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Abstract: Most of the existing nonlinear ship course-keeping control systems are designed with the
Nomoto model, which solely considers the yawing of the ship with only one Degree of Freedom
(DOF), and it does not consider the coupling between the longitudinal and the lateral velocity of
the ship. In this paper, a nonlinear ship course controller design method that can be used in a
nonlinear coupled model was proposed. A stable nonlinear ship course controller with anti-wind
and anti-wave interference was constructed based on the Lyapunov stability principle and robust
control theory, which can be used in the course control of autopilot in the case of wind and waves. In
this method, the coupling among the longitudinal and lateral velocity as well as yawing of the ship
was considered. The simulation results showed that the method can not only effectively control the
ship’s course but also can track the dynamic course effectively. At the same time, compared with the
PID control method based on backstepping, the steering angle of the rudder angle of our method is
smaller and the wear and tear of steering gear will be smaller.

Keywords: course-keeping control; nonlinear ship control; concise robust control; Lyapunov stability

1. Introduction

Autopilot is a piece of indispensable and vital equipment for ship maneuvering
nowadays. With the improvement of navigation safety requirements and the growth of
transportation demand, the requirements for autopilot are also increasing rapidly. The
appearance of autopilot is a milestone in the field of navigation. It has led to the expectation
to eliminate heavy manual labor and to realize automatic control in ship handling. Early
mechanical autopilot can only carry out simple proportional control. It needs to select
low gain for the sake of avoiding oscillation and it can only be used for low-precision
course-keeping control.

In the 1950s, the second generation, with a more complex and efficient electromechan-
ical autopilot, emerged, which is well known as the PID autopilot. Its course deviation
provides a correction signal to the steering equipment in an autopilot; however, the PID
control method is too sensitive to high-frequency interference such as wind and waves.
The “dead zone” nonlinear regulation is often adopted for complex steering to avoid the
oscillation in course caused by high-frequency interference. Nevertheless, the dead zone
often leads to the deterioration of the low-frequency characteristics for the control system,
resulting in continuous periodic yawing, which will cause the deterioration of navigation
accuracy, an increase in energy consumption, and the aggravation of rudder wear [1] Com-
pared with the first generation of autopilot, the second generation of autopilot has made
great progress, but it still cannot adapt to changes in the working conditions and working
environment of the ship. Therefore, the steering operation is too frequent, the steering
rudder angle is large, and the energy consumption and wear and tear of the steering gear
are significant.

In the 1970s, due to the development of adaptive control theory and the progress of
computer technology, researchers began to discuss the possibility of introducing adaptive
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control theory into ship automatic control. Under their unremitting efforts, the third gener-
ation of adaptive autopilot products was born [2,3]. Adaptive control [4,5] is a dynamic
control method that can continuously and automatically identify the parameters of the
target system, and the algorithm could adapt the ship to varying environmental condi-
tions. Adaptive control mainly includes the adaptive PID method, the random adaptive
method [6], the model reference method [2,3], and the self-correction method [7,8]. How-
ever, the adaptive control method is not only related to the estimated value of the cost
function but also depends on the accuracy of the disturbance model established in the con-
troller. Adaptive autopilot has achieved certain results in improving control accuracy and
reducing energy consumption. However, due to the high cost of physical implementation
and difficulty in parameter adjustment, especially due to the nonlinearity and uncertainty
of ship motion and sea state, it is difficult to guarantee the control performance in bad
weather, and sometimes it even affects the stability of the system.

In recent years, with the continuous development of modern control theory and
computer technology, various new control methods have been applied to the field of
nonlinear ship course control, such as the feedback linearization [9], generalized predictive
control [10,11], and LQR [12]/LQG [13] methods. However, these methods have higher
requirements of the control target model, and some of them have difficulty guaranteeing
the control performance due to the nonlinearity and uncertainty of the ship motion system.

