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Abstract: An enormous amount of clinical free-text information, such as pathology reports, progress
reports, clinical notes and discharge summaries have been collected at hospitals and medical care
clinics. These data provide an opportunity of developing many useful machine learning applications
if the data could be transferred into a learn-able structure with appropriate labels for supervised
learning. The annotation of this data has to be performed by qualified clinical experts, hence, limiting
the use of this data due to the high cost of annotation. An underutilised technique of machine
learning that can label new data called active learning (AL) is a promising candidate to address the
high cost of the label the data. AL has been successfully applied to labelling speech recognition and
text classification, however, there is a lack of literature investigating its use for clinical purposes. We
performed a comparative investigation of various AL techniques using ML and deep learning (DL)-
based strategies on three unique biomedical datasets. We investigated random sampling (RS), least
confidence (LC), informative diversity and density (IDD), margin and maximum representativeness-
diversity (MRD) AL query strategies. Our experiments show that AL has the potential to significantly
reducing the cost of manual labelling. Furthermore, pre-labelling performed using AL expediates the
labelling process by reducing the time required for labelling.

Keywords: active learning; machine learning; biomedical natural language processing

1. Introduction

The wide-spread utilisation of capacity and digitising advancements, specifically
the digitisation of clinical records, presents numerous information examination chances.
Notwithstanding, to arrive at their maximum capacity, such investigation frameworks need
to remove organised information from unstructured content reports. An expanding volume
of unstructured clinical information about patients is put away electronically by clinics and
medical services. Organised data is fundamental for applications, for example, reporting,
reasoning, and retrieving, for instance, malignancy observations from medical reports
and death certificates [1], checking radiology reports to forestall missed fractures [2], and
clinical data retrieval [3]. Late advancements of Natural Language Processing (NLP) and
information extraction (IE) have confronted fundamental difficulties in adequately catching
valuable data from this free-text resources [4]. IE is a nontrivial interaction for extricating
helpful, organised data like examples and different connections from unstructured info text.

One of the challenges is distinguishing cases of ideas that are alluded to in manners
not captured inside current lexical assets and tackle uncertainty, polysemy, synonymy, and
word order varieties. Moreover, the data introduced in clinical narratives are frequently
unstructured, ungrammatical, and divided. Along these lines, standard NLP advances and
frameworks cannot be straightforwardly applied to the clinical domain [5].
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ML-based algorithms, rule-based and existing dictionary-based methods can be
utilised to identify and extract the concepts from raw text corpus in finance, medical,
and various other domains [6–10]. In the clinical domain, the ShARe/CLEF 2013 eHealth
Evaluation Lab and the i2b2/VA challenge methodologies have been applied in shared
tasks [11–13]. The results demonstrated that ML-based algorithms are scalable and usually
beats the rule-based approaches.

A critical challenge is a clinical text contains domain expert words which requires
domain expert efforts to presented rule-based methods or label huge corpora as training
data for supervised ML-based methods. Usually, rule-based approaches are expensive
because it needs domain experts and is a challenging task itself that can create error [14]
and not adaptable or transferable to other tasks. The results of the supervised ML-based
approached increases as the set of labelled data is used for training. Using crowdsourcing
for labelling clinical data is not useful in the general domain; manual labelling is an
expensive and labour-intensive task.

AL [15] and semi-supervised learning [16] are viable options in contrast to standard
supervised ML methods and can reduce labelling costs. AL can prepare to accomplish
an automated system with high adequacy and less labelling cost. Training an ML-based
approach using a small subset of labelled data, selected randomly, leads to reduced effec-
tiveness compared to when the model uses complete labelled data, while in AL, the aim is
to reach high viability and effectiveness by training a small chunk of data.

AL is a human-in-the-loop technique with the capacity to radically decrease human
inclusion contrasted with the conventional supervised ML techniques that require a massive
amount of labelled data at the start. Figure 1 presents the overall general cycle of AL for
extracting information from text. It is an iterative cycle, where informative samples from
raw and unstructured text documents are chosen utilising a query strategy. A human
annotator then labels these samples to extricate data and construct a supervised ML-
based model at every iteration. The viability of AL techniques has been shown and
decisively demonstrated in numerous spaces, for example, text classification, IE, and
speech recognition [15].
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Regardless of comparative findings on various tasks and domains, AL is not thor-
oughly investigated in biomedical tasks. Our research is based on the following research
questions. RQ1: How AL can be used to reduce the labelling cost while maintaining the
good quality of extracted information? RQ2: Which existing AL techniques perform well
compared to other AL methods to reduce the labelling time?

