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Abstract: In this study, we reveal the influence of low-frequency ultrasound on erythrocyte and
platelet aggregation. Furthermore, we show that the consequences of sonication of blood samples
can be predicted using machine learning techniques based on a set of explicit parameters. A total
of 300 blood samples were exposed to low-frequency ultrasound of varying intensities for different
durations. The blood samples were sonicated with low-frequency ultrasound in a water bath, which
operated at a frequency of 46 ± 2 kHz. Statistical analyses, an ANOVA, and the non-parametric
Kruskal–Wallis method were used to evaluate the effect of ultrasound on various blood parameters.
The obtained results suggest that there are statistically significant variations in blood parameters
attributed to ultrasound exposure, particularly when exposed to a high-intensity signal lasting 180 or
90 s. Furthermore, among the five machine learning algorithms employed to predict ultrasound’s
impact on platelet counts, support vector regression (SVR) exhibited the highest prediction accuracy,
yielding an average MAPE of 10.34%. Notably, it was found that the effect of ultrasound on the
hemoglobin (with a p-value of < 0.001 for MCH and MCHC and 0.584 for HGB parameters) in red
blood cells was higher than its impact on platelet aggregation (with a p-value of 0.885), highlighting
the significance of hemoglobin in facilitating the transfer of oxygen from the lungs to bodily tissues.

Keywords: blood samples; acoustic intensity; platelet aggregation; hematological disorders; Kruskal–
Wallis test; support vector regression

1. Introduction
1.1. Related Work

The effect of ultrasound on platelet aggregation has been highlighted in studies [1–6].
Platelets perform many functions in the human body. They participate in the formation of
blood clots, interacting with fibrin and stopping blood loss from damaged blood vessels.
As stated in [1], low-intensity ultrasound in combination with a dose of synthetic particles
accelerates clot density and stiffness improvements, suggesting that this treatment may lead
to better healing of fractures and injuries. Another study [2] shows that early (≤5 months)
healing of patients with venous stasis and diabetic foot ulcers was favorably influenced
by low-frequency ultrasound. Most published studies of platelet aggregation have been
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performed using chemical stimulation procedures, but ultrasound stimulation may be
more effective [3]. The results in [4] show that platelet aggregation after exposure to low-
frequency (22 kHz) and low-intensity (from 1.0 to 8.8 W/cm2) ultrasound depends on the
intensity and time of exposure; in addition, platelet aggregation occurs only when the
platelet medium contains calcium ions (Ca2+). A more accurate method was proposed
to investigate platelet function, atherosclerotic plaques, and ischemic heart disease in [5].
The results in article [6] show that non-invasive contrast-enhanced ultrasound molecular
imaging with targeted microbubbles can detect not only activated platelets in the vascular
endothelium, but also the severity of atherosclerosis damage.

The effects of ultrasound in biology and blood cells have been examined in research
conducted by the authors of [7–10]. The extent of damage to atherosclerotic tissue and
the presence of platelets on the surface of the endothelium were assessed both from
histological and immunohistochemical points of view. As a result of research on animals
(rats), ultrasound was found to reduce inflammation by reducing the amount of fibrinogen
in the blood [7]. The effect of ultrasound on fibrinogen and coagulation and fibrinogenolysis
processes in an in vitro system was investigated by the authors of [8]. A study [9] analyzed
the mechanical effect (immediate lysis) and biological effects (cell survival, apoptosis, cell
cycle) in cells exposed to different ultrasound frequencies. It was found that cell survival
decreased with increasing ultrasound intensity. From these findings, a conclusion can be
drawn regarding the advantages of low-frequency ultrasound. As reported in paper [10],
low-intensity pulsed ultrasound can accelerate the healing of fresh fractures, improve soft
tissue regeneration, and suppress inflammatory reactions.

The advantages of artificial intelligence are described in [11–20]. Every year, ma-
chine learning algorithms gain increasing prominence in the (bio)medical sector, effectively
addressing the most crucial tasks, such as disease identification [11], classification, and
prediction and a variety of investigations involving blood samples [12]. A study [13]
showed that powerful machine learning techniques can classify, detect, and predict blood
cell subtypes and changes in blood cell count, shape, texture, and color. Study [14] briefly
reviews and discusses the philosophy, possibilities, and limitations of artificial neural
networks in medical diagnostics. Blood analysis, as one of the main detectors of diseases,
provides many different parameters that show unequivocal evidence of the existence of
a disease [15]. The use of machine learning to predict platelet activation and cell surface
dynamics [16] focuses on the question of whether simple geometric features obtained from
platelets scanned via standard light microscopy techniques are useful predictors of platelet
shape replacement. The authors of [17] presented an in vitro microarray analysis based
on aggregated platelet detection using time-lapse optofluidic microscopy and machine
learning, which allowed for the identification and counting of aggregated platelets based
on their morphology in a short time. Another work [18] used machine learning, ultrasound,
and blood test data to predict relapses in patients with rheumatoid arthritis. The applica-
tion of artificial intelligence methods is clearly relevant in the field of hematopathology.
In [19], the authors present an intelligent deep learning algorithm that was used to process
microscopic images of blood smears in order to predict the presence of leukemia cells
using a convolutional neural network (CNN). The research was carried out on open-source
data and showed the promising potential of the proposed approach. In a broader context,
recent advances in artificial intelligence in hematopathological microscopy are discussed
in [20]. This work highlights the potential of AI technologies to improve hematopoietic cell
identification, data resolution, and information quality. It also discusses the limitations and
indicates possible directions for future research.