For ship course control, it shows nonlinearity due to uncertain disturbances such as
wind, wave, and current [14–16].

To solve the nonlinear and uncertain problems of ship course control, many nonlinear
control technologies have been developed in ship course control. For instance, the ship
course-keeping and track-keeping control based on sliding mode control [17–19] has
certain robustness to system uncertainty and external disturbance, but the high-frequency
oscillation phenomenon of sliding model control is difficult resolve.

Furthermore, the nonlinear robust controller for ship course control has been proposed
by introducing an integral item to eliminate the static error [20]. The stability of the course
controller is guaranteed by the construction of the Lyapunov candidate function [21,22].
Nevertheless, the control target of this method only has one DOF in ship yawing and lacks
the coupling of longitudinal and lateral velocity, so there is a limitation in its practical
application. For nonlinear ship control, the µ-synthesis method has an advantage in terms
of robustness, but it is difficult to determine the parameters in the controller [23], which
limits its application in practical use.

While another method based on the Lyapunov candidate function has attracted much
attention in the ship course control field [16,24,25], this method deals with the nonlinear
term recursively and it is also capable of tracking the course for under-actuated ships with
stochastics disturbances [26].

The contribution and novelty of our method:
1. A concise robust controller design method for a nonlinear 3DOF model based on

the Lyapunov stability principle is proposed, and the method takes the longitudinal and
the lateral velocity coupling into consideration. Our method is easy to implement with few
parameters to determine.

2. The performance of our new method is verified on a 3DOF ship mode; the new
method can achieve better steering performance with less rudder wear.

2. Basic Structure of Ship Course Control System

The basic structure of the ship course control system is shown in Figure 1. The
structure of ship course control mainly includes a controller, steering gear model, ship
motion mathematical model, wind wave, and other external interferences.
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Figure 1. The basic structure for ship course control in simulation.

In Figure 1, ψd is the setting target course; ψ is the current course; ∆ψ is the course
deviation between the target course and current course; δr is the control rudder angle output
from the controller; δ is the rudder angle after considering the characteristic limitation of
the steering gear; δw is the equivalent rudder angle of external interference such as wind
and waves.

The basic process of ship course control mainly involves the following four steps:
(1) The rudder angle is applied to adjust the ship’s course when the ship is sailing.

The ship course control input is obtained by comparing the target course with the current
course, and the controller output is calculated according to the control law design.

(2) Because the actual rudder angle output is limited by the characteristics of the steer-
ing gear, the limitation contains the maximum rudder angle limit and the rudder angular
velocity limit. After the correction, the rudder angle output satisfying the characteristics of
the steering gear is obtained, and the rectified rudder angle output is closer to reality after
considering the characteristic limitation of the steering gear.

(3) The mathematical model of ship motion produces the corresponding yawing under
the action of the input rudder angle, and the corresponding equivalent rudder angle output
is obtained under the effect of external wind and wave interference; hence, the actual
heading output is obtained after the superposition of the two. At this time, the output
heading includes wind–wave interference. In this way, we can handle both the wind and
wave via the equivalent input rudder angle, instead of dealing with the wind and wave
themselves. This makes the control system more concise. For Beaufort scale 6, the wave
disturbance model driven by Gaussian white noise is as below:

ψH =
0.4198s

s2 + 0.3638s + 0.3675
wH (1)

where ψH , s, wH are the Gaussian white noise, Laplace operator, and high-frequency wave
disturbance, respectively. For more detailed information, please refer to reference [24,25].

(4) The actual course is fed back to the controller through the compass and other
sensors. The variance is obtained by comparing with the target course; thus, the controller
completes the closed-loop cycle.

