filtered and processed, as described in Section 3.1. Hence, the orientation of all the
individual links and for each timestamp is determined in terms of the extracted roll, pitch
and yaw angles. Using these orientation angles, the direction cosine matrix is calculated for
each upper limb segment, specifying also the required rotation sequence. This is a dynamic
procedure and takes place for every timestamp that updated inertial measurements are
received by the sensor nodes.

Having described before the shoulder joint as a spherical wrist configuration for
a robotic arm model [38], the shoulder joint angles’ variables θ1, θ2 and θ3 can be as-
signed to the roll, pitch and yaw angles, with respect to the coordinate frame O0x0y0z0
(Figure 1). The mathematical expressions that relate the two sets of angles, result from the
following analysis.

The shoulder joint rotations are described by a sequence of the three elemental rota-
tions that occur around the axes of the origin coordinate system, which remains motionless,
adopting the convention of the Tait-Bryan angles [47]. The sequence of elemental rotations
is important in the estimation process. So, in case of a different definition in the sequence
of the elemental rotations, the corresponding transformation matrix representation must
be re-estimated.

The orientation transformation among the origin frame 0 and the frame 4 of the
upper limb model (Figure 1) is given by the Equation (10). This equation results from the
transformation matrix T4

0 of the forward kinematics based on the DH parameterization.
On the other side, the corresponding representation for the Tait-Bryan angles ZαXβYγ

configuration has the form of Equation (11). X, Y and Z are the transformation matrices of
the elemental rotations around the fixed frame axes x, y and z, accordingly. Hence, this
equation represents an angle α rotation around z axis, followed by an angle β rotation
around x axis and, an angle γ rotation around y axis of the fixed frame.

R4
0 =

 sθ1cθ3 + cθ1sθ2sθ3 cθ1cθ2 sθ1sθ3 − cθ1sθ2cθ3
−cθ1cθ3 + sθ1sθ2sθ3 sθ1cθ2 −cθ1sθ3 − sθ1sθ2cθ3

−cθ2sθ3 sθ2 cθ2cθ3

 (10)

R = ZαXβYγ =

cαcγ− sαsβsγ −sαcβ cαsγ + sαsβcγ
sαcγ + cαsβsγ cαcβ sαsγ− cαsβcγ
−cβsγ sβ cβcγ

 (11)

The parameter α of Equation (11) should not be confused with the Denavit-Hartenberg
parameter α noted in Table 3 and Equation (1). Solving over the corresponding items of the
matrices presented in Equations (10) and (11), we conclude to the results of Equation (12):

θ1 = α + pi/2

θ2 = β

θ3 = γ

(12)

By replacing the estimated values of angles θ1, θ2 and θ3 in the transformation matrix
T4

0 , the posture of the upper arm is extracted with respect to the OCxCyCzC coordinate
frame, as it is defined in Figure 1.

3.3. Estimation of the Elbow Joint Angles

The position and orientation of the elbow joint, as it is the distal point of the upper
arm, can be estimated from the upper arm position and orientation as shown in Section 3.2.
Following a similar approach for the motion data, which are collected by the sensor node that
is attached to the human’s forearm, the orientation of this segment is extracted in terms of
roll, pitch and yaw angles. The kinematic model variables that relate to the elbow joint are the
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angles θ4 and θ5. The elbow joint revolute DoFs can be estimated from the orientation angles,
taking into account the representation of Equation (11) for the Tait-Bryan angles, as:

θ4 = atan2(−R(3, 1),R(3, 3)) (13)

θ5 = atan2(−R(1, 2),R(2, 2)) (14)

By replacing these estimated angles’ values in the transformation matrix T6
4 , the posture

of the forearm is extracted with respect to the O3x3y3z3 coordinate frame (Figure 1).

3.4. Estimation of the Wrist Joint Angles

The wrist joint rotations θ6 and θ7 of the kinematic model can be derived by a similar
procedure as following:

θ6 = atan2(R(3, 1),−R(3, 3)) (15)

θ7 = atan2(R(1, 2),−R(2, 2)) (16)

Hence, by the transformation matrix T8
6 , the posture of the hand is extracted with

respect to the O5x5y5z5 coordinate frame (Figure 1).