1.2. Research Objectives

Although most ongoing research papers are related to blood platelet aggregation, it
is obvious that there is a need to investigate the influence of ultrasound on other blood
parameters. The primary purpose of this paper is to delve deeper into this specific area,
extending the previous initiated research and aiming to explore the effects of low-frequency
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ultrasound (40–50 kHz) with varying intensities (10–150 mW/cm2) on diverse blood pa-
rameters measured using a modern blood analyzer. Given the plethora of measured
blood parameters provided by the blood analyzer, computerized methods were employed
for comprehensive analysis of the resulting data array. This enabled a more thorough
evaluation of the changes in certain blood parameters resulting from the patient’s health
condition when influenced by ultrasound. The effect of ultrasound on blood parameters
was assessed individually by comparing each patient’s non-ultrasound control sample with
samples exposed to different ultrasound regimes. To make sure that the changes in certain
blood parameters detected by the analyzer were adequate and reliable, a comparative
laboratory blood coagulation study was performed. This involved the stimulation of blood
with epinephrine with additional exposure to ultrasound. The results demonstrated that
ultrasound stimulation led to an acceleration of the blood clotting process.

2. Materials and Methods
2.1. Sonication of Blood Samples

Blood sonication was performed using water bath sonication technology with a CT-400
ultrasonic cleaner (Wah Luen Electronic Co., Ltd., Shantou, China), which was operated at
a frequency of 46 ± 2 kHz with different intensities and durations of ultrasound. To ensure
the ultrasound frequency, the ultrasonic intensity was measured and parameters were kept
constant during each stage of the experiment; tests were carried out using a hydrophone
HCT-0320 connected to an acoustic cavitation meter MCT-2000 (Ondo Corp., Novi, MI, USA).
Since ultrasound with electric power leads to higher temperatures that might degrade the
blood samples, the temperature was strictly monitored and controlled at 25 ± 2 ◦C. The
sonication platform is shown in Figure 1. The water temperature in the ultrasonic bath was
controlled at 25± 2 ◦C. Water temperature fluctuations were caused by the periodic operation
of the ultrasonic bath. The study measured the highest rise in water temperature within
the bath over a continuous period of 180 s while generating ultrasound at an intensity of
100–150 mW/cm2. Following each ultrasound bath operation, a pause in experiments was
implemented until the water temperature within the bath returned to 23 ◦C.

Figure 1. Schematic diagram of the blood sample sonication setup.

2.2. Investigation of Hematological Parameters

Certified nurses collected blood from lung disease patients, and the blood was placed
into 3 mL Vacuette K2E K2EDTA 13 × 75 tubes with lavender caps and black rings and
equally divided into 7 parts, so that each part (~0.43 mL) was exposed to ultrasound (US).
The Swelab Alfa system (Boule Medical AB, Stockholm, Sweden) [21] used in this research
is an automated hematology analyzer for in vitro diagnostics under laboratory conditions.
The Swelab Alfa analyzer was used to determine red blood cell (RBC) counts; the mean cell
volume of red cells (MCV); the red cell distribution relative and absolute volumes (RDW%,
RDWa); hematocrits (HTCs); the platelet count (PLT); the mean platelet volume (MPV); the
platelet distribution width (PDW); plateletcrits (PCTs); the platelet large cell ratio (LPCR);
white blood cells (WBCs); hemoglobin (HGB); mean corpuscular hemoglobin (MCH); the
mean corpuscular hemoglobin concentration (MCHC); lymphocytes (LYMs); granulocytes
(GRANs); the minimum inhibitory dilution (MID); the lymphocyte percentage (LYM%);
the granulocyte percentage (GRA%); and the mid-sized white cell percentage (MID%).
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All experiments with patient blood were carried out within the first hour after blood
collection. The characteristics of the low-frequency ultrasound used on the blood samples
are presented in Table 1.

Table 1. Characteristics of low-frequency ultrasound used on blood samples.

