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Abstract: As technology evolves, more complex non-affine systems are created. These complex
systems are hard to model, whereas most controllers require information on systems to be designed.
This information is hard to obtain for systems with varying control directions. Therefore, this study
introduces a novel data-driven estimator and controller tailored for single-input single-output non-
affine discrete-time systems. This approach focuses on cases when the control direction varies over
time and the mathematical model of the system is completely unknown. The estimator and controller
are constructed using a Multiple-input Fuzzy Rules Emulated Network framework. The weight
vectors are updated through the gradient descent optimization method, which employs a unique
cost function that multiplies the error by a hyperbolic tangent. The stability analyses demonstrate
that both the estimator and controller converge to uniformly ultimately bounded (UUB) functions of
Lyapunov. To validate the results, we show experimental tests of force control that were executed
on the z-axis of a drive-controlled 3D scanning robot. This system has a varying control direction,
and we also provide comparison results with a state-of-the-art controller. The results show a mean
absolute percentage tracking error smaller than one percent on the steady state and the expected
variation in the system’s control direction.

Keywords: model-free adaptive control; discrete-time systems; non-affine systems; fuzzy neural
networks; experimental validation; data-driven control; data-driven model estimation

1. Introduction

In the continually growing landscape of control systems, adaptive controllers have
garnered significant attention owing to their adeptness in handling the intricate dynamics
of modern systems, which are often unknown and highly non-linear [1,2]. With these
sophisticated systems, there has been a surge in the availability of system status information,
enabling adaptive controllers to rely less on system knowledge. This shift has led to the
emergence of data-driven controllers (DDCs) and model estimators [3,4]. Researchers
typically categorize the adaptation of DDCs into online learning, offline learning, and
hybrid approaches that combine both online and offline learning strategies.

Along the DDCs’ most popular online methods, model-free adaptive control
(MFAC) [5–8] has the advantages of a low computational cost for other online methods
and no information required about the system besides the control direction. This method
has been mainly used for non-linear systems. Regarding the offline methods, iterative
feedback tuning [9,10] (IFT) and virtual reference feedback tuning [11,12] (VRFT) focus on
parameter adaptation/identification; IFT adapts with iterations according to the gradient
descent method whereas VRFT looks for the global minimum of the data available. Both
require some controlled experiments on the system to have data on its behavior previous to
controlling the system. Offline methods usually have lower computational costs than online
methods but require more information on the system. No offline methods have reported
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results for systems with varying control directions. Hybrid methods have the popular
iterative learning control (ILC) [13,14] that is commonly used for systems with repetitive
tasks. This method has the advantage of decreasing error in each cycle but requires a bit of
prior knowledge of the system. These types of controllers have a common disadvantage:
they need to know the control direction of the system.

In 1983, Roger D. Nussbaum [15] proposed a solution of adaptive control for systems
where the control direction is unknown. His proposed controller could deal with the
unknown control direction by adapting a control gain. The proposed function slowly
adapts to the unknown control directions. It has been used to solve different problems
such as those pertaining to non-affine systems [16,17], non-linear systems [18], switched
systems [19], reducing the computational cost [20,21], industrial applications [22,23], and
time-varying control gain with no change in the sign [24]. Unfortunately, to the authors’
knowledge, only a very few articles address the problem of systems with varying control
directions (control gain with sign change) [25,26]. Both articles use a Nussbaum-type
function alongside fuzzy observers and controllers. Their focus is on affine non-linear
systems; they only report simulation results to validate their theoretical analysis, and one
of them does not present a graph of the control-related parameter estimation.

Unlike affine systems, non-affine systems have a non-linear relation with the system
output regarding the control input [27–29]. This property of the non-affine systems makes
it very difficult to find an exact solution for them. Non-affine systems have countless
applications such as active magnetic bearings, aircraft dynamics, biochemical processes,
dynamic models in pendulum control, underwater vehicles, and so on [30,31]. The common
approach to controlling non-affine systems is adaptive control, which mostly involves neu-
ral networks where the control direction is either known or estimated with the Nussbaum
gain [32–34]. Some of these systems also show time-varying sign behavior when we talk
about the correlation between the output of the system and the control input. Therefore, our
focus is the development of an adaptive controller for non-affine systems with time-varying
control direction behavior.