4. System Implementation and Experimental Results
4.1. Motion Sensors

The implemented device, shown in Figure 2, consists of inertial sensors that capture
the node’s motion with respect to the inertial frame and a microcontroller with Wi-Fi capa-
bilities. Specifically, the device consists of an IMU, a microcontroller and a removable and
rechargeable small-size battery. The IMU that was used is a 9 DoF Micro-Electro-Mechanical
System (MEMS) IMU. It is the single unit chip MPU-9150, produced by InvenSense Inc.
The microcontroller that was used is a low-cost WiFi chip with full TCP/IP stack. It is the
ESP8266 and it is produced by Espressif Systems [48]. The purpose of this device is to
retrieve and transmit the sensor data through WiFi to a base station. At the base station,
the data is processed, stored and visualized. At last, the battery, which was used, is a
removable RCR123A Lithium, high current, rechargeable battery that allows for a long-life
and easy replacement.

IMUMicrocontroller

Battery

Figure 2. The wearable motion sensors.

Through an Inter Integrated Circuit (I2C) protocol [49], the data received from the
IMU sensors are used to estimate the orientation of the IMU chip. The ESP8266 micro-
controller serves every device that requests data from the sensor node. The fact that HTTP
protocol [50] applies large headers, while it also lacks full duplex communication, makes
this protocol not suitable for the designed application. Moreover, the time-restrictions
and the requirement for transferring a great amount of data from the sensor to the base
station, in a request-response messaging protocol, imposed the use of a more appropriate
protocol. Thus, a websockets [51] protocol was adopted. This protocol offers a persistent
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TCP/IP connection, while client and server can exchange packets, avoiding to burden the
communication channel with a large volume of irrelevant data.

Each sensor node requires a calibration process before the first use. There are 3 sensors
in the node and there is a different procedure for each sensor. For the magnetometer we
should rotate the sensor multiple times at different directions. We store only the minimum
and the maximum value on each axis. Having rotated for a while, we find the offset of
each axis by taking the mean value of the maximum and minimum values for that axis.
Then, we subtract this offset by the measurements. For the gyroscope, letting the device on
a surface for a few seconds can produce the mean value of the sensor, which is supposed
to be zero. Thus, we subtract this mean value from each measurement, in order to get the
correct angular rotation of the device. The accelerometer calibration needs to lay the sensor
with all its faces down. Hence, the gravity vector can be identified on each axis, and the
values are saved on the microcontroller.

During the experimental sessions, a motion capturing sensor node is mounted on the
outer side of the selected upper limb segment with the Y axis of the sensor being aligned
with the longitudinal axis of the segment. The right placement of the sensor is ensured
using a special designed fabric case, which is strapped in the circumference of the limb
segment. Then, the sensor is switched on and the communication with the base station is
established. The objectives are the acquisition, storing and concurrent visualization of the
node’s IMU measurements during the subject’s exercise session.

Concurrently, a Shimmer3 sensor node [26] has been aligned with the custom-made
sensor, proposed in this work, and both were attached to the human’s upper limb segments.
A custom-made piece with two sockets was used to successfully align these two sensors.
The measurements form Shimmer3 sensor node were captured directly into Matlab® using
the Shimmer Matlab Instrument Driver. This driver is provided by the corresponding
company and establishes the communication with the device via the Bluetooth protocol.
Before the motion capturing session, the Shimmer3 units were calibrated using the Shimmer
9DOF Calibration Application, that is also derived by the same company. This application
implements an automated process that calculates the calibration parameters for Shimmer’s
integrated accelerometers, gyroscopes and magnetometers sensors. These calibration
parameters are finally stored in the unit memory, so as the sensor measurements can be
automatically corrected before they are sent to the paired device (e.g., a computer that
functions as base station).

In the sequel, the collected sensors measurements, for both type of sensors, are pro-
cessed and filtered as described in the previous Section. Then, the DoFs rotations θi, for the
upper limb model, are extracted by Equation (12) for the shoulder, Equations (13) and (14)
for the elbow and Equations (15) and (16) for the wrist joint, respectively. In the following
Subsections, the 3D reconstructed upper limb joints trajectories are presented in common re-
habilitation exercises, as the elbow’s flexion-extension, the shoulder’s abduction-adduction
and the wrist’s flexion-extension exercise. In the processing stage, the sensor’s sampling
period is selected as T = 20 msec, while the values of the model lengths are defined as
lc = 0.2322 m, lua = 0.3348 m, l f a = 0.2628 m and lh = 0.1944 m, which were estimated
for the subject’s height of H = 1.80 m. Furthermore, the first two experimental cases do
not account for any wrist rotation, since there was not any sensor node attached over the
subject’s hand. Hence, the corresponding DoFs angles are assumed as θ6 = θ7 = 0◦.