RQ3: How can other ML approaches (i.e., representation learning and unsupervised
learning) can produce effective information extraction while maintaining the quality and
minimising the labelling effort?
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Despite similar findings, the aim of our research is to provide a framework to the
research community for extracting information from large amounts of unstructured biomed-
ical documents by developing an AL-based framework that extracts high-quality concepts
and reduces the burden of manual annotation.

2. Related Work

Expanding volumes of clinical information that can be presently digitised and put
away in electronic medical records makes the extraction of information from clinical text
progressively basic, especially in the region of NLP and ML. While numerous clinical assets
and advances are presently accessible to encourage the preparing of clinical information,
clinical data extraction remains challenging.

Recent studies focus on IE from biomedical literature, for example, books and scientific
articles [17–20] and the subsequent gathering centres around IE from free-text clinical
narratives delivered by clinical staff, for example, radiology and pathology reports or
release synopses. Besides, other studies represent a more troublesome errand on account
of the unstructured idea of the free content and the simple language used [6]. IE is
a significant essential advance in extricating essential data from clinical records. The
fundamental challenge is to create cost-productive methodologies that help automatic
idea extraction from clinical free-text assets while guaranteeing the extracted ideas’ high
quality. Automatic handling of such volumes of information could incredibly profit clinical
information systems.

2.1. Information Extraction from Biomedical Corpus

Extracting information from biomedical documents involves capturing words of
natural language from raw and unstructured document which express the significant
information within a given domain [14]. NLP-based techniques cannot be directly used to
extraction information from biomedical corpus due to its ubiquitous, raw, and unstructured
nature. Current methods can be divided into following techniques.

2.1.1. Dictionary-Based Methods

Dictionary-based methods consist of matching a provided list of terms in a text
and use patterns to extract structures like entities and text strings from a pre-defined
dictionary. A large number of domain specific dictionaries are largely available which can
be used to extract biomedical information. These include SNOMED CT [21] and UMLS [22].
Bashyam et al. [23] presented and demonstrated a lexical lookup approach for radiology
reports to detect UMLS concepts. They showed that their method is 7 times faster than
MetaMap in identifying the same concepts.

Dictionary-based techniques can be helpful in extracting information from free text
with the help of dictionaries, and they can also normalise entities and be useful for both the
syntactical and semantic level of information by associating the entities with terms in the
dictionaries. These dictionary-based methods are useful but suffer from coverage issues,
which makes their use limited in this domain.

2.1.2. Rule-Based Methods

Rule-based methods have been generally evolved to extract entities in the biomedical
domain [24]. Rule-based methods contain manually created rules to extract biomedical
information from the corpus. Various techniques are used to define these rules, which are
used to capture patterns within natural language [25].

Current databases have coverage issues and do not cover recently discovered elements;
some helpful objective substances and biomedical-related data covered up in non-important
settings may be missed and not extracted utilising a word reference-based methodology.
Hamon and Graber [26] presented a rule-based method to extract biomedical information
using existing terms, rules, and shallow parsing methods. Mack et al. [27] proposed BioTeks,
a rule-based approach to capture biomedical information from biomedical corpus. These
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methods are widely used in the biomedical domain; however, implementation requires
domain expertise and they are not adaptable nor transferable to other domains [28].

2.2. Machine Learning (ML)

Machine learning (ML)-based methods are presented to address the shortcomings
of the abovementioned techniques by making the machine learn and improve the perfor-
mance [29]. Biomedical/clinical extraction can be classified as a labelling task sequence,
referred to as a classification task in supervised learning of ML algorithms. Both support
vector machines (SVMs) [30] and conditional random fields (CRFs) [31] are the methods
mostly used in the classification for sequence labelling tasks. For another high level of
sophisticated tasks, a large number and high quality of training data are required to train
the models. Although a huge amount of data is available, the labelling cost is high and
the task cumbersome. The AL technique is proposed to limit the required high volume of
manual labelling of data. AL’s main idea is to query and label those samples that carry
useful information for the learning model compared to other available samples. It can
attain better performance with less-annotated training data [15,32].

Semi-supervised learning is another approach to address annotated corpus [33]. It has
been effectively applied to some real-world applications. An abundance of unlabelled
examples is effortlessly accessible, while physically naming them is an escalated and
costly errand. Self-training is a customarily utilised technique where unannotated text is
annotated in an iterative interaction. The updated labelled set is utilised to retrain and
refresh the fundamental classifier at every emphasis. This examination researches how
to increase the learning model at every point by consolidating self-preparing into the
AL process.

Representation learning refers to learning data representations to facilitate infor-
mation extraction. The IE is fed into the training of the machine learning model [34].
Mikolov et al. [35] introduced a novel word embedding concept where words are repre-
sented in continuous vector representations of words based on their various dimensions of
difference.