Sonication Mode Ultrasound
Exposure, s

Ultrasound Intensity,
mW/cm2 Electric Power, W Ultrasound

Frequency, kHz

K 0 0 0 0
A 90 100–150 60 48
B 180 100–150 60 48
C 90 50–70 35 44
D 180 50–70 35 44
E 90 5–12 10 44
F 180 5–12 10 44

2.3. Investigation of Platelet Aggregation

To demonstrate that the selected frequency and intensity of ultrasound induce platelet
activation in a dose-dependent manner, a single individual’s blood was analyzed utilizing a
platelet aggregometer. Two blood samples were collected for testing purposes. One sample
served as the control, without any ultrasound exposure, and instead was treated with
epinephrine (adrenaline) to induce platelet aggregation. Another sample was divided into
4 tubes and exposed to ultrasound for varying durations and intensities. It was exposed to
ultrasound for 90 s. or 180 s., and after exposure, it was treated with epinephrine to induce
platelet aggregation. The ultrasound tests were carried out at different ultrasound signals,
i.e., some samples were tested at an electric power of 35 W (US intensity ~50–70 mW/cm2),
as shown in Table 1, and others were tested at 60 W (US intensity ~100–150 mW/cm2). The
time and frequencies of 44 kHz were the same to ensure that the ultrasound effect would
not be harmful. The platelet aggregation test was conducted at the Laboratory of Molecular
Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, located in
Kaunas, Lithuania. The test followed the established classical Born method and utilized a
semi-automatic CE IVD certified TA-8V platelet aggregometer from SD Medical (Frouard,
France). Platelet aggregation was assessed by comparing the intensity of light transmission
between platelet-rich and platelet-poor plasma samples after induction with epinephrine
(adrenaline). The transmission of platelet-poor plasma was considered as 100%. The final
concentration of epinephrine was 10 µM (Chrono-Log, Havertown, PA, USA). Preparation
of platelet-rich plasma was carried out by centrifuging whole blood at 100× g for 15 min.
Platelet-poor plasma was prepared by centrifuging platelet-rich plasma at 1000× g for
30 min. An AFI LISA 2.5 L refrigerated centrifuge (Château-Goutier, France) was used to
prepare blood samples. The aggregation of platelets was measured as % Agr.

2.4. Kruskal-Wallis Test

The Kruskal-Wallis test is a popular non-parametric statistical test used in medicine to
compare the distribution of a continuous variable among multiple groups or treatments [22–24].
It is often used when the assumptions of parametric tests, such as ANOVA, cannot be met
or in such cases when the data are not normally distributed or the variances are not equal.
The Kruskal-Wallis test compares the sums of the ranks among the groups. If the sums of the
ranks differ significantly among the groups, then it can be concluded that at least one group
is different from the others [25]. When the null hypothesis of the test is rejected at the user-
defined significance level α, it indicates that at least one of the groups being compared exhibits
a statistically significant difference from the others concerning the dependent variable under
investigation. Multiple comparison procedures can be used to identify where the differences
lie among the populations. Pairwise multiple comparisons compare each pair of groups to
determine which groups are significantly different, while the stepwise stepdown procedure is a
sequential testing procedure that adjusts the multiple comparisons to reduce the probability
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of a type I error. The Kruskal-Wallis method is usually applied to three or more independent
groups, but can also be applied to two groups, with a sample size of at least 5 instances in each
group. The ranks of the data are used to calculate the test statistic H as follows:

H =
12

N(N + 1)

k

∑
i=1

R2
i

ni
− 3(N + 1), (1)

where N is the total number of sample size, k is the number of groups, Ri is the sum of
ranks for group i, and ni is the sample size of group i.

This study uses Dunn’s test, which performs a pairwise comparison between each
independent group and indicates which groups are statistically significantly different at a
given confidence level α. A significance level of 0.05 (α = 0.05) is the threshold for rejecting
the null hypothesis and confirming the alternative hypothesis. The test uses the average
ranks of each group’s scores from the Kruskal-Wallis test as an approximate exact statistic
for the rank sum test. The test statistic is calculated based on the differences between
the mean ranks of the groups and a conclusion is drawn from these differences. When
multiple comparisons are made at the same time, it is important to control the (Type I)
error rate. One way to do this is to adjust the p-values obtained from multiple comparisons.
A common approach to this is Bonferroni adjustment, also used in our study.

2.5. Platelet Number Prediction by Machine Learning

Different measures of accuracy were calculated from the experiments, i.e., the mean
squared error (MSE), the root mean square error (RMSE), and the mean absolute percentage
error (MAPE) [26]. The MSE is a measure representing the average of the squared difference
between actual and predicted values in a dataset. The RMSE is just the square root of the
root mean square error, the only difference being that the MSE measures the variance of
the residuals, while the RMSE measures the standard deviation of the residuals.

RMSE =
√

MSE, where MSE =
1
n∑n

t=1|yt − ŷt|2 (2)

where n—number of time points, yt—the actual value at a given time t, ŷt—the predicted
value, and t—observation in a dataset.