4.2. Elbow Joint Flexion-Extension Exercise

During this exercise session, the subject performs flexion and extension of the elbow.
This exercise is repeated a few times and the sensor measurements of the node, which is
attached to the subject’s forearm, are recorded and processed. This results to the estimation
of the node’s orientation angles φ, θ and ψ. Using the node’s orientation angles, we
can estimate the elbow DoF angles. Comparison between the proposed custom-made
sensor node and the Shimmer3 sensor unit for the estimated angles θ4 and θ5 are shown in
Figures 3 and 4, respectively.
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Figure 3. Elbow rotation angle θ4—Flexion-Extension DoF.
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Figure 4. Elbow rotation angle θ5—Pronation-Supination DoF.

The trajectories of the shoulder, the elbow, the wrist joints and the tip of the hand in
x, y, and z axes are presented in Figure 5. The distances between the segments joints, as
shown in this figure, are in accordance with the corresponding fractions of human’s height.
The motion takes place in the y− z plane and the value of x component for each joint is
constant and equal to the lc, due to the dependence of the segments’ position only by the
angle θ4. In this case, the position of the forearm is calculated by the transformation matrix
T6

4 , which depends only on the variable θ4. The angle θ5 affects only the orientation of the
forearm and not its position. Furthermore, the hand is supposed to be aligned with the
forearm, thus angles θ6 and θ7 of the wrist joint are zeroed.



Appl. Syst. Innov. 2021, 4, 14 14 of 24

0 10 20 30 40 50 60 70
-1

0

1

X
 (

m
)

x(t)

0 10 20 30 40 50 60 70
0

0.2

0.4

Y
 (

m
)

y(t)

0 10 20 30 40 50 60 70

Time (sec)

-0.4

-0.2

0

0.2

Z
 (

m
)

z(t)

shoulder

elbow

wrist

tip

Figure 5. Joints trajectories coordinates in x, y, z axes for elbow flexion-extension exercise—Custom-
made sensor node.

The resulted joints’ trajectories, as extracted by the upper limb model presented in
Section 2, for the calculated elbow DoF angles, are illustrated in Figure 6. The trajectories,
as extracted for the case of the custom-made sensor node, are noted with the ‘o’ symbol and
represent the exercise that the patient has performed. The upper limb segments’ trajectories
for the case of the Shimmer3 sensor unit’s measurements are also presented in the same
figure. Deviations between the trajectories, especially in the upper and lower limit of the
motion range, are identified in this figure. In the case of Shimmer3, the trajectories are
more limited (noted with deep purple and deep red color). This is resulted by the elbow
DoF angle θ4 that ranges from 13◦ to 85◦ approximately, while the corresponding angle
calculated by the measurements of the proposed sensor node ranges between 8◦ to 88◦,
as shown in Figure 3.

The processing and filtering methodology, described in Section 3.1, were followed
for the IMU measurements of both sensor nodes. The nodes were calibrated before the
capturing session. It was noticed that the differences in the elbow angles’ ranges, which
were observed along a series of experiments, were related to the calibration accuracy of
the sensors. Moreover, it was noticed that the forearm configuration during the exercise
execution does not account for the gimbal lock problem. Finally, the points that are
visualized in the trajectories’ 3D plots correspond to the total number of the exercise’s
repetitions and not to only one.
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Figure 6. Wrist and hand trajectories during elbow joint flexion-extension exercise – Comparison
with Shimmer3 sensor nodes.

The mean absolute error (MAE), the maximum error (MaxError) and root mean square
error (RMSE) for the wrist and the tip of the hand (end-effector) trajectories, as were
calculated between the proposed sensor node and the Shimmer one, are summarized in
Table 4.

Where

MAE =
n

∑
i=1

|Pseni − Pshimi|
n

MaxError = max|Pseni − Pshimi|, i = [1, n]

RMSE =

√√√√ n

∑
i=1

(Pseni − Pshimi)
2

n

(17)

and the 3D trajectory points Pseni for the custom-made sensor node and Pshimi for the

Shimmer one are given as Pi =
√

x2
i + y2

i + z2
i , while n denotes the total number of points

of the trajectory. The estimated error metrics, which represent the difference among the
trajectories extracted by these two sensor nodes, show a quite high level of accuracy.

Table 4. Elbow joint’s MAE, maximum and RMSE errors.

Trajectory MAE [m] MaxError [m] RMSE [m]

Wrist 0.0126 0.0509 0.0161
End-Effector 0.0182 0.0706 0.0229

4.3. Shoulder Joint Abduction-Adduction Exercise

Before the exercise session, we attach the wearable device to the subject’s upper
arm. During this exercise session, the subject performs abduction and adduction of the
shoulder joint for his right upper limb. The sensor’s on-board processor estimates the
node’s orientation angles φ, θ and ψ. Then, it calculates the shoulder rotation angles θ1,
θ2, θ3 based on the procedure described above. The results are presented in Figures 7–9,
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accordingly, while the corresponding elbow angles θ4 and θ5 are fixed, during this exercise.
As it is shown in the aforementioned figures, the shoulder’s joint angles, as extracted from
both sensor nodes, are almost identical. Therefore, an accurate reconstruction of the upper
limb movement can be achieved either using a shimmer sensor node or the proposed
custom-made one.