2.3. Natural Language Processing (NLP)

NLP is the intersection of computing science and linguistics that includes dissecting
and understanding common human language from both speech and written texts. Over
the years, NLP has been used in various applications such as email filtering [36], irony and
sarcasm detection [37] document organisation [38], sentiment and opinion mining predic-
tion [39–41], hate speech detection [42–44], question answering [45], content mining [46],
biomedical text mining [47,48], and many more [8,49,50].

In biomedical named entity recognition (BioNER), Yao et al. [51] initially created em-
beddings of words on unlabelled texts of biological topics using neural networks, going on
to establish a multi-layer neural network to obtain cutting edge output. Li et al. [52] mixed
sentence vectors and twin word embeddings and utilised the BiLSTM on biomedical texts
to identify domain-relevant entities. To identify drug entities, Zeng et al. [53] developed
their model, BiLSTM-CRF. CNN was utilised to get the representation of features on a
character level. This was done with representations on a word level and used as data to
be fed to the BiLSTM-CRF for BioNER. In biomedical literature, many words can cause
information redundancy whilst neural network models are trained for feature capture,
preventing critical information from being obtained. This may cause the crucial areas
not to focus on the BioNER models, and loss of information could occur. It is a salient
focus to make models of neural networks attentive to areas of importance. In machine
translation, Bahdanau et al. [54] suggest the attention focusing mechanism. Taking the
decoder model into account, the focus can be made on the initial text’s essential bits as it is
decoded, reducing information loss. An attention-based BiLSTM-CRF model is used by
Luo et al. [55] for BioNER on a document level. They optimise the tagging inconsistency
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problem by using, between various sentences, mechanisms that are attention-focused. The
best results are obtained on CHEMDNER and CDR corpora using this approach.

Several other works have investigated the benefit of contextual models in biomedical
and clinical areas. Several researchers trained ELMo on biomedical corpora and presented
BioELMo and found that BioELMo beats ELMo on BioNER tasks [56,57]. Along with their
work, a pre-trained BioELMo model was published, enabling further clinical research.
Beltagy et al. [58] released Scientific BERT (SciBERT), where BERT was trained on the
scientific texts. In non-contextual embedding, BERT has been usually superior and better
than ELMo. Similarly, innovative wireless connectivity techniques could be applied to the
remote execution of these techniques [59–62]

Si et al. [63], trained the BERT on clinical notes corpora, using complex task-specific
models to improve both traditional embedding and ELMo embedding i2b2 2010 and 2012
BioNER. Similarly, in another study, a new domain-specific language model, BioBERT [64],
trained a BERT model on biomedical documents from PMC abstracts and articles from
PubMed that resulted in improved BioNER results. Peng et al. [65] introduced Biomedical
Language Understanding Evaluation (BLUE), a collection of resources for evaluating and
analysing natural biomedical language representation models.

2.4. Active Learning (AL)

AL algorithms are beneficial in ML, especially when we have large amounts of unan-
notated data. AL techniques use supervised ML methods in an iterative way. A human
annotator is involved in the learning process and can drastically decrease the human
involvement as demonstrated in Figure 2. Despite its strength, AL has not been fully
explored for biomedical information extraction. AL’s primary goal is to maximise the
model’s effectiveness by reducing the number of samples that need manual labelling. The
main challenge is to find informative samples that are available to train a model, achieving
the better performance and high effectiveness.
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Figure 2. Schematic diagram of AL as an iterative process which help labelling the raw data.

2.5. Active Learning in Clinical Domain

AL aims to reduce the costs and issues related to the manual annotation step in
supervised ML methods. Decreasing the manual annotation burden becomes highly critical
in the clinical domain because of qualified experts’ high costs to annotate the clinical
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free text. AL is used for various biomedical tasks [66], de-identifying clinical records [67],
clinical text classification [68], and clinical named entity recognition [69]. Random sampling
(RS), where samples are chosen randomly, is a commonly used AL technique.

Rosales et al. [70] presented an AL method to identify biomedical information to two
groups. Their method outperformed the traditional methods. Chen et al. [66] presented
a sampling technique established on the changes appearing in different learning models
during AL. Another study on de-identifying of Swedish biomedical samples as a classifi-
cation task was presented by Boström and Dalianis [67]. They presented the comparison
on the performance of two AL methods against RS baseline methods. Recently, Chen
et al. [69] proposed new AL query strategies that belong to uncertainty-based approaches
and diversity-based approaches. Authors presented a comprehensive evaluation of current
and new AL methods on biomedical tasks and found that uncertainty sample-based meth-
ods resulted in less effort being required to label the corpus as compared to diversity-based
methods.