This work presents two significant contributions. First, we introduce a novel controller
capable of effectively managing non-affine, non-linear discrete-time systems with varying
control directions. This adaptive controller showcases remarkable versatility in handling
such systems, enabling precise control even amidst changing control directions. Then,
we propose a novel cost function, employing a hyperbolic tangent of the error multiplied
by the error, diverging from traditional quadratic or absolute functions. Investigations
reveal that this innovative cost function facilitates faster responses to aggressive system
changes while ensuring smoother control laws and estimated function responses. These
enhancements significantly improve the overall system performance and may find valuable
applications in redundancy scenarios for future works.

The rest of this work is organized as follows: Section 2 outlines the requirements
and assumptions of the systems to control. Section 3 introduces the model estimator and
its upgrade law according to the gradient descent method. We propose an unusual cost
function: a hyperbolic tangent of the error multiplied by the error. The stability proof of
the estimator is provided at the end of Section 3. Section 4 develops a model-free adaptive
controller, where the weight vector is also upgraded according to the gradient descent
method with a similar cost function as the estimator. The stability proof of the closed-loop
system is provided at the end of Section 4. Section 5 shows the performance of the controller
and estimator for a highly non-linear system with a changing control direction. This section
also provides a comparison of the experimental results with a state-of-the-art controller.
Finally, Section 6 offers suggestions for future work and concluding remarks.

2. Problem Formulation

A single-input single-output non-affine non-linear discrete-time system described as

y(k + 1) = F
(
y(k), · · · , y(k − ny), u(k), · · · , u(k − nu)

)
, (1)
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with unknown indices ny and nu, it has the following affine representation:

y(k + 1) = f
(
y(k), · · · , y(k − ny), u(k − 1), · · · , u(k − nu)

)
+g

(
y(k), · · · , y(k − ny), u(k − 1), · · · , u(k − nu)

)
u(k)

+εh
(
ky(k), · · · , y(k − ny), u(k), · · · , u(k − nu)

)
,

= f (k) + g(k)u(k) + εh(k), (2)

where f (k) and g(k) are unknown functions and εh(·) is a bounded residual error when
the non-affine system (1) meets the following assumptions:

Assumption 1. The non-linear function F(·) in (1) needs to be continuous regarding the control
law u(k). This implies that

∂y(k + 1)
∂u(k)

≈ g(k), (3)

where 0 < |g(k)| ≤ gM and gM is an unknown positive constant. Therefore, the system (1) is
controllable with unknown and varying control directions.

According to Assumption 1, the control direction is determined by utilizing the sign
function of g(k) in (3) as

sign
{

∆y(k + 1)
∆u(k)

}
= sign{g(k)}, (4)

where ∆u(k) ̸= 0.
Therefore, the equivalent model based on MiFREN [35] is developed in the follo-

wing section.

3. Model Estimator

In this work, a class of non-linear discrete-time systems described in (1) and (2), where
δ(k) ≜

{
y(k), · · · , y(k − ny), u(k − 1), · · · , u(k − nu)

}
, f (k) ≜ f

(
δ f (k)

)
, g(k) ≜ g

(
δg(k)

)
and εh(k) ≜ εh(δε(k)), is rewritten as

y(k + 1) = f (k) + g(k)u(k) + εh(k), (5)

where εh(k) is a bounded residual error such that |εh(k)| ≤ εM. It is noticeable that f (k)
and g(k) are unknown functions. Therefore, the adaptive network MiFREN is used to
estimate those functions as

f (k) = φT(k)β∗
f , (6)

g(k) = φT(k)β∗
g, (7)

where φ(k) is the multidimensional vector of the membership functions and β∗
f and β∗

g are
the unknown ideal weight vectors.