From the basic structure of the ship course controller, it can be seen that the mathemati-
cal model and controller of ship motion are the core of the whole system. The mathematical
model of ship motion is the mathematical abstraction of the actual ship, which reflects the
dynamic and kinematic characteristics of the actual ship to a certain extent; hence, it can
be regarded as an approximation of the actual ship. The controller is a device to calculate
the control rudder angle according to the course deviation and control law designed. The
performance of the controller directly affects the energy consumption of the ship and the
wear and tear of the steering gear.
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3. Mathematical Model of Ship Motion

The integrated modeling method of ship motion has a strict mathematical foundation.
Because the interaction between various parts of the ship has been automatically taken into
account in the hydrodynamic derivatives experiment, it has higher accuracy theoretically.

From the point of view of the Abkowitz nonlinear ship motion model, the third-order
dynamic nonlinear model of the ship is developed from the Taylor series. The general
expression of the hydrodynamic force of ship motion is stated as follows:

m(
.
u− vr− xGr2) = X(

.
u,

.
v,

.
r, u, v, r, n, δ)

m(
.
v + ur + xG

.
r) = Y(

.
u,

.
v,

.
r, u, v, r, n, δ)

Izz
.
r + mxG(

.
v + ur) = N(

.
u,

.
v,

.
r, u, v, r, n, δ)

(2)

Among them, m is the mass of ship hull;
.
u,

.
v,

.
r, u, v, r are the longitudinal acceleration,

lateral acceleration, yawing angle acceleration, and the corresponding velocity components,
respectively; n, δ is the propeller revolution and rudder angle, respectively; xG are the
distance between the hull center and the centerline; X, Y represent the longitudinal and
lateral forces on the hull, respectively; N is the turning moment.

The above formula is expanded by the Taylor series near the equilibrium point, and
the higher-order terms above the third order are ignored in the control design. In addition,
the terms of rigid inertia force, fluid inertia force acting on the hull, lift, and resistance terms
are substituted into the above formula; hence, the non-dimensional Abkowitz nonlinear
mathematical model of ship motion is obtained:

(m− X .
u)

.
u = f1(u, v, r, δ)/0.5ρL3

(m− X .
v)

.
v = f2(u, v, r, δ)/0.5ρL3

(mxG − N .
v)

.
v + (Izz − N.

r)
.
r = f3(u, v, r, δ)/0.5ρL4

(3)

where:
f1(u, v, r, δ) = X0 + Xu∆u + Xuu∆u2 + Xuuu∆u3 + Xvv∆v2

+ (Xrr + mxG)r2 + Xδδδ2 + (Xvr + m)vr + Xvδvδ
+ Xrδrδ + Xvvuv2∆u + Xrrur2∆u
+ Xδδuδ2∆u + Xvruvr∆u + Xvδuvδ∆u + Xrδurδ∆u

(4)

f2(u, v, r, δ) = Y0 + Yu∆u + Yuu∆u2 + Yuuu∆u3 + Yvv + Yrr + mru
+ Yδδ + Yvvv∆v3 + Yrrr∆r3 + Yδδδδ3 + Yvvrv2r + Yvvδv2δ
+ Yvrrvr2 + Yδrrδr2 + Yvδδvδ2 + Yrδδrδ2 + Yvrδvrδ + Yvuv∆u
+ Yrur∆u + Yδuδ∆u + Yvuuv∆u2 + Yruur∆u2 + Yδuuδ∆u2

(5)

f3(u, v, r, δ) = N0 + Nu∆u + Nuu∆u2 + Nuuu∆u3 + Nvv + Nrr
+ Nδδ + Nvvv∆v3 + Nrrr∆r3 + Nδδδδ3

+ Nvvrv2r + Nvvδv2δ + Nvrrvr2 + Nδrrδr2

+ Nvδδvδ2 + Nrδδrδ2 + Nvrδvrδ + Nvuv∆u
+ Nrur∆u−mxGr∆u + Nδuδ∆u + Nvuuv∆u2

+ Nruur∆u2 + Nδuuδ∆u2

(6)

Among them are the hydrodynamics derivatives except for u, v, r, δ, which could
be determined by experiments. Among the parameters on the right side, X, Y, N are
hydrodynamic derivatives.