0 20 40 60 80 100 120 140 160

Time (sec)

0

10

20

30

40

50

60

A
n
g
le

 (
d
e
g
re

e
s
)

Custom

Shimmer

Figure 7. Shoulder rotation angle θ1—Flexion-Extension DoF.
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Figure 8. Shoulder rotation angle θ2—Abduction-Adduction DoF.
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Figure 9. Shoulder rotation angle θ3—Internal-External rotation DoF.

The trajectories of the shoulder, the elbow, the wrist and the tip of the hand in x, y,
and z axes are presented in Figure 10. Deviations in the y axis occur, while the subject’s
motion took place in the x− z (sagittal) plane. This was caused because of the not ideal
mounting of the node on the subject’s upper arm and, thus, a sensor-to-body frame
transformation should be defined.
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Figure 10. Joints trajectories coordinates in x, y, z axes for shoulder abduction-adduction exercise—
Custom-made sensor node.
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An issue that might occur during this motion is the gimbal lock problem. This results
from the use of the Euler orientation angles φ, θ and ψ to find, after processing, the position
and orientation of the corresponding segment. Actually, the shoulder joint can perform
three rotations. When the θ2 angle rotation comes up to the furthest point, the shoulder
joint axes z0 and z2 of the first and third shoulder’s DoF, accordingly, are collinear. This is a
singular configuration and only the sum θ1 + θ3 or the difference θ1− θ3 can be determined.
One solution is to choose the one angle arbitrarily and then determine the other using
trigonometric equations. Nevertheless, the range of motion in the present exercise is not
affected by the gimbal lock issue.

The 3D reconstructed trajectories of each upper limb joint are presented in Figure 11,
noted with ’o’ symbol, for the case of the custom-made sensor node. A few consecutive
repetitions of abduction-adduction exercise are performed, which explains the deviations
of the visualized points. The extracted upper limb segments’ trajectories for the case of
the Shimmer3 unit are also presented in the same figure. As in the comparison of the
previous exercise (elbow flexion-extension), the trajectories of the upper limb segments,
which are extracted from the Shimmer3 sensor’s measurements (noted with light blue,
deep purple and deep red color), are more limited than the corresponding ones resulted
from the custom-made motion capture sensor node. This results from the minor differences
in the calculated shoulder DoFs’ ranges between the two sensors nodes. Once again, in this
experiment, it was observed that the shoulder angles’ ranges were related to the accuracy
of the calibration parameters for each sensor.
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Figure 11. Elbow, wrist and hand trajectories during shoulder joint abduction-adduction exercise –
Comparison with Shimmer3 sensor nodes.

The mean absolute error (MAE), the maximum error (MaxError) and root mean square
error (RMSE) for the elbow, wrist and tip of the hand (end-effector) trajectories, between the
two sensor nodes, as extracted using Equations (17), are summarized in Table 5.
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Table 5. Shoulder joint’s MAE, maximum and RMSE errors.

Trajectory MAE [m] MaxError [m] RMSE [m]

Elbow 0.0061 0.0462 0.0087
Wrist 0.0072 0.0547 0.0103

End-Effector 0.0076 0.0577 0.0109

4.4. Wrist Joint Flexion-Extension Exercise

In this case, the subject performs a few repetitions of wrist joint flexion-extension
exercise of his right upper limb. The extracted sensor orientation angles φ, θ and ψ
contribute to the wrist DoFs angles estimation. During this exercise the subject’s elbow
is steadily flexed at θ4 = 90◦ being perpendicular to the coronal plane, and the hand is
repeatably flexed with the palm towards the chest at almost θ6 = −55◦ and extended until
almost θ6 = 25◦, as shown in Figure 12. In Figure 13, a deviation around a mean value is
presented that corresponds to the second DoF of the wrist, this of radial-ulnar deviation.
Actually, a small deviation is present during the subject’s wrist motion, thus the deviation
in this graph is reasonable.
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Figure 12. Wrist rotation angle θ6—Flexion-Extension DoF.