The MAPE also evaluates the accuracy of a model’s predictions, but it measures the
average absolute percentage difference between the predicted and actual values:

MAPE =
100%

n

n

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ (3)

3. Results
3.1. Platelet Aggregation

The results of a blood test with a platelet aggregometer (Figure 2) conducted with
epinephrine can also show the suppression of other receptors. The results showed that in the
absence of ultrasound, the maximum platelet aggregation recorded was 104% (Figure 2a).
Conversely, when sonicated with ultrasound, 100% platelet aggregation was not observed
(Figure 2b). Instead, a gradual decrease in platelet aggregation was observed as follows:
95% at an ultrasound intensity of 100–150 mW/cm2, 92% at an ultrasound intensity of
100–150 mW/cm2 with a duration of 90 s, 86% at an ultrasound intensity of 50–70 mW/cm2,
and 80% at an ultrasound intensity of 50–70 mW/cm2.

The test results shown in Figure 2 indicate that the process of blood platelet aggregation
initiates faster in sonicated samples compared to the sample treated only with epinephrine
(adrenaline). For the sonicated samples, 10% platelet aggregation was achieved within 1 min
and 40% aggregation was achieved within 2 min after induction of platelet aggregation
with epinephrine. For the blood samples treated only with epinephrine (adrenaline), 5%
platelet aggregation was achieved within 1 min and 10% aggregation was achieved within
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2 min. In vitro [3], it was found that ultrasound produces more stable platelet aggregates
than a natural platelet aggregation stimulant. Ultrasound-induced platelet aggregation
holds promise as a potential solution to platelet receptor (P2Y12 receptor) issues, such as
defective responses to soluble agonists [27], and as an effective bleeding control.

Figure 2. Blood platelet aggregation with epinephrine (a) and low-frequency ultrasound (b) in vitro.
In (b), two samples are sonicated with ultrasound at 60 W electric power (pink, red) and two samples
are sonicated with ultrasound at 35 W electric power (green, blue).

3.2. Blood Analysis

Blood samples from 10 (of 42) patients were exposed to six different low-frequency
ultrasound modes (Table 1) and changes in 20 blood parameters were identified. The blood
of each patient was sonicated under six different ultrasound intensities and time variables
(A, B, C, D, E, F), in addition to not being exposed to ultrasound (K). To ensure the statistical
validity of our analyses, we assessed the normality of the data using the Kolmogorov-
Smirnov test. In cases where significant deviations from normality were detected, suitable
transformations were applied to address this issue. Subsequently, paired sample t-tests
were conducted to compare means between groups, and if significant differences were
observed, an ANOVA was performed to evaluate the overall significance. These steps
were taken to meet the assumptions of the statistical tests and ensure the reliability of our
data analysis.

A repeated-measure ANOVA was performed to compare the effect of different ultra-
sound exposure conditions (Table 1) on different blood parameters. The ANOVA results
revealed that there was a statistically significant (p-value < 0.05) difference in 15 blood
parameters between at least two groups. MATLAB R2018a was used to conduct statistical
analyses for these 15 parameters (Table 2). The F-statistic is the ratio of the mean squared
errors, where d1 = 40 (for the numerator) and d2 = 6 (for the denominator).

Table 2. Repeated-measure ANOVA results.

Parameter: F40,6 p-Value

RBC 13.80 <0.01
MCV 12.51 <0.01
HCT 12.61 <0.01
MPV 14.58 <0.01
PDW 15.20 <0.01
LPCR 15.31 <0.01
WBC 29.43 <0.01
HGB 2.25 0.039
MCH 17.34 <0.01
MCHC 2.53 0.021
LYM 16.98 <0.01
GRAN 32.88 <0.01
LYM% 13.52 <0.01
GRA% 7.29 <0.01
MID% 23.49 <0.01
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A multiple comparisons test showed that the mean value of 49 ultrasound conditions
was significantly different from the control group. Primarily higher-power ultrasound had
the greatest effect on test parameters.

3.3. Statistical Analysis

We used a Kruskal-Wallis test with Dunn’s post hoc test to determine whether there
was a significant difference in the effect of ultrasound (in terms of different intensities and
durations) on different blood parameters. In the table below, each row represents the null
hypothesis that the distribution of the two samples is the same. When there is no evidence
to reject the null hypothesis, then there is no significant difference, meaning that ultrasound
has no effect (or a very small effect) on a particular blood parameter. Otherwise, if the null
hypothesis is rejected, this indicates that there is a significant difference between the values
of the blood parameters affected by the ultrasound signals. Table 3 shows that for 11 out of
20 parameters, the impact of the ultrasound signals (six different ultrasound conditions) is
statistically significant (p-value is <0.05).

Table 3. Kruskal–Wallis null hypothesis test results.