By utilizing the equivalent model based on MiFREN, the dynamics in (5)–(7) are
estimated as

ŷ(k + 1) = f̂ (k) + ĝ(k)u(k). (8)

Therefore, the MiFREN implementation leads to

f̂ (k) = φT(k)β f (k), (9)

and
ĝ(k) = φT(k)βg(k), (10)
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where β f (k) and βg(k) are iterative weight vectors used to estimate the functions f̂ (k) and
ĝ(k), respectively. This implementation is illustrated in the diagram of Figure 1. This dia-
gram shows that the inputs of the estimator are the system output and the estimation error
at the kth iteration to avoid causality issues. Both inputs enter simple fuzzy membership
functions µ and are later combined in the multidimensional membership function φ(k).
Then, the estimation proceeds as explained in Equations (8)–(10).

Figure 1. Estimator diagram.

The weight vectors β f (k) and βg(k) are updated by the gradient descent method.
Thus, the estimation error ê(k + 1) is introduced as

ê(k + 1) = y(k + 1)− ŷ(k + 1). (11)

Recalling (8)–(10) with (11), it yields

ê(k + 1) = φT(k)β∗
f + φT(k)β∗

gu(k) + εh(k)− φT(k)β f (k)− φT(k)βg(k)u(k),

= φT(k)β̃ f (k) + φT(k)β̃g(k)u(k) + εh(k), (12)

where β̃ f (k) = β∗
f − β f (k) and β̃g(k) = β∗

g − βg(k).
The cost function Ê(k + 1) is secondly selected as a semi-definite positive function:

Ê(k + 1) = tanh
(
ê(k + 1)

)
ê(k + 1). (13)

It is worth observing that the proposed cost function (13) is developed here to reduce the
high-frequency behavior, which will be discussed next in the experimental results.

Therefore, the update laws for the weight parameters are formulated by the gradient
descent method as follows

β f (k + 1) = β f (k)− η f
∂Ê(k + 1)

∂β f (k)
, (14)

and

βg(k + 1) = βg(k)− ηg
∂Ê(k + 1)

∂βg(k)
, (15)

where η f and ηg are the learning rates for β f and βg, respectively.
Using the chain rule, the cost function (13) derivation is obtained as

∂Ê(k + 1)
∂β f (k)

=
∂Ê(k + 1)
∂ê(k + 1)

∂ê(k + 1)
∂ŷ(k + 1)

∂ŷ(k + 1)
∂β f (k)

,

= −hê(k + 1)φT(k), (16)
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where
hê(k + 1) ≜ sech2(ê(k + 1))ê(k + 1) + tanh(ê(k + 1)). (17)

Then, the cost function (13) derivation is also calculated as

∂Ê(k + 1)
∂βg(k)

=
∂Ê(k + 1)
∂ê(k + 1)

∂ê(k + 1)
∂ŷ(k + 1)

∂ŷ(k + 1)
∂βg(k)

,

= −hê(k + 1)φT(k)u(k). (18)

Thus, substituting (16) into (14) and (15) into (18), the update laws for the weight
parameters can be formulated as follows

β f (k + 1) = β f (k) + η f hê(k + 1)φ(k), (19)

and
βg(k + 1) = βg(k) + ηghê(k + 1)φ(k)u(k). (20)

It is seen that η f and ηg can play an important role in the model performance. Thus, η f and
ηg are determined as in the following theorem.

Theorem 1. A class of non-affine non-linear discrete-time systems (1) that can be represented in
an affine way (5)—meeting the three assumptions made in Section 2—can also be estimated by (8)
based on MiFREN. The estimation error, along with the internal signals, is convergent when the
estimator parameters are designed following the conditions

η f = ηg = ηT , (21)

0 < ηT ≤ 2ξ ê(k + 1)
h2

max φ2
max(1 + u2(k))

. (22)

Proof. To verify the convergence of the estimation error along and the internal signals of
the estimator, let us select the Lyapunov function as

Lŷ(k + 1) = β̃2
f (k + 1) + β̃2

g(k + 1). (23)

Therefore, the Lyapunov function differentiation is calculated as

∆Lŷ(k + 1) = β̃2
f (k + 1)− β̃2

f (k) + β̃2
g(k + 1)− β̃2

g(k). (24)