Considering the basic need of having cost-effective AL approaches for biomedical
tasks, the highlighted limitations need to be addressed. Therefore, in this research, our aim
is to address the cost needed for manual annotation using AL and representation learning.

3. Methodology
3.1. Dataset

In this study, we used the following datasets.
DDI extraction 2013 corpus is a collection of 792 texts selected from the DrugBank

database and other 233 Medline abstracts [71]. The drug-drug interactions, including
both pharmacokinetics and pharmacodynamic interactions, were annotated by two expert
pharmacists with a substantial pharmacovigilance background. In our benchmark, we use
624 train files and 191 test files to evaluate the performance and report the micro-average
F1-score of the four DDI types.

ChemProt consists of 1820 PubMed abstracts with chemical-protein interactions anno-
tated by domain experts and was used in the BioCreative VI text mining chemical-protein
interactions shared task [72]. We use the standard training, and test sets in the ChemProt
shared task and evaluate the same five classes: CPR:3, CPR:4, CPR:5, CPR:6, and CPR:9.

HoC (the Hallmarks of Cancers corpus) consists of 1580 PubMed abstracts annotated
with ten currently known hallmarks of cancer [73]. Annotation was performed at the
sentence level by an expert with 15+ years of experience in cancer research. We used 315
(20%) abstracts for testing and the remaining abstracts for training. Table 1 shows the name
along with the task description of the dataset used in this study. Further, Figure 3 depicts
the data analysis of the dataset used in our study.

Table 1. Dataset used.

Dataset Task

DDI Relation Extraction

ChemProt Relation Extraction

HoC Document Classification
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3.2. Active Learning Query Strategies
3.2.1. Random Sampling (RS)

The key idea for random sampling of AL is that it takes a small, random portion of
the entire dataset to represent the entire dataset. Each member has an equal probability.
During the AL application, random sampling is quite the most straightforward algorithm
compared to other query strategies. It applies the random state and shuffles to achieve the
random selection of the training and testing pools.

3.2.2. Least Confidence (LC)

Least confidence is one of the methods belonging to uncertainty sampling, a query
strategy that tries to determine the word’s values by calculating the real uncertainty of the
word.

3.2.3. Informative Diversity and Density (IDD)

IDD is a method used to calculate the information density of an instance x. Unlike
uncertainty sampling, IDD can lead us to take the structure of data into account.

3.2.4. Margin

Margin is also belonging to uncertainty sampling; unlike LC, the margin is designed
to measure the difference in probability of the first and second most likely prediction.

3.2.5. Maximum Representativeness-Diversity (MRD)

Maximum representativeness diversity is a method that relies only on the similarity
between samples and all other samples in unlabelled sets. The most representative is to
mark various samples in the current batch and then add them to the training set. This
method could prevent experts from waiting until the learning model is on the current
set of tags, and then the next batch of samples selects tags using one of the above query
strategies.
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3.3. AL Query Strategies

There are many query strategies in AL; however, not all query strategies are invented
for all situations. We pick up LC and margin because they are the most popular query
strategies in other areas. We pick up RS because it is different from other algorithms as
it picks up pools randomly. Then we choose IDD because IDD uses a different measure
way compared with LC and margin. For the same reason, we pick up MRD to increase the
variety of our query strategies schemes to get a better and reliable result for analysing.

3.4. Feature Extraction Methods

For feature extraction methods, we pick TF-IDF for feature extraction method in many
areas. Then, we add FastText to compare with TF-IDF because TF-IDF only considers the
frequency of a word in a document. FastText, consider more than that which can give
our study result analysis some other aspect to analyse the performance. In the end, we
decided to add BERT and ELMo and their extension into our study. Because BERT and
ELMo are heavy methods compared to others and perform well, especially with NLP tasks
in other areas than other methods. Therefore, we decided also to include this to analyse its
performance with clinical datasets.

3.5. Machine Learning Methods

For ML methods, first of all, we determined to choose some the widely used method
as the basic ML methods for our study is why we pick SVM, KNN, and NB; they are widely
used methods in many different aspects of the dataset. Then, to make some comparison
with SVM, KNN, and NB, we pick up some algorithms with different schemes compared
to SVM, KNN, and NB. XGBoost and CatBoost are both gradient boosts based on decision
trees. Random forest (RF) and AdaBoost are both ensemble functions. Furthermore, each of
them is the most popular method in their area. Therefore, we finally pick these 7 methods
as our ML methods to make our results more reliable by analysing different schemes’
performance.

4. Results and Discussion

The results (Tables 2–13) show that the DDI dataset, which applies BERT for feature
extraction, has the best performance in accuracy when we apply an SVM algorithm with
an AL framework which builds based on MRD query strategies.

Table 2. Comparison of results with and without AL methods (TF-IDF) for DDI dataset.