Blood Parameters with p-Value < 0.05

RBC HTC MPV PDW LPCR WBC MCH MCHC GRA(%) GRAN MID(%)
<0.001 <0.001 0.037 0.044 0.015 0.010 <0.001 <0.001 0.006 0.002 <0.001

Blood Parameters with p-Value > 0.05
RDW MCV PLT PCT HGB LYM MID RDWa LYM(%)
0.990 0.842 0.885 0.808 0.584 0.166 0.467 0.977 0.157

The diagrams presented in Figure 3 show the results of the Kruskal–Wallis test for
different blood parameters with a p-value of >0.05 (null hypothesis is retained), starting from
the baseline value and affected by ultrasound. The notations of the ultrasound set for the
sonication of the blood samples are presented on the horizontal axis, varying in strength
(C—control/no US, high—H, medium—M, low—W) and duration (90 s and 180 s).

The changes in RDW values after exposure of the blood to ultrasound are very minor,
with a slightly larger increase observed when exposed to the highest ultrasound signal
for 180 s (180 H). By exposing the blood to a high ultrasound signal for 180 s, we can see
that the set of recorded RDW values are outside the normal range. However, the median
line between all sets, except 180 H, is almost straight. As we can see, the MCV values are
almost non-sensitive to the ultrasound signal, and all values in this blood set are within the
normal range (75–100).

A similar situation can be observed with parameters such as HGB and LYM, where
only 180 H has an ultrasound signal. Again, a similar situation applies to parameters such
as HGB and PDW, where only the highest ultrasound signal at 90 s (90 H) and 180 s (180 H)
durations influences the values of the parameters. A review of all the blood parameters for
which the null hypothesis is retained reveals that the parameter values at 90 H and 180 H
slightly increase or decrease.

The boxplot diagrams in Figure 4 show the results of Kruskal–Wallis tests for different
blood parameters for which the p-value is very low <0.001 (null hypothesis is rejected) and
the effect of ultrasound on these parameters is therefore most significant. In a set of 20 blood
parameters, 5 of them responded quite severely to high-intensity ultrasound signals.

Analyzing the RBC values, we can observe that a strong ultrasound signal causes
a sharp decrease in values, a medium intensity signal has almost no effect, and a weak
one leads to a slight increase in values. A similar situation can be observed with the HTC
parameter. From the results of MCH and MCHC parameters, we can see that, in contrast to
RBC and HTC, a strong ultrasound signal leads to an increase in parameter values outside
the normal range, including extreme values. In the case of the MID (%) parameter, there is
also an increase in values when exposed to a strong ultrasound signal for both 90 and 180 s.
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Figure 3. Independent-sample Kruskal–Wallis test results for four different blood parameters with a
p-value of > 0.05 (null hypothesis is retained).
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The research method of pairwise comparison of ultrasound signal values for the five
most responsive blood parameters (RBC, HTC, MCH, MCHC, MID (%)) was applied and
is shown in (Figure 5). With all other blood parameters, the same heptagon pattern was
obtained, with all red linear connections.

The heptagon vertices depicted in Figure 5 correspond to the following ultrasonic
exposure values: initial status (0 H); 1 (180 H); 2 (180 M); 3 (90 W); 4 (90 H); 5 (90 M);
6 (180 W). Different colors of the junctions between the peaks indicate different p-values
between the pairs (the values of the corresponding blood parameter affected by the different
ultrasound signals). If the line is blue, the p-value is <0.05; otherwise, the line is red.
Nevertheless, our primary focus lies in the pairs featuring a zero-heptagon vertex, which
refers to the initial values of the blood parameter. When considering a zero vertex, blue
connections are frequently observed with vertices 4 (90 H) and 1 (180 H), which serve as
indications of a high-intensity ultrasound signal lasting for 90 s and 180 s, respectively.
Furthermore, there exists a more pronounced interdependence among vertices 1, 3, and 6.

More details are provided in Table 4, which shows the specific p-values adjusted with
Bonferroni connection between the blood parameters’ initial values and those exposed to
different ultrasound signals. The table reveals a significant impact of the 90 H ultrasound
signal on denoted blood parameter values. In contrast, medium ultrasound signals (90 M
and 180 M) exhibit a considerably lower effect, and weak signals do not appear to have a
significant influence on any of the five blood parameters. The graphs in Figure 6 show the
results of the Kruskal-Wallis test for blood parameters with a significance level of >0.05. It
is evident that exposure to high-intensity 180 H and 90 H ultrasound signals can lead to
both an increase and a decrease in parameter values.
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Figure 4. Independent-sample Kruskal–Wallis test results on different blood parameters with a very
low p-value (< 0.001). The red line

Appl. Syst. Innov. 2023, 6, x FOR PEER REVIEW 8 of 17 
 

 

 
 

(a) (b) 

  
(c) (d) 

Figure 3. Independent-sample Kruskal–Wallis test results for four different blood parameters with 

a p-value of > 0.05 (null hypothesis is retained). ⎯ the limits of the norm for a particular parameter, 

the norm area, which defines the normal range for the indicated blood parameter. (a) RDW param-

eter. (b) MCV parameter. (c) HGB parameter. (d) LYM parameter. 