4. Design of a Nonlinear Robust Controller for Ship Course Control
4.1. Design of Concise Robust (CROB) Controller

H∞ robust control theory solves the problem of robust controller design for MIMO
systems in the frequency domain. However, the whole design process is not only based on
difficult mathematical theory but also requires many experiments to be carried out to choose
the proper weight function to obtain a robust controller with better performance. Moreover,
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the order of the controller obtained is always too high, which is a time-consuming task
compared with the robustness of the controller; in other words, the price is too high.

Given the correlation between the mixed sensitivity algorithm and the compensation
sensitivity function T and sensitivity function S in the robust control theory, G represents
the transfer function for the system and K is the controller designed; the controller can
be determined by constructing the four parameters related to compensation sensitivity
function T, such as maximum singular value, bandwidth, closing-door slope, and closed-
loop of peak spectrum. Because these four parameters are of engineering significance, the
controller is designed in accordance with the closed-loop transfer function of the system.
Because of the correlation between S and T, the shape of S can be determined indirectly
once the shape of T is set up, and the robust performance and robust stability of the system
are guaranteed. This method is called the closed-loop gain-forming algorithm, which is
also named the concise robust control method.

If the H∞ mixed sensitivity control algorithm is the product of positive thinking, the
loop-shaping algorithm can be said to be the product of divergent thinking, and the concise
robust control algorithm based on closed-loop gain-shaping is the product of reverse
thinking.

The typical S/T Singular Value (SV) curve is shown in Figure 2. To make the system
robust and stable, the closed-loop spectrum of the system is required to be low-pass, and
the maximum singular value is set to 1 to ensure the tracking of the reference signal without
static error; the bandwidth of the system determines the control performance of the system,
and the closing-door slope rate of the spectrum determines the sensitivity of the system to
the interference outside the invalid frequency band. The larger the slope, the less sensitive
the influence on the interference, and the stronger the robustness of the system. However,
if the slope of the closing door is too large, the order of the controller is too high, which
is not practicable for the realization of the controller. Generally speaking, the slope of
door-closing can be set as −20 db/dec, −40 db/dec, and −60 db/dec.
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Assuming that the door-closing slope of the closed-loop system transfer function
spectrum is −20 dB/DEC, the singular value curve of the complementary sensitivity
function T is approximately expressed as the spectrum curve of the first-order inertial
system with the maximum singular value of 1:

1
Ts + 1

=
GK

1 + GK
(7)

If the bandwidth of the closed-loop system is 1/T, then the controller is

K =
1

GT s
(8)
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If the door-closing slope of the closed-loop system transfer function spectrum is −40
dB/DEC, the singular value curve of T is approximately expressed as the spectrum curve
of the second-order inertial system with the maximum singular value of 1. Compared with
the typical oscillation process, this is equivalent to the case where the damping coefficient
is 1, thus ensuring that the spectrum of T has no peak for all door-closing slopes:

1

(T s + 1)2 =
GK

1 + GK
(9)

The controller is obtained as

K =
1

GT s(T s + 2)
(10)

For − 60 dB/DEC, we have:

1

(T s + 1)3 =
GK

1 + GK
(11)

and the controller is:
K =

1

G
[
(T s + 1)3 − 1

] (12)

4.2. Nominal Model for Control Law Design

At present, the nonlinear mathematical model of ship motion control is commonly
used. The model has a simple form and few parameters, which can also basically reflect the
nonlinear characteristics of the ship turning. However, it can only reveal the relationship
between rudder angle and yawing, which cannot reflect the influence of the ship’s velocity
on yawing, hence limiting its application range.

In practical application, ship motion attitude is often considered in the design of ship
motion controllers, so it is necessary to study the design of a ship controller with multiple
degrees of freedom. In other words, the longitudinal and the lateral velocity of the ship
should be considered at least.