TF-IDF DDI Supervised
Learning RS LC IDD Margin MRD

SVM
Accuracy 82.17 82.92 81.88 81.44 81.79 82.49

F1 87.08 89.75 86.9 87 86.71 88.73

NB
Accuracy 81.08 82.99 83.04 82.61 83.01 81.84

F1 86.34 90.69 90.7 89.25 90.71 88.78

KNN
Accuracy 64.92 74.99 68.84 67.45 69.87 70.6

F1 61.42 75.71 66.78 64.91 68.72 69.63

XGBoost
Accuracy 82.87 82.62 82.85 79.93 83.06 82.07

F1 89.82 88.56 88.63 84.58 89.03 88.05

Random
forest

Accuracy 81.46 81.03 82.87 81.6 81.27 81.44
F1 84.94 85.65 87.45 86.77 85.86 86.73

AdaBoost
Accuracy 78.11 83.01 82.83 80.56 82.9 82.38

F1 81.31 82.1 90.31 86.32 90.53 89.78

CatBoost
Accuracy 81.18 90.71 91.43 89.93 90.5 89

F1 86.01 87.4 90.8 89 90.1 90.21
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Table 3. Comparison of results with and without AL methods (TF-IDF) for ChemProt dataset.

TF-IDF ChemProt without RS LC IDD Margin MRD

SVM
Accuracy 77.40 79.30 81.88 81.44 81.79 79.12

F1 80.83 86.21 86.9 87 86.71 85.45

NB
Accuracy 79.57 79.59 83.04 82.16 83.01 79.61

F1 87.7 88.64 90.7 89.25 90.71 88.56

KNN
Accuracy 60.68 65.68 68.84. 67.45 69.87 58.57

F1 57.31 64.42 66.78 64.91 68.72 54.43

XGBoost
Accuracy 78.92 78.46 78.99 78.81 79.11 78.91

F1 84.36 83.38 83.82 84.26 83.86 84.64
Random

forest
Accuracy 78.85 78.32 78.55 78.5 78.6 78.58

F1 83.81 84.28 83.04 84.42 83.49 84.39

AdaBoost
Accuracy 76.46 79.38 77.69 77.83 75.51 78.46

F1 82.77 86.63 82.79 85.41 81.22 86.62

CatBoost
Accuracy 78.92 78.81 80.5 84.89 83.5 82.10

F1 84.36 83.63 82.80 82.00 83.10 82.90

Table 4. Comparison of results with and without AL methods (TF-IDF) for HoC dataset.

TF-IDF HoC without RS LC IDD Margin MRD

SVM
Accuracy 93.64 91.39 93.20 93.12 93.16 92.93

F1 91.26 90.39 91.08 90.83 91.08 90.74

KNN
Accuracy 86.50 88.12 86.05 86.35 86.05 89.08

F1 93.51 91.88 93.36 93.42 93.36 93.28

Random
Forest

Accuracy 93.51 90.35 92.99 92.79 92.99 93.12

F1 81.82 86.81 81.63 81.39 81.63 81.07

CatBoost
Accuracy 94.32 92.09 94.90 94.10 93.40 92.10

F1 84.36 83.38 83.82 84.26 83.86 84.64

Random
forest

Accuracy 78.85 78.32 78.55 78.50 78.60 78.58

F1 83.81 84.28 83.04 84.42 83.49 84.39

AdaBoost
Accuracy 76.46 79.38 77.69 77.83 75.51 78.46

F1 82.77 86.63 82.79 85.41 81.22 86.62

CatBoost
Accuracy 78.92 78.81 79.80 78.80 79.10 79.20

F1 84.36 83.63 85.80 84.90 84.20 84.70

Table 5. Comparison of results with and without AL methods (FastText) for DDI dataset.

FastText DDI without RS LC IDD Margin MRD

SVM
Accuracy 83.13 82.59 81.79 81.51 81.54 72.97

F1 90.28 88.21 85.22 86.12 85.24 71.44

NB
Accuracy 83.01 82.93 83.15 83.01 82.99 83.02

F1 90.71 90.48 90.13 90.71 90.21 90.27

KNN
Accuracy 76.46 73.75 73.35 78.31 73.35 73.12

F1 77.53 74.81 73.59 81.54 73.59 73.09

XGBoost
Accuracy 83.41 82.72 83.54 82.55 83.47 83.35

F1 89.99 89.67 89.83 89.11 90.30 89.54

Random
forest

Accuracy 77.45 81.53 81.21 77.69 79.97 80.66

F1 79.60 86.63 85.91 80.34 83.89 84.96
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Table 5. Cont.