The changes in RDW values after exposure of the blood to ultrasound are very minor, 

with a slightly larger increase observed when exposed to the highest ultrasound signal for 

180 s (180 H). By exposing the blood to a high ultrasound signal for 180 s, we can see that 

the set of recorded RDW values are outside the normal range. However, the median line 

between all sets, except 180 H, is almost straight. As we can see, the MCV values are almost 

non-sensitive to the ultrasound signal, and all values in this blood set are within the nor-

mal range (75–100). 

A similar situation can be observed with parameters such as HGB and LYM, where 

only 180 H has an ultrasound signal. Again, a similar situation applies to parameters such 

as HGB and PDW, where only the highest ultrasound signal at 90 s (90 H) and 180 s (180 

H) durations influences the values of the parameters. A review of all the blood parameters 

for which the null hypothesis is retained reveals that the parameter values at 90 H and 180 

H slightly increase or decrease. 

The boxplot diagrams in Figure 4 show the results of Kruskal–Wallis tests for differ-

ent blood parameters for which the p-value is very low <0.001 (null hypothesis is rejected) 

and the effect of ultrasound on these parameters is therefore most significant. In a set of 

20 blood parameters, 5 of them responded quite severely to high-intensity ultrasound sig-

nals.  

shows the limits of the norm for a particular parameter, the
norm area, which defines the normal range for the denoted blood parameter. (a) RBC parameter.
(b) HTC parameter. (c) MCH parameter. (d) MCHC parameter. (e) MID (%) parameter.

Figure 5. Pairwise comparison of each parameter (V1) where each node shows the sample average
rank of V1. The vertices of the hexagon correspond to the following values of ultrasonic exposure:
0 (0 C); 1 (180 H); 2 (180 M); 3 (90 W); 4 (90 H); 5 (90 M); 6 (180 W).
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Table 4. Dunn’s test results for the blood parameters most affected by ultrasound signals.

Blood
Parameter p-Values Adjusted by the Bonferroni Correction

0 C-180 W 0 C-90 M 0 C-180 H 0 C-90 H 0 C-90 W 0 C-180 M

RBC 1.000 1.000 0.469 0.037 1.000 1.000

HTC 1.000 1.000 0.324 0.047 1.000 1.000

MCH 1.000 0.008 0.000 0.000 1.000 0.03

MCHC 1.000 0.000 0.000 0.000 1.000 0.000

MID, % 1.000 1.000 0.028 1.000 1.000 1.000

Figure 6. Independent-sample Kruskal-Wallis test results on different blood parameters with a
p-value of < 0.05. The red line shows the limits of the norm for a particular parameter, the norm
area. (a) WBC parameter with p-value = 0.010. (b) MPV parameter with p-value = 0.037. (c) GRAN
parameter with p-value = 0.002. (d) PDW parameter with p-value = 0.044. (e) GRA (%) parameter
with p-value = 0.006. (f) LPCR parameter with p-value = 0.015.



Appl. Syst. Innov. 2023, 6, 99 11 of 17

3.4. Platelet Number Prediction

Ongoing efforts are underway to predict platelet (PLT) values based on the influence
of ultrasound signals, their duration, and intensity. Machine learning algorithms are
well suited to PLT value predictions. Among the various algorithms used for regression
problems, this study employed the five most popular ones. Based on the experimental
results of 10 tests, the support vector regression (SVR) algorithm with a linear kernel was
found to be the most accurate algorithm, as determined by the root mean square error
(RMSE) metric.

Considering the results of all the machine learning algorithms, we can see that the
highest error values are obtained with the three-layer ANN, with an average RMSE value
of 72.47 for all six different ultrasound signals (Table 5). The largest prediction errors are
observed for the high-impact signals, i.e., 90 H and 180 H, while the best prediction results
are obtained for the PLT values after exposure to medium signals (90 M and 180 M). The
same tendency can be seen with the remaining models. The LR, DT, and RF models have
an average error of 55.50, 47.61, and 44.39, respectively, and SVR demonstrated the best
prediction accuracy with an average RMSE of 32.06 (MAPE = 10.34%, Figure 7).

Table 5. PLT prediction results providing the average RMSE value obtained from 10 tests for five
different ML algorithms: decision trees (DT), random forest (RF), artificial neural network (ANN),
linear regression (LR), and support vector regression (SVR).

ML Algorithm 90 W 180 W 90 M 180 M 90 H 180 H

DT 44.156 36.61 41.61 35.8 67.34 60.16
RF 47.822 33.68 34.49 29.75 67.98 52.63
ANN 66.04 51.84 27.04 41.75 154.24 93.96
LR 48.99 42.83 43.54 38.77 76.05 82.83
SVR 23.45 27.73 22.90 27.12 35.41 55.80

Figure 7. Prediction accuracy with an average MAPE.