The transformation of the terms f3 in the Abkowitz model as mentioned in Equation
(6) is carried out, and the terms include δ, and higher-order terms including Nδδδδ3, Nvδδvδ2,
Nrδδrδ2 are ignored in the control law design, as they exert a minor influence on the final
result, the parameter could be found in Table A1 in the Appendix A. Assume that:

f3(u, v, r, δ) = N1 + N2δ (13)

Among them:
N1 = N0 +Nu∆u + Nuu∆u2 + Nuuu∆u3 + Nvv

+Nrr + Nvvv∆v3 + Nrrr∆r3 + Nvvrv2r
+Nvrrvr2 + Nvuv∆u + Nrur∆u−mxGr∆u
+Nvuuv∆u2 + Nruur∆u2

N2 = Nδ +Nvvδv2 + Nδrrr2 + Nvrδvr + Nδu∆u + Nδuu∆u2

(14)

N1 and N2 are nonlinear terms related to ship motion.
In 1965, Chislett carried out comprehensive research on “mariner” by Planar Motion

Mechanism (PMM); the hydrodynamics of the vessel were obtained. The result had good
conformity with the sea trial results in ship steady-turning and zigzag experiments. The
parameters of the mariner are presented in Table 1.
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Table 1. Parameters of the mariner.

Parameter Value Parameter Value

Lengh of all Loa 171.80 Volume of displacement5 (m3) 18,541.00
Length between

perpendiculars Lpp (m) 160.93 Rudder area AR (m2) 30.01

Breadth B (m) 23.17 Height of rudder H (m) 4.05
Designed draught d (m) 8.23 Diameter of propeller Dp (m) 6.706

With the purpose of verifying the influence on the simplification of δ and related
terms, the steady-turning and the zigzag tests are conducted for the nominal model as
described by Equation (13). Meanwhile, the simulation result is compared with the result
from Chislett as well as the sea trial results.

As illustrated in Figure 3, the result of 2 the 0◦/20◦ zigzag test is plotted. This refers to
the results from Chislett, our simulation results, and sea trial results, respectively. It can be
observed that the turning rate starts to increase under the rudder angle. The rudder starts
to revert once the course reaches its target value. The course continues to increase due to
the huge inertial of the ship even with the rudder reverted, but the course starts to revert
until the turning rate decrease to zero. As indicated by the fact that our nominal model
agrees with the result from Chislett and the sea trial results, the nominal model is close
to the original Abkowitz model even if the δ-related higher-order terms are ignored, as
shown in Equation (13).

Appl. Syst. Innov. 2021, 4, x FOR PEER REVIEW 8 of 15 
 

 

due to the huge inertial of the ship even with the rudder reverted, but the course starts to 

revert until the turning rate decrease to zero. As indicated by the fact that our nominal 

model agrees with the result from Chislett and the sea trial results, the nominal model is 

close to the original Abkowitz model even if the  -related higher-order terms are ig-

nored, as shown in Equation (13). 

 

Figure 3. Comparison of zigzag test results (velocity of 15 kn). 

The steady-state turning test is carried out at a rudder angle of 5°, 10°, 20° for both 

starboard and port side, and the results are shown in Figure 4. It is clear that the turning 

process includes the transition stage and steady-turning stage. In the transition stage, the 

ship starts yawing under the rudder angle applied; then, the turning rate reaches the max-

imum. After this, the turning rate begins to decrease slightly; shortly after, the turning 

rate becomes steady at around 200 s, and the ship begins a steady-state turning process. 

 

Figure 4. Steady-state turning test (velocity of 15 kn). 

Figure 3. Comparison of zigzag test results (velocity of 15 kn).