FastText DDI without RS LC IDD Margin MRD

AdaBoost
Accuracy 70.58 66.08 82.47 90.61 78.07 78.84

F1 70.25 63.24 89.71 82.94 82.09 83.43

CatBoost
Accuracy 81.17 81.27 82.48 81.46 82.17 82.57

F1 85.24 86.40 88.36 87.35 87.95 88.69

Table 6. Comparison of results with and without AL methods (FastText) for HoC dataset.

FastText HoC without RS LC IDD Margin MRD

SVM
F1 43.01 57.97 33.25 34.34 36.48 40.52

F1 20.86 36.45 31.06 29.41 41.37 27.19

KNN
F1 43.43 40.04 36.89 39.72 39.09 32.64

F1 41.04 45.61 41.75 40.09 49.05 27.77

Random
forest

F1 23.47 28.08 22.87 26.68 23.95 22.04

F1 36.92 32.71 37.75 40.23 45.01 30.39

CatBoost
F1 35.82 32.70 35.47 40.27 37.23 28.30

F1 89.99 89.67 89.83 89.11 90.30 89.54

Random
forest

Accuracy 77.45 81.53 81.21 77.69 79.97 80.66

F1 79.60 86.63 85.91 80.34 83.89 84.96

AdaBoost
Accuracy 70.58 66.08 82.47 90.61 78.07 78.84

F1 70.25 63.24 89.71 82.94 82.09 83.43

CatBoost
Accuracy 81.17 81.27 82.48 81.46 82.17 82.57

F1 85.24 86.40 88.36 87.35 87.95 88.69

Table 7. Comparison of results with and without AL methods (FastText) for ChemProt dataset.

FastText HoC without RS LC IDD Margin MRD

SVM
Accuracy 79.51 79.37 77.64 78.99 79.34 79.06

F1 88.35 87.82 84.07 86.85 87.97 85.73

NB
Accuracy 79.58 79.55 79.46 79.58 79.53 79.54

F1 88.61 88.56 88.27 88.63 88.44 88.45

KNN
Accuracy 74.64 75.86 75.52 74.92 69.05 75.85

F1 78.44 81.21 80.94 79.87 70.67 81.11

XGBoost
Accuracy 79.61 79.57 79.62 79.65 79.51 79.63

F1 88.29 88.41 88.37 88.47 88.43 88.54

Random
forest

Accuracy 67.89 68.41 76.20 74.21 76.39 77.73

F1 68.68 69.73 82.43 79.06 82.49 84.66

AdaBoost
Accuracy 73.69 68.49 77.13 74.30 71.35 76.33

F1 78.62 69.93 84.57 80.24 75.87 82.92

CatBoost
Accuracy 79.57 79.53 79.62 79.58 78.46 79.59

F1 88.33 88.16 88.37 88.32 86.13 88.42
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Table 8. Comparison of results with and without AL methods (BERT) for DDI dataset.

BERT HoC without RS LC IDD Margin MRD

SVM
Accuracy 82.24 83.37 82.95 81.64 79.78 83.72

F1 86.59 89.57 85.58 85.53 81.94 89.48

NB
Accuracy 62.59 62.70 67.87 65.51 66.22 42.15

F1 58.53 58.72 66.18 62.75 64.05 32.30

KNN
Accuracy 73.77 75.51 73.55 74.90 73.44 73.81

F1 74.20 76.92 74.12 76.04 73.94 74.54

XGBoost
Accuracy 83.09 82.59 82.78 82.97 83.09 82.56

F1 88.85 88.73 88.11 88.99 88.41 88.21

Random
forest

Accuracy 75.89 78.93 79.43 78.25 79.90 79.43

F1 77.80 82.30 83.64 81.87 84.37 82.78

AdaBoost
Accuracy 82.59 74.85 81.74 81.93 81.53 79.76

F1 89.80 76.37 87.41 88.39 87.91 84.87

CatBoost
Accuracy 81.11 81.03 81.88 82.16 82.45 81.91

F1 85.85 85.14 86.59 87.80 87.79 86.75

Table 9. Comparison of results with and without AL methods (BERT) for HoC dataset.

BERT HoC without RS LC IDD Margin MRD

SVM
F1 83.60 83.46 89.26 89.33 89.26 89.63

F1 85.96 82.87 84.20 84.51 84.20 78.80

KNN
F1 82.81 82.22 81.96 81.56 81.96 81.86

F1 86.80 85.24 86.40 85.94 86.40 86.29

Random
forest

F1 83.69 83.43 83.69 82.40 83.69 84.17

F1 94.65 86.64 95.67 91.50 95.67 91.87

CatBoost
F1 85.72 85.24 86.28 85.95 86.28 86.68

F1 88.85 88.73 88.11 88.99 88.41 88.21

Random
forest

Accuracy 75.89 78.93 79.43 78.25 79.90 79.43

F1 77.80 82.30 83.64 81.87 84.37 82.78

AdaBoost
Accuracy 82.59 74.85 81.74 81.93 81.53 79.76

F1 89.80 76.37 87.41 88.39 87.91 84.87

CatBoost
Accuracy 81.11 81.03 81.88 82.16 82.45 81.91

F1 85.85 85.14 86.59 87.80 87.79 86.75
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Table 10. Comparison of results with and without AL methods (BERT) for ChemProt dataset.