Figure 8 shows the results of the SVR model’s prediction of the PLT value (in terms
of the MAPE value) using different ultrasound signals. The best accuracy of 6.57% was
obtained when predicting PLT values after exposure to the 90 M signal, while the worst
accuracy of 17.32% was obtained when predicting the results after exposure to the 180 H
signal. It can be assumed that the effect of a longer and stronger ultrasound signal is slightly
more difficult to predict, as extreme values occur. This is also evident from the results in
(a,b) of Figure 8, where the actual PLT values affected by the ultrasound signal are shown
as blue dots and the predicted ones as red dots.
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Figure 8. PLT prediction results for the test data using the SVR model with actual and predicted PLT
values exposed to different ultrasound signals: (a) 180 H, (b) 90 H, (c) 180 M, (d) 90 M, (e) 180 W and
(f) 90 W.

To assess the importance of attributes, we used the F-test statistical test [28], which is
helpful for feature selection when there are numerous potential predictor factors, as we aim
to identify a subset of variables that is most strongly associated with a response variable.
The feature importance scores are computed as:

Fscore = −log(p), (4)

where p is the probability of F-test.
The top 5 importance scores of all blood parameters using the F-test algorithm for

the prediction of the PLT value, including only the longest ultrasound signals of different
strengths, i.e., 180 W, 180 M, and 180 H, are shown in Figure 9. These scores rank the
attributes in order of importance, with a higher F-score indicating that the relevant predictor
is more important. The results of the experiments showed that the baseline PLT value and
the PCT are the blood factors that have the biggest impact on the predicted value of the PLT.
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Figure 9. Feature importance scores (F scores) using the F-test algorithm for the PLT value prediction
including 180 W, 180 M, and 180 H signals. (a) 180 W US signal. (b) 180 H US signal. (c) 180 M
US signal.

4. Discussion

The results of this study show that the observed changes in the parameters provided
by the blood analyzer are not only related to the formation of blood clots, but also to the
effects on red blood cells (RBCs). In addition to this fundamental finding, our research
also aimed to propose faster statistical and artificial intelligence methods for processing
blood parameters, avoiding the mistakes of inexperienced analysts. Ultrasound affects the
blood by both radiation and flow forces. High-frequency ultrasound induces aggregation
of blood particles by exciting standing acoustic waves in the liquid phase of the blood,
where aggregated RBCs accumulate in the nodes. The aggregation of human RBCs is the
major cause of a wide range of pathological conditions, from bacterial infections to cancer.
In contrast to the standing waves caused by high-frequency ultrasound, low-frequency
traveling acoustic waves cause the opposite phenomenon—the dissociation or mixing of
RBC aggregates. Since blood is a shear-thinning fluid with complex reactions that strongly
depend on the formation of aggregates by its components such as RBCs, the dissociation
of RBC aggregates under the influence of low-frequency ultrasound begins as the shear
rate increases above a critical value of γ = 5–10 s−1 [29]. Therefore, during blood analyzer
tests, it was found that the number of single erythrocytes separated from aggregates by
low-frequency ultrasound in the volume of a blood analyzer drop was higher than in the
same volume of erythrocyte aggregates not affected by ultrasound.

Blood tests revealed that several parameters, such as mean corpuscular hemoglobin
(MCH), the mean corpuscular hemoglobin concentration (MCHC), and platelet aggrega-
tion (PLT), show the greatest changes during exposure to low-frequency ultrasound and
exceeded the permissible limits. The MCH and MCHC parameters indicate the amount
of hemoglobin per cell and the amount of hemoglobin per unit volume, respectively.
Hemoglobin is required to transport oxygen from the lungs to the cells of the body. Ultra-
sound has an impact on changes in these blood parameters related to RBC functions. During
this study, venous blood was drawn from a vein near the elbow for laboratory purposes.
Venous blood is low in oxygen. When ultrasound was used on dissociated erythrocytes
in an open sample (surrounded by oxygen in a Vacuette K2E K2EDTA 13 × 75 tube) and
the shear rate exceeded a critical value, the color of the dissociated erythrocytes changed
to a bright red color, as if they had been enriched by oxygen, as in the case of arterial
blood. An important property of hemoglobin is that O2 binding is pH-dependent. It has
been experimentally observed that CO2 is released more readily when the pH is acidic,
i.e., when there are high concentrations of CO2. This was the case for our blood samples
before treatment with low-frequency ultrasound. This treatment has the potential to render
hemoglobin more conducive to binding, with CO2 providing energy for the dispersion of
gas bubbles within membranes or the fusion of multiple RBC membranes [30].