Utilizing the learning laws developed in (19) and (20), we obtain

β̃ f (k + 1) = β∗
f − β f (k + 1),

= β̃ f (k)− η f hê(k + 1)φ(k), (25)

and

β̃g(k + 1) = β∗
g − βg(k + 1),

= β̃g(k)− ηghê(k + 1)φ(k)u(k), (26)

respectively. By substituting (25) and (26) into (24), we have

∆Lŷ(k + 1) =
(

β̃ f (k)− η f hê(k + 1)φ(k)
)2

− β̃2
f (k)

+
(

β̃g(k)− ηghê(k + 1)φ(k)u(k)
)2 − β̃2

g(k),

= −2η f β̃T
f (k)φ(k)hê(k + 1) + η2

f h2
ê (k + 1)φT(k)φ(k)

−2ηg β̃T
g (k)φ(k)hê(k + 1)u(k)
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+η2
gh2

ê (k + 1)φT(k)φ(k)u2(k). (27)

According to (21) where η f = ηg = ηT , the relation in (27) can be rewritten as

∆Lŷ(k + 1) = −2ηT

(
β̃T

f (k)φ(k) + β̃T
g (k)φ(k)u(k)

)
hê(k + 1)

+η2
Th2

ê (k + 1)φT(k)φ(k)
(

1 + u2(k)
)

. (28)

From the definition of the estimation error (12), we have

ê(k + 1)− εh(k) = φT(k)β̃ f (k) + φT(k)β̃g(k)u(k). (29)

By employing (28), it yields

∆Lŷ(k + 1) = −2ηT ê(k + 1)h(k + 1) + 2ηTεh(k)hê(k + 1)

+η2
Th2

ê (k + 1)φT(k)φ(k)
(

1 + u2(k)
)

.

Let us define ξ ê(k + 1) ≜ ê(k + 1)hê(k + 1); thus, from the last equation, we have

∆Lŷ(k + 1) = −2ηTξ ê(k + 1) + 2ηTεh(k)hê(k + 1)

+η2
Th2

ê (k + 1)φT(k)φ(k)
(

1 + u2(k)
)

. (30)

Figure 2 shows the cost function E(ê(k)), a semi–definite positive function dependent
on the estimation error ê(k). Furthermore the function hê(k + 1) in Figure 3, shows that
hê(k + 1) is a bounded function regardless of the value of ê(k + 1) with the limits −1.2 ≤
hê(k + 1) ≤ 1.2.

-5 0 5

0

1

2

3

4

5

Figure 2. Cost function E
(
ê(k)

)
.

-5 0 5

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 3. Function hê(ê(k)).

Given that εh(k)hê(k + 1) is a bounded function with an unknown sign, the Lyapunov
function differentiation (30) can be rewritten as

∆Lŷ(k + 1) ≤ −2ηTξ ê(k + 1) + η2
Th2

ê (k + 1)φT(k)φ(k)
(

1 + u2(k)
)
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+2|ηTεh(k)hê(k + 1)| < 0 (31)

since, for definite positive values a and b with an unknown value c, we can say that

−a + b + c ≤ −a + b + |c|.

Limits for the learning rate ηT are derived according to the known functions

−2ηTξ ê(k + 1) + η2
Th2

ê (k + 1)φT(k)φ(k)
(

1 + u2(k)
)
< 0,

as

0 < ηT ≤ 2ξ ê(k + 1)
h2

êmax φ2
max(1 + u2

max)
≤ 2ξ ê(k + 1)

h2
ê (k + 1)φT(k)φ(k)(1 + u2(k))

,

where hmax ≥ |hê(k + 1)|, umax ≥ |u(k)|, and φ2
max ≥ φT(k)φ(k) ∀t ≥ 0. It is suggested to

set the learning rate as

ηT ≈ 2ξ ê(k + 1)
h2

êmax φ2
max(1 + u2(k))

, (32)

when no offline learning has taken place to accelerate the error convergence to a bonded
compact set. In this case, a zero-initial-weight vector is recommended if there is no human
knowledge of the system behavior to pass into the neural network. If the initial parameters
of the estimator are obtained by offline learning or previous behavioral knowledge of the
system, the learning rate can be set as

ηT ≈ 2ξ ê(k + 1)
h2

êmax φ2
max(1 + u2

max)
. (33)

Recalling the differentiation of the Lyapunov (31), and with the previous statements,
it can be seen that the differentiation is semi-definite negative when the estimation error
co-related parameter ξ ê(k + 1) is bounded as

ξ ê(k + 1) > Ωξ , (34)

where Ωξ ≜ 1
2 ηTh2

ê (k + 1)φT(k)φ(k)
(
1 + u2(k)

)
+ |εh(k)hê(k + 1). This boundary con-

cludes the stability proof, where the estimation error and estimator’s internal signals are
established as UUB according to the proposed Lyapunov function (for more information,
see the Lyapunov extension Theorem 2.5.7 [36]).