The steady-state turning test is carried out at a rudder angle of 5◦, 10◦, 20◦ for both
starboard and port side, and the results are shown in Figure 4. It is clear that the turning
process includes the transition stage and steady-turning stage. In the transition stage,
the ship starts yawing under the rudder angle applied; then, the turning rate reaches the
maximum. After this, the turning rate begins to decrease slightly; shortly after, the turning
rate becomes steady at around 200 s, and the ship begins a steady-state turning process.
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As shown in Figure 5, the mariner’s steady-state turning test is established in line
with the Abkowitz model. The test has been carried out several times in the range of
[−20,20] degree rudder angle with 4◦ rudder angle interval. Among the above results, the
simulation results of Chislett [27], the simulation results of our model in this paper, and
the ship trial results are shown. It can be seen from the above results that the simulation
results of our model are basically consistent with the simulation results of Chislett [27] and
are close to the ship trial results of the real ship, which can reveal the basic characteristics
of the actual ship. It should be noted that the simplified model is only used for the design
of control law, also known as the nominal model, while the original Abkowitz ship motion
model is called the perturbation model.
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4.3. Design of Nonlinear Ship Course Controller Based on Backstepping

The mathematical model of ship motion has a certain nonlinearity, and the back-
stepping method can deal with the nonlinear term effectively. The Lyapunov function
of the whole system is constructed recursively through the structural characteristics of
the system, which solves the problem that the Lyapunov method lacks the construction
method. Moreover, it does not eliminate all the nonlinear terms of the system as other
feedback methods do so that the designed controller is both flexible and robust. Moreover,
it can reduce the control difficulty and energy consumption of the system.
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The backstepping method and precise feedback linearization method are constructed
by introducing nonlinear feedback or coordinate transformation, but the backstepping
method constructs the Lyapunov function and stabilization controller simultaneously
through the systematization method, so as to avoid eliminating the nonlinear term of
the system. It can also overcome the shortcoming that the precise feedback linearization
method needs an accurate system of the mathematical model.

Define: {
z1 = ψ− ψd

z2 = r
(15)

where
.
r = f3 = N1 + N2δ (16)

Define the Lyapunov function:

V =
1
2

k1z2
1 +

1
2

z2
2 (17)

Yield: .
V = k1z1

.
z1 + z2

.
z2

= k1z1(r− rd) + z2
.
r

= k1z1(z2 − rd) + z2
.
r

(18)

where ψd and rd are the setting course and its derivatives, respectively. In navigation
practice, since the target course ψd to be tracked is usually a fixed value or its change is
slow, it is assumed that rd = 0 here. It should be noted that although this assumption is
made here, it was found in the subsequent course tracking test that this method can also
realize the course tracking control for the case rd 6= 0. By substituting Equation (16) into
Equation (18), we obtain the following results:

.
V = k1z1(z2 − rd) + z2(

.
r + k1z1 − k1z1 + k2z2 − k2z2)

= k1z1z2 + z2(N1 + N2δ + k1z1 + k2z2 − k1z1 − k2z2)
(19)

Assuming:
N1 + N2δ + k1z1 + k2z2 = 0 (20)

Then, the control law is obtained:

δ = − 1
N2

[N1 + k1z1 + k2z2] (21)

Yield: .
V = −k2z2

2 (22)

where k1, k2 > 0 is the feedback coefficient. Thus, for z2 6= 0; hence:

.
V < 0 (23)

In this case, the system can be stabilized.