BERT ChemProt without RS LC IDD Margin MRD

SVM
Accuracy 79.59 79.58 78.68 79.20 79.44 79.50

F1 88.63 88.63 84.80 87.00 87.41 88.01

NB
Accuracy 69.71 67.61 67.45 67.00 60.44 55.39

F1 73.09 70.10 69.60 69.15 59.19 51.79

KNN
Accuracy 65.92 68.42 64.70 64.12 64.73 64.69

F1 65.87 69.73 64.36 63.58 64.36 64.33

XGBoost
Accuracy 79.57 79.44 79.44 79.38 79.40 79.35

F1 88.49 88.19 88.01 87.61 87.84 87.68

Random
forest

Accuracy 76.62 76.11 76.73 76.18 77.01 76.26

F1 82.88 82.31 83.21 82.18 83.62 82.27

AdaBoost
Accuracy 79.17 68.12 73.86 71.79 76.62 74.45

F1 87.93 70.18 79.46 76.09 83.04 80.28

CatBoost
Accuracy 78.19 77.81 77.77 77.67 77.31 76.61

F1 85.53 84.72 84.82 84.31 84.22 82.76

Table 11. Comparison of results with and without AL methods (ELMo) for DDI dataset.

ELMo DDI without RS LC IDD Margin MRD

SVM
Accuracy 83.01 83.01 83.01 83.01 83.01 83.01

F1 90.71 90.71 90.71 90.71 90.71 90.71

NB
Accuracy 38.21 44.61 50.56 55.06 56.22 56.29

F1 28.45 36.23 48.32 47.97 50.28 49.46

KNN
Accuracy 78.43 79.60 79.33 80.56 79.12 80.78

F1 79.11 82.54 81.26 84.26 82.77 84.38

XGBoost
Accuracy 82.38 83.13 82.17 82.79 83.16 82.87

F1 88.23 90.20 88.65 90.62 90.66 89.94

Random
forest

Accuracy 80.82 79.92 80.43 80.32 81.41 80.85

F1 85.31 84.44 86.21 85.10 87.06 86.15

AdaBoost
Accuracy 77.56 78.01 79.76 78.15 80.99 80.16

F1 81.32 82.40 83.53 82.45 86.53 85.32

CatBoost
Accuracy 80.45 82.42 81.43 82.97 83.02 82.90

F1 87.34 88.71 89.54 90.35 90.42 89.34
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Table 12. Comparison of results with and without AL methods (ELMo) for HoC dataset.

ELMo HoC without RS LC IDD Margin MRD

SVM
F1 85.76 84.51 90.51 90.78 90.62 90.73

F1 84.75 82.58 84.84 84.21 84.84 82.73

KNN
F1 84.06 82.95 81.86 82.19 83.91 81.64

F1 88.31 87.10 88.08 87.94 88.12 87.95

Random
forest

F1 78.45 78.56 79.94 74.27 79.94 79.92

F1 98.10 90.95 91.49 94.81 93.94 93.09

CatBoost
F1 86.61 87.16 87.16 86.69 87.39 88.01

F1 88.23 90.20 88.65 90.62 90.66 89.94

Random
forest

Accuracy 80.82 79.92 80.43 80.32 81.41 80.85

F1 85.31 84.44 86.21 85.10 87.06 86.15

AdaBoost
Accuracy 77.56 78.01 79.76 78.15 80.99 80.16

F1 81.32 82.40 83.53 82.45 86.53 85.32

CatBoost
Accuracy 80.45 82.42 81.43 82.97 83.02 82.90

F1 87.34 88.71 89.54 90.35 90.42 89.34

Table 13. Comparison of results with and without AL methods (ELMo) for ChemProt dataset.

