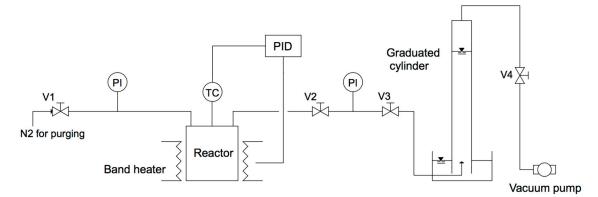


Supplementary Materials: Hydrothermal Carbonization of Lemon Peel Waste: Preliminary Results on the Effects of Temperature During Process Water Recirculation

Antonio Picone¹, Maurizio Volpe¹, Maria Gabriella Giustra¹, Gaetano Di Bella¹ and Antonio Messineo^{1,*}

- ¹ Faculty of Engineering and Architecture, University of Enna Kore, Cittadella Universitaria, 94100 Enna, Italy;
- * Correspondence: <u>antonio.messineo@unikore.it</u>

Citation: Picone, A.; Volpe, M.; Giustra, M.G.; Di Bella, G.; Messineo, A. Hydrothermal Carbonization of Lemon Peel Waste: Preliminary Results on the Effects of Temperature During Process Water Recirculation. *Appl. Syst. Innov.* 2021, 4, x. http://doi.org/10.3390/asi4010019


Received date: 28 January 2021 Accepted date: 26 February 2021

Published date: 3 March 2021


Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses /by/4.0/).

Figure 1. Piping and Instrumentation diagram (P&Id) of the HTC experimental system (TC= thermocouple; PI= pressure gauge; PID=temperature controller).

Figure 2. HTC apparatus: (**a**) HTC system during heating phase; (**b**) HTC reactor cooled down through a massive stainless steel disc at -10 °C; (**c**) HTC reactor cooled down through a stainless steel radiator with flowing tap water.

Table 1. Mass yields (dry basis) and process water characterization (Er% with three replications).

Sample	Mass Yields wt% d.b.			Process water		
	Solid	Liquid ¹	Gas	pH	TOC (g/L)	
180_R0	$50.1 \pm 0.4\%$	43.7%	$6.2 \pm 0.5\%$	$3.87\pm0.41\%$	$16.06 \pm 0.54\%$	
220_R0	$49.2\pm0.4\%$	40.7%	$10.1 \pm 2.3\%$	$4.40 \pm 0.22\%$	$13.30 \pm 0.51\%$	
250_R0	$40.9\pm0.7\%$	44.4%	$14.7\pm0.9\%$	$4.66 \pm 0.34\%$	$9.70\pm0.42\%$	
180_R1	$55.9 \pm 1.0\%$	37.6%	$6.5 \pm 0.5\%$	$3.95 \pm 0.21\%$	$18.82 \pm 0.54\%$	
220_R1	$51.2 \pm 1.0\%$	37.6%	$11.2 \pm 1.4\%$	$4.49\pm0.21\%$	$16.92 \pm 0.51\%$	
250_R1	$41.9\pm0.7\%$	43.4%	$14.8 \pm 2.2\%$	$4.69\pm0.32\%$	$14.25 \pm 0.43\%$	
180_R2	$55.0 \pm 1.5\%$	38.1%	$6.9 \pm 0.5\%$	$3.97 \pm 0.33\%$	$20.08 \pm 0.51\%$	
220_R2	$49.9\pm0.2\%$	38.7%	$11.3 \pm 1.0\%$	$4.50 \pm 0.23\%$	17.79 ± 0.33%	
250_R2	$42.5 \pm 0.1\%$	42.8%	$14.7 \pm 1.9\%$	$4.70 \pm 0.12\%$	$18.06 \pm 0.11\%$	

¹ Computed by difference.

Sample	Proximate Analysis wt% d.b.			Energy properties		
	VM	Ash	FC ¹	HHV (MJ kg ⁻¹)	EDR (%)	EY (%)
Raw LP	$75.0 \pm 0.2\%$	$3.8 \pm 0.1\%$	21.2 ±0.8%	$17.1 \pm 0.5\%$	100.0	100.0
180_R0	$65.3 \pm 0.7\%$	$2.3 \pm 2.9\%$	32.4 ±1.6%	$22.4 \pm 0.3\%$	130.8	65.5
220_R0	$58.1 \pm 0.6\%$	$3.1 \pm 2.2\%$	38.8 ±0.7%	$24.4\pm0.9\%$	143.0	70.4
250_R0	$50.5 \pm 0.8\%$	$3.2 \pm 0.1\%$	46.3 ±0.9%	$26.7\pm0.4\%$	156.0	63.7
180_R1	$63.6 \pm 0.4\%$	$3.0 \pm 0.6\%$	33.4 ±0.7%	$22.0 \pm 0.1\%$	128.9	72.0
220_R1	$59.1 \pm 0.7\%$	$3.7 \pm 1.6\%$	37.1 ±1.3%	$23.9 \pm 0.3\%$	139.9	71.7
250_R1	$51.6 \pm 0.1\%$	$3.2 \pm 0.2\%$	45.2 ±0.1%	$26.8 \pm 0.2\%$	156.9	65.7
180_R2	$62.6 \pm 0.3\%$	$3.0 \pm 0.5\%$	34.4 ±0.7%	$22.2 \pm 0.8\%$	129.9	71.5
220_R2	$58.1 \pm 0.1\%$	$3.2 \pm 0.4\%$	38.7 ±0.2%	$24.7 \pm 0.3\%$	144.6	72.2
250_R2	$51.7 \pm 0.5\%$	$3.3 \pm 0.3\%$	45.1 ±0.6%	$27.2 \pm 0.3\%$	159.3	67.7

Table 2. Proximate analysis and energy properties of raw LP and hydrochars (Er% with two replications).

¹ Computed by difference.