5. Simulation Experiments and Result Analysis
5.1. Nonlinear Ship Course-Keeping Experiment Results and Analysis

Without considering the disturbance of wind and waves, the results of ship course-
keeping control by the different methods are shown in Figures 6 and 7. The target course is
30 degrees. The step curves of 0–2000 s are the results of a door-closing slope of −20 dB,
−40 dB, −60 dB under PID control. From 400 s to 2000 s in Figure 7, the overlay results of
the first 400 s of the corresponding rudder angle are plotted. It can be seen that the control
performance of the CROB method with a −20 dB door-closing slope is close to that of PID
control. However, the rudder angle is larger and the response is faster; the rudder angle
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decreases gradually with the increase in the door-closing slope, and the system response
also decreases. If the door-closing slope is −60 dB, the maximum rudder angle is less than
20◦. As a result, under the same conditions, increasing the door-closing slope is beneficial
to decrease the maximum rudder angle. Thus, it can improve navigation safety to a certain
extent. In particular, when the vessel is at high-speed navigation, instantaneous application
of a large rudder angle should be avoided. In this paper, all the simulation are carried out
on Matlab 2015 with the Simulink toolbox, on a 64-bit Windows 10 operating system.
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5.2. Course-Tracking Experiment and Analysis

Figure 8 is the result of dynamically tracking course change with the target course
defined by 10sin(2π/100). It can be seen from the results that the PID control and CROB
control based on backstepping can effectively track the target course.

At approximately 30 s, the course has been tracked after a short adjustment. Moreover,
the rudder angle also shows a certain periodic law compared with the periodic course.
However, due to the large inertia of the ship, there is a certain delay between the maximum
rudder angle and the maximum course. Hence, the influence of the target course derivative
is ignored in the course control law design, as described in Equation (21), but the effective
tracking of the dynamic change course can still be achieved for a certain period (200 s).
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5.3. Nonlinear Ship Robust Course-Keeping Control Experiment Results and Analysis in Case of
Wind and Wave Disturbance

Under the wind interference with Beaufort scale 6, the control result of ship course-
keeping is described in Figures 9 and 10, and the details of wind and wave are shown in
reference [24,25]. The target course is set at 30◦. The maximum rudder angles are 35◦, 32.4◦,
23.4◦, and 35◦, respectively. Compared with PID control, the maximum rudder angle is
decreased by 7.4% and 33.2% when the CROB method with a door-closing slope of −40 dB
and −60 dB, respectively, is used. Therefore, it can be observed that an increase in the
door-closing slope can effectively reduce the maximum rudder angle.
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Figure 10. Rudder angle comparison under concise robust control and PID in case of wind and wave
disturbance.

In the stable condition (500 s–1000 s), the maximum rudder angle, average rudder
angle, rudder angle variance, and the time to the target heading of different control methods
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are shown in Table 2, which shows that: 1© the applied average rudder angle is 2.95◦, which
is consistent with the reference [24,25] with a 3◦ rudder angle; 2©with the increase in the
door-closing slope, the concise robust control algorithm can reduce the maximum rudder
angle and rudder angle variance under wind–wave interference, achieving the goal of
reducing the rudder wear and energy consumption.

Table 2. Concise robust control with wind–wave disturbance (500 s–1000 s).

Control Method Max Rudder
Angle (◦)

Avg Rudder
Angle (◦)

Variance of
Rudder Angle

Time to 95%
Target Course

(s)

CROB −20 dB 5.68 −2.94 5641.30 110.06
CROB −40 dB 3.61 −2.95 90.45 209.09
CROB −60 dB 3.20 −2.95 19.81 303.00

PID 4.56 −2.95 3189.80 154.90

However, in practice, a larger the door-closing slope does not yield better results.
For example, the maximum rudder angle is 5.68◦, 3.61◦, and 3.20◦ in the concise robust
control algorithm, while the relative maximum rudder angle decreased by 36% and 11%
for −40 dB and −60 dB door-closing slopes, respectively, as shown in Table 2; the rudder
angle variance is decreased by 61.4 times and 3.6 times, while the time to the target heading
basically changes linearly (110 s, 209 s, 303 s). In other words, when the door-closing slope
is increased from −20 dB to −40 dB, the maximum rudder angle is decreased by 36%, and
the rudder angle variance is reduced by 61.4 times; correspondingly, the maximum rudder
angle is decreased by 11% when the closing slope is increased from −40 dB to −60 dB, and
the rudder angle variance is only decreased by 3.6 times. Therefore, the cost performance
of the −40 dB door-closing slope is higher than −60 dB.