0 5 10 15

Time (sec)

-50

-40

-30

-20

-10

0

10

20

30

40

50

o
 (

de
g)

7

Figure 13. Wrist rotation angle θ7—Radial-Ulnar deviation DoF.
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The concluded joints’ trajectories, as extracted by the upper limb model for the wrist
DoF angles θ6 and θ7 is illustrated in Figure 14. It represents the exercise that the subject has
performed, along with this small deviation. The corresponding trajectories of the shoulder,
the elbow, the wrist and the tip of the hand in x, y, and z axes are presented in Figure 15.

In this case, a comparison among the custom-made and the Shimmer3 sensor node
was not realized, because it was not possible to attach the array of the aligned sensors on
the subject’s hand, due to the hardware dimensions.
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Figure 14. Joints trajectories coordinates in x, y, z axes for wrist flexion-extension exercise—Custom-
made sensor node.
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Figure 15. Wrist and hand trajectories during wrist joint flexion-extension exercise.

Such graphs of upper limb trajectories and joint DoFs angles during exercise sessions
are useful for a subject’s upper limb status evaluation by the physical therapists. Especially,
the analysis over the range of motion for each joint angle or even the estimation of the
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speed during the execution of an exercise indicate the status and progress of a patient with
upper limb movement disorders. Hence, the therapists could tune the sequel rehabilitation
sessions accordingly.

5. Discussion

During the elaboration of this work and especially the experimental part, in order
to validate the sensor fusion algorithms along with the upper limb modeling for the
successful 3D motion reconstruction, several issues were encountered. Some of them need
more attention and further investigation, aiming at the improvement of the upper limb
motion tracking.

The experimental results showed that the proposed custom-made motion capturing
system had an acceptable performance, as shown by the estimated error indicators in
Tables 4 and 5. Using optical motion capturing systems instead, like Vicon, the position
error would be much smaller [52]. Nevertheless, in order to avoid the occlusion problem,
which is the main drawback of this kind of systems, multiple cameras should be installed
in the rehabilitation center. However, the overall cost may be prohibited for an average
healthcare facility.

The choice of Euler angles representation found to be more understandable to handle
and to identify failing results in the implementation that then could be solved. At the
current status of research, the range of motions, which were performed during the ex-
perimental tests, is not affected by the gimbal lock problem. Thus, the adoption of Euler
configuration was finally chosen. A quaternion-based option that is currently examined
is the Geometrical Constraints Modeling and Fusion methodology presented in [53,54],
where each IMU placement defines the corresponding segment’s reference frame. When
the quaternion representation of the sensors’ measurements flow is provided, a fusion
algorithm accounts for the conversion from quaternion sequences into the axis-angular
sequences. In this case, an upper limb model is also needed, in order to express the
biomechanical characteristics and contribute to the 3D motion reconstruction.

Regarding the current state of the presented custom-made sensor system, upper limb
movements, such as horizontal abduction that has a range of 130◦ towards the human
chest or scapula protraction-retraction, has not been examined yet. In this case, actually,
an extra DoF has to be included in the upper limb model. The complete model for both
upper limbs can be defined, as well, as an extension to this work.

6. Conclusions

In this paper, an upper limb kinematic model that resembles a robotic arm with rigid
links is proposed. It is formed as a 7 DoF kinematic chain, while the Denavit-Hartenberg
configuration is adopted to describe this model. Furthermore, the Forward Kinematics
matrices that can give the position and orientation of each upper limb segment are derived.

For this model, the shoulder, the elbow and the wrist joint angles are estimated by
exploiting the upper arm, forearm and hand segments’ orientation vectors, respectively.
For this reason, inertial sensors are attached to the upper limb segments, in order to capture
theirs motion. This is finally accomplished by a two steps procedure. At first, a sensor
fusion algorithm is applied to the inertial sensors’ data along with a complementary
filter, in order to extract each individual upper limb’s segment orientation. Then, these
orientations contribute to the estimation of the rotational DoFs that are defined in the
aforementioned upper limb model.

This concludes to the 3D reconstruction of the upper limb model’s motion by ap-
plying the Forward Kinematics of the DH configuration. The 3D reconstruction results,
the trajectory tracking and the visualization of a subject’s upper limb for both the prototype
motion capture sensor node and the off-the-shelf Shimmer3 sensor unit, are performed,
for comparison reasons. The accuracy of the results derived by the custom-made sensor
node is also validated with an RMSE of 0.02 m and a maximum error of 0.07 m, when these
are compared to the results of the similar commercial wireless motion capturing device.
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These validation results demonstrate the accuracy of the inertial technology based mo-
tion analysis, which is presented in this work, and can be a guide for further improvement.
The same methodology could also be extended to estimate the lower limb, or the whole
body movements in the 3D space, using additional sensors and similar robotic modeling of
the human body segments.
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