The following section proposes an adaptive controller that can deal with varying and
unknown control directions, based on information provided by the estimator.

4. Data-Based Model-Free Adaptive Controller

An adaptive data-driven controller is proposed with a direct control scheme (Figure 4).
The adaptive controller depends on the closed-loop system tracking error and the desired
trajectory. The upgrade of the weight vector β(k) depends on the model estimator as
described in this section.

Defining the system’s tracking error as

e(k + 1) ≜ r(k + 1)− y(k + 1), (35)

where r(k + 1) is the desired trajectory, we propose a MiFREN-based adaptive controller as

u(k) = φT
c (k)βc(k), (36)

where φc(k) is a multidimensional membership-function vector and βc(k) is the weight
vector for the controller. The fundamental difference of the proposed controller is found
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in the weight vector actualization method. The actualization will be performed with
the gradient descent method and a novel cost function: the hyperbolic tangent of the
tracking error multiplied by the tracking error. It is worth noticing that this is a model-free
adaptive controller, and no further information on the system is required at this point.
The actualization method for the weight vector βc(k) will be discussed in more detail in
this section.

Figure 4. Model-free controller diagram.

The upgrade law of weight vectors is defined according to the gradient descent
method as

βc(k + 1) = βc(k)− η

[
∂E(k + 1)

∂βc(k)

]
, (37)

with the cost function
E(k + 1) = tanh

(
e(k + 1)

)
e(k + 1). (38)

As was stated for the estimator cost function, this type of function has the advantage of
being smooth near the origin, unlike functions with absolute values.

The partial derivative needed for the upgrade law (37) is obtained with the chain rule

∂E(k + 1)
∂βc(k)

=

[
∂E(k + 1)
∂e(k + 1)

][
∂e(k + 1)

∂βc(k)

]
,

=
[
sech2(e(k + 1)

)
e(k + 1) + tanh

(
e(k + 1)

)][∂e(k + 1)
∂βc(k)

]
.

and the partial derivative of the tracking error regarding the weight vector is obtained as

∂e(k + 1)
∂βc(k)

=

[
∂e(k + 1)
∂y(k + 1)

][
∂y(k + 1)

∂u(k)

][
∂u(k)
∂βc(k)

]
,

= −
[

∂y(k + 1)
∂u(k)

]
φc(k).

The term ∂y(k+1)
∂u(k) , according to Theorem 1, is estimated as

∂y(k + 1)
∂u(k)

≈ ∂[ f (k) + g(k)u(k) + εh(k)]
∂u(k)

≈ g(k) ≈ ĝ(k). (39)
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Then, the partial derivative of the cost function is approximated as

∂E(k + 1)
∂βc(k)

≈ −
[
sech2(e(k + 1)

)
e(k + 1) + tanh

(
e(k + 1)

)]
ĝ(k)φc(k).

Substituting the last equation on the upgrade law (37), we obtain a feasible up-
grade law

βc(k + 1) = βc(k) + ηhe(k + 1)ĝ(k)φc(k), (40)

with he(k + 1) ≜ sech2(e(k + 1)
)
e(k + 1) + tanh

(
e(k + 1)

)
. Per the stability proof for

Theorem 2, the upgrade law can also be stated as

βc(k + 1) = βc(k) + ηche(k + 1)sign{ĝ(k)}ĝmin φc(k), (41)

with |ĝ(k)| ≤ ĝmin ∀k ≥ 0.