Compared with the PID method, the maximum rudder angle and rudder angle
variance of −40 dB and −60 dB door-closing slopes are reduced by 20.9% and 34 times
and by 29.8% and 160 times, respectively. It can be seen that although the PID method
based on backstepping can realize the course control, the rudder angle variance and
maximum rudder angle are too large to deal with the disturbance of wind and waves
effectively. The concise robust control algorithm can select the appropriate frequency and
door-closing slope according to the requirement in suppressing the wave interference,
which can effectively reduce the maximum rudder angle and rudder angle variance, hence
reducing the rudder wear and energy consumption.

6. Conclusions

In this paper, the 3DOF ship course control method based on concise robust control
was proposed, and the concise robust control algorithm was constructed on the grounds
of the closed-loop gain-shaping algorithm, and the stability should be a guarantee thanks
to the Lyapunov function. The ship course controller designed here has the ability to
deal with the model perturbation, implying that this method could suppress disturbances
including wind and wave under environmental uncertainty. The limitations of the study
and additional studies required in the future are to carry out a ship trial test on a real ship,
in order to verify the robustness further.

(1) In this paper, the ability of concise robust control of model perturbation was verified.
The control law designed according to the nominal model could effectively stabilize the
perturbed model. The controller could not only realize the course keeping control but
could also realize the tracking control of a continuously changing course periodically.

(2) In this paper, the ability for concise robust control in suppressing environmental
disturbance such as wind and wave was validated. The disturbance of wind and wave with
scale 6 interference on the ship’s course could be effectively suppressed by designing a door-
closing slope for the closed-loop transfer function in the frequency domain. Compared
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with the PID method based on backstepping, the rudder angle of steering gear could be
significantly reduced and the wear of steering gear could be decreased significantly.

(3) Keeping other conditions the same, the larger the closing slope of the closed-loop
transfer function spectrum is, the stronger its resistance to external interference, but its
sensitivity will also decrease accordingly. Therefore, it is necessary to select the proper door-
closing slope of the closed-loop transfer function spectrum according to the actual situation.
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Appendix A

Table A1. Hydraulic coefficients for mariner.

Xudot = −42 × 10−5; Yvdot = −748 × 10−5; Nvdot = 4.646 × 10−5;

Xu = −184 × 10−5; Yrdot =−9.354 × 10−5; Nrdot = −43.8 × 10−5;

Xuu = −110 × 10−5; Yv = −1160 × 10−5; Nv = −264 × 10−5;

Xuuu = −215 × 10−5; Yr = −499 × 10−5; Nr = −166 × 10−5;

Xvv = −899 × 10−5; Yvvv = −8078 × 10−5; Nvvv = 1636 × 10−5;

Xrr = 18 × 10−5; Yvvr = 15356 × 10−5; Nvvr = −5483 × 10−5;

Xdd = −95 × 10−5; Yvu = −1160 × 10−5; Nvu = −264 × 10−5;

Xudd = −190 × 10−5; Yru = −499 × 10−5; Nru = −166 × 10−5;

Xrv = 798 × 10−5; Yd = 278 × 10−5; Nd = −139 × 10−5;

Xvd = 93 × 10−5; Yddd = −90 × 10−5; Nddd = 45 × 10−5;

Xuvd = 93 × 10−5; Yud = 556 × 10−5; Nud = −278 × 10−5;

Yuud = 278 × 10−5; Nuud = −139 × 10−5;

Yvdd = −4 × 10−5; Nvdd = 13 × 10−5;

Yvvd = 1190 × 10−5; Nvvd = −489 × 10−5

Y0 = −4 × 10−5; N0 = 3 × 10−5;

Y0u = −8 × 10−5; N0u = 6 × 10−5;

Y0uu = −4 × 10−5; N0uu = 3 × 10−5;
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