ELMo ChemProt without RS LC IDD Margin MRD

SVM
Accuracy 79.59 79.59 79.59 79.59 79.59 79.59

F1 88.63 88.64 88.64 88.64 88.64 88.64

NB
Accuracy 37.77 38.59 48.91 50.18 50.46 45.55

F1 28.23 29.20 41.98 42.98 43.42 37.91

KNN
Accuracy 62.52 64.89 63.57 63.76 62.34 67.18

F1 60.38 63.78 62,08 62,64 60.08 67.35

XGBoost
Accuracy 79.83 79.72 79.96 79.65 79.81 79.75

F1 88.00 87.56 87.26 87.47 87.27 87.45

Random
forest

Accuracy 74.82 75.38 77.42 73.49 77.60 76.97

F1 80.22 80.87 83.68 77.86 84.28 84.00

AdaBoost
Accuracy 72.88 68.11 77.02 75.58 76.72 75.50

F1 76.40 69.51 83.92 81.45 82.68 76.88

CatBoost
Accuracy 76.78 76.23 78.45 78.34 78.79 76.94

F1 82.01 81.92 84.61 84.92 85.17 83.05

The result shows a table DDI dataset, which applies BERT for feature extraction
and has the best performance in accuracy when applying an SVM algorithm with an AL
framework that builds based on MRD query strategies.

Almost all ML methods have good performance except KNN algorithms. Further-
more, in general, AL algorithms have slightly better performance than passive learning
algorithms.

HoC datasets have a much clearer difference between different methods applied.
In general, AL performs better than passive learning algorithms. For ML algorithms,
we can see that XGBoost and CatBoost have relatively better performance than others.
Furthermore, for query strategies, margins have overall better performance than others.

The following are answers to our research questions.
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• CatBoost performs better than others in most situations after we summarise all results
tables.

• In general, LC and margin have better performance than other query strategies after
we summarise all result tables.

• Overall, AL performance is better; therefore, AL is more recommended than passive
learning.

In addition to the above results, we also notice that CatBoost always performs stably
in every situation where other classifiers somehow have some bad performance. The
judgement of LC and margin performance is challenging since they still have similar
performance in almost all cases.

For the first results, CatBoost, as described in the methodology, is part of the gradient
boost based on DT. This structure gives CatBoost the ability to get more chances to recover
the errors during the implementation of the entire CatBoost structure since the later tree will
fix the error that occurred by the previous tree. At the same time, the CatBoost boosting
scheme is modified to be more efficient than other gradient boost algorithms, such as
XGBoost, which gives CatBoost stability when changing the hyperparameters, especially
with extensive data. All these advantages make CatBoost, overall, have a better ability
to perform better in our study. Besides other algorithms such as AdaBoost, SVM is very
sensitive with the correlation between data and data, which lead them to make more
mistakes during the training and prediction than other algorithms.

For the second result, both LC and margin belong to uncertainty sampling, which
calculates the uncertainty between data to measure the value of the word to decide the
query order. Therefore, we can consider these two methods as a similar scheme used for
AL. Then, uncertainty sampling was invented to reduce classification errors, making them
more able to reduce classification errors than other query strategies, which is also what
our study aims for. At the same time, IDD and MRD focused more on one word to decide
the values. This could be better than uncertainty sampling with efficiently pre-computed;
however, we cannot develop an efficiently pre-computed IDD and MRD algorithm to test
the performance due to the tight time for implementation. This lead IDD and MRD cannot
perform better than LC and Margin.

For the third result, the main reason why we can achieve better performance since with
fewer data trained by using AL than using passive learning is the unbalance of the dataset.
More data does not mean more accuracy for text classification. There exist iterations for the
classification, even with all valuable data. In this time, insufficient data can immediately
cause errors and reduce the accuracy of the classification. Therefore, the most important
thing for classification is not the number of training pools. The most important thing is,
can you find out which data is valuable enough to train the classifier. The AL algorithm
is invented to achieve this goal by applying different query strategies. Therefore, AL
can perform better than passive learning. Graphical representation of results is shown in
Figure 4.
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5. Conclusions

We conducted a simulated study to compare different AL algorithms for a clinical
task. Our results showed that most AL algorithms outperformed the passive learning
method when we assume equal annotation cost for each sentence. However, savings of
annotation by AL were reduced when the length of sentences was considered. We suggest
that the effectiveness of AL for clinical NER needs to be further evaluated by developing
AL enabled annotation systems and conducting user studies.

We can conclude that AL is more recommended to test a clinical dataset classification
with unlabelled data than passive learning. Compared to nowadays techniques to generate
the health care outcomes, it will provide at least the same accuracy as before and even with
less training dataset, which will significantly decrease the cost of collecting and labelling
the dataset. Also, we can see that CatBoost makes a great performance combined with the
uncertainty sampling AL framework. This also gives more options to choose when people
want to implement the AL to text classification. Furthermore, the domain knowledge is not



Appl. Syst. Innov. 2021, 4, 23 16 of 18

so hard to understand since AL is still one part of ML; therefore, the required knowledge is
only ML; once master this knowledge, the rest part is not hard to implement.
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