Theorem 2. A class of non-affine non-linear discrete-time systems (1) represented in an affine way
(2) is estimated as (8) if the original system (1) follows the assumptions described in Section 2. The
tracking error along with the internal signals are convergent with the system estimator according to
Theorem 1, the controller (36), and the upgrade law (40) or (41), if parameters are designed following
the next conditions:

• g(k) ≈ ĝ(k);
• sign{g(k)} = sign{ĝ(k)};
• |εh(k)| << 1;
• 0 < η < 1

ĝ2
max ||φcmax ||22

≤ 1
ĝ2(k)||φc(k)||22

.

Proof. To verify the convergence of the closed-loop tracking error and the convergence of
the system’s internal signals, the Lyapunov function is selected:

L(k + 1) = β̃c
T
(k + 1)β̃c(k + 1) + e2(k + 1). (42)

Therefore, the Lyapunov function differentiation is calculated as

∆L(k + 1) = β̃c
T
(k + 1)β̃c(k + 1)− β̃c

T
(k)β̃c(k) + e2(k + 1)− e2(k). (43)

Defining β̃c(k + 1) as the difference in the ideal weight vector β∗ and the current
iteration β(k + 1), it is also established that

β̃c(k + 1) = β∗
c − βc(k + 1),

Substituting the update law (40) in the last equation

β̃c(k + 1) = β∗
c − βc(k)− ηhe(k + 1)ĝ(k)φc(k),

the weight vector error is also described as

β̃c(k + 1) = β̃c(k)− ηhe(k + 1)ĝ(k)φc(k). (44)

In a similar sense, considering that the ideal weight produces the ideal controller and
no tracking error, it is inferred that

e∗(k + 1) = 0 = r(k + 1)− y∗(k + 1) = f (k) + g(k)β∗T
c φc(k),

hence,

r(k + 1) = f (k) + g(k)u∗(k).
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Substituting the last equation in the tracking error (35),

e(k + 1) = f (k) + g(k)β∗T
c φc(k)− f (k)− g(k)βT

c (k)φc(k)− ε(k),

is rearranged as

e(k + 1) = g(k)β̃c
T
(k)φc(k)− ε(k). (45)

With Equations (44) and (45), the Lyapunov function differentiation (43) is rewritten as

∆L(k + 1) =
(

g(k)β̃c
T
(k)φc(k)− ε(k)

)2
− e2(k)

+
(

β̃c(k)− ηhe(k + 1)g(k)φT
c (k)

)2
− β̃c

2
(k),

and with some mathematical processes takes the form

∆L(k + 1) =
(

g(k)β̃c
T
(k)φc(k)− ε(k)

)2
− e2(k)

−2ηφT
c (k)β̃c(k)he(k + 1)g(k) + η2h2

e (k + 1)g2(k)φ2
c (k), (46)

and finally,

∆L(k + 1) =
(

g(k)β̃c
T
(k)φc(k)− ε(k)

)2
− e2(k)

−η
[
2φT

c (k)β̃c(k)he(k + 1)g(k)− ηh2
e (k + 1)g2(k)φ2

c (k)
]
. (47)

From the last equation, the learning rate η needs to be positive definite. The term
multiplied by η also needs to be definite positive as

2φT
c (k)β̃c(k)he(k + 1)g(k) − ηh2

e (k + 1)g2(k)φ2
c (k) > 0.

To ensure the last inequality, the learning rate is bounded as

η <
2φT

c (k)β̃c(k)he(k + 1)g(k)
h2

e (k + 1)g2(k)φ2
c (k)

. (48)

From (45), it is inferred that

β̃c
T
(k)φc(k) =

e(k + 1)− ε(k)
g(k)

,

then, the boundary of the learning rate becomes

η <
2{e(k + 1)− ε(k)}he(k + 1)

h2
e (k + 1)g2(k)φ2

c (k)
.