The key finding of this study was the observation of changes in gas exchange in the
blood under the influence of different intensities of low-frequency ultrasound. This finding
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holds potential implications for treating pulmonary hypertension using the low-frequency
ultrasound transducer developed (patent pending) by the authors of this article [25].

Suggestions for the Future

The discovery that low-frequency ultrasound effects hemoglobin in RBCs (in vitro) to
improve gas exchange has spurred us to start in vivo studies as soon as possible, and they
are currently being prepared using the ultrasound transducer developed by the authors
of this article [31] (patent pending). The clinical implications and therapeutic potential
of ultrasound treatment in relation to these observed hematological changes need to be
investigated. The mean, median, standard deviation, and interquartile range of blood
parameters showed that ultrasound had an effect on granulocyte (GRAN) values as well as
most other parameters. This parameter can be distinguished from the others because an
increase in the granulocyte count indicates a bacterial infection [32]. However, statistically
significant changes (decreases) in these values can be considered useful and may require
further investigation, particularly regarding bacteria-related infectious blood tests. This
finding suggests that ultrasound may have applications in the treatment of some bacterial
diseases. Although ultrasound induces platelet aggregation, in vivo ultrasound may reduce
the risk of thrombosis [33].

MCH and MCHC measure hemoglobin, which carries oxygen to the body’s cells
from the lungs, improving the absorption of iron [34], folate (B9), and cobalamin (B12)
to stop bleeding or blood loss. Under the influence of ultrasound, an increase in PLT
reduces bleeding or blood loss and destroys the S. aureus biofilm covering the surface of
the prostheses, which increases antibiotic susceptibility [35]. Ultrasound is suitable for the
treatment of endothelial dysfunction because it facilitates drug exposure to liver and kidney
cells in order to identify clinically relevant biomarkers related to the function of these
cells. Focused low-frequency ultrasound is a rapidly developing, non-invasive therapeutic
technology that has the potential to improve the quality of life and reduce the cost of
care for patients with heart valve calcification [36]. However, ultrasound can cause some
biophysical effects, including thermal and non-thermal effects on cells, but these effects are
significantly fewer with low-frequency ultrasound than with high-frequency ultrasound.
Sonoporation, the most widely studied non-thermal biological effect of ultrasound, is
considered to be a basis for new therapeutic applications. Ultrasound can increase the
permeability of cell membranes due to the sonoporation effect, allowing molecules such as
drugs, proteins, and DNA that cannot normally penetrate cell membranes to enter cells.

5. Conclusions

In this study, we conducted an evaluation of alterations in blood analysis data caused
by the influence of ultrasound. Using an ANOVA and non-parametric Kruskal–Wallis
statistical analyses, we confirmed significant changes in blood parameters due to exposure
to 180 or 90 s of high- and medium-intensity ultrasound signals. The experimental results
reveal that ultrasound signals have a statistically significant impact (p-value < 0.05) on mul-
tiple blood parameters, with MCH emerging as the most sensitive among them, alongside
RBC, HTC, MCHC, GRAN, and MID%. In contrast, RDW values, with a p-value of 0.990,
exhibited minimal changes even under high-intensity signals (180 H and 90 H).

To predict PLT (platelet) counts, five distinct machine learning algorithms (decision
trees (DT), random forest (RF), an artificial neural network (ANN), linear regression (LR),
and support vector regression (SVR)) were employed in the study. The highest prediction
errors were observed for high-intensity signals, i.e., 90 H and 180 H, while the most accurate
predictions were observed for medium-intensity signals (90 M and 180 M). The three-layer
ANN consistently produced the highest errors, with an average RMSE of 72.47 across all
six different ultrasound signals, while the LR, DT, and RF models had average errors of
55.50, 47.61, and 44.39, respectively. The SVR model had the best prediction accuracy, with
an average RMSE of 32.06 (MAPE = 10.34%). The lowest prediction error (MAPE), at 6.57%,
was achieved when predicting PLT values exposed to the 90 M signal, while the lowest
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accuracy, at 17.32%, was observed when predicting values exposed to the 180 H signal. It is
essential to note that the prediction of PLT values has shown that PLT, PCT, and GRAN
values are the blood factors with the most substantial impact on the predictive accuracy of
PLT values.

Ultrasound application led to a dissociation of aggregated erythrocytes into single
erythrocytes, while platelets, on the other hand, were more rapidly activated, but their
activity was lower after induction with epinephrine. The dissociation of erythrocytes from
the aggregated to the single state results in an increase in hemoglobin carrier gas, which
allows therapeutic support for patients with pulmonary hypertension. The aggregation of
platelets increases blood coagulation, which is useful for wound healing. As a result of this
research, faster statistical and artificial intelligence methods have been proposed to speed
up the analysis and interpretation of blood parameters, allowing us to avoid the mistakes
of inexperienced analysts and to take timely actions to improve human health.
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