Considering that 2e(k + 1) ≥ he(k + 1) and ε(k) is small enough to be negligible, the
learning rate boundary is rewritten as

η ≤ he(k + 1)2

h2
e (k + 1)g2(k)φ2

c (k)
<

2{e(k + 1)− ε(k)}he(k + 1)
h2

e (k + 1)g2(k)φ2
c (k)

,

and the final boundary of the learning rate becomes

0 < η ≤ 1
g2

max φ2
cmax

≤ 1
g2(k)φ2

c (k)
, (49)

where gmax ≥ |ĝ(k)| and φ2
cmax ≥ φ2

c (k) ∀k ≥ 0.
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In a similar sense, we can say that

η ≤ sign{g(k)}gmin
g(k)

1
g2

max φ2
cmax

≤ 1
g2

max φ2
cmax

,

hence, if we set

η =
sign{g(k)}gmin

g(k)
1

g2
max φ2

cmax
,

and substitute it into the upgrade law (40), we obtain

βc(k + 1) = βc(k) +
sign{g(k)}gmin

g(k)
1

g2
max φ2

cmax
he(k + 1)ĝ(k)φc(k)

and according to (39), it is rearranged as

βc(k + 1) = βc(k) +
1

g2
max φ2

cmax
he(k + 1)sign{g(k)}gmin φc(k) (50)

If we define
ηc =

1
g2

max φ2
cmax

,

and substitute it in (50), we obtain the upgrade law in (41).
From the previous boundary, it is derived that the Lyapunov differentiation (46) can

be rewritten as

∆L(k + 1) =
(

g(k)β̃c
T
(k)φc(k)− ε(k)

)2
− e2(k)

−2η|φT
c (k)β̃c(k)he(k + 1)g(k)|+ η2h2

e (k + 1)g2(k)φ2
c (k). (51)

With the knowledge of the boundaries of function he(k + 1), it is also deduced that
|he(k + 1)| ≤ 1.2. Replacing the boundaries, the last equation is rearranged as

∆L(k + 1) ≤
(

g(k)β̃c
T
(k)φc(k)− ε(k)

)2
− e2(k)

−2.4η|φT
c (k)β̃c(k)g(k)|+ 1.44η2g2(k)φ2

c (k).

For negative or positive constants a and b, the inequality (a + b)2 ≤ 2a2 + 2b2 is always
met. With that property in mind, the last equation can be rewritten as

∆L(k + 1) ≤ 2g2(k)β̃c
2
(k)φ2

c (k) + 2ε2(k)− e2(k)

−2.4η|φT
c (k)β̃c(k)g(k)|+ 1.44η2g2(k)φ2

c (k) < 0. (52)

To ensure stability as in the previous equation, we must analyze the different term
boundaries. The boundary of the tracking error e(k + 1) is established from the equation

−e2(k) + 1.44η2g2(k)φ2
c (k) + 2ε2(k) < 0,

and is defined as

e2(k) > Ωe, (53)

with Ωe ≜ 1.44η2g2(k)φ2
c (k) + 2ε2(k).
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On the other hand, the boundary of the weight vector error β̃(k) is defined from
the equation

2
[
g2(k)β̃c

2
(k)φ2

c (k) − 1.2η|φT
c (k)β̃c(k)g(k)|

]
+ 1.44η2g2(k)φ2

c (k) + 2ε2(k) < 0,

where adding and subtracting 1.2η to and from the equation means some terms can be
rearranged on a square binomial:

2
[√

0.6η − |φT
c (k)β̃c(k)g(k)|

]2
+ 1.44η2g2(k)φ2

c (k) + 2ε2(k)− 1.2η2 < 0.

Isolating the term β̃c(k), it is bounded as

|β̃c(k)|1 > Ωβc , (54)

where Ωβc ≜
√

1.2η+
√

−1.44η2g2(k)φ2
c (k)−2ε2(k)+1.2η2

√
2|β̃c(k)|1|g(k)|

.

This concludes the stability proof with the boundedness of the closed-loop system’s
tracking error and internal signals. The next section shows experimental results to validate
the proposed controller performance.

5. Validation Results

For experimentation, we proposed a Cartesian robot with the motor speed controlled
by a driver (the frequency and direction as the input) and the output as the sensed force.
Both the input and output are considered for the z-axis of the robot. The robot was designed
at Cinvestav Saltillo. The robot uses servo-motors with a terminal voltage of 60VDC, a
continuous torque of 0.353 Nm, and an incremental encoder (AMT102), controlled with a
generic driver. The generic driver is connected to a computer by NI DAQ Multifunction
SCB-68, which also controls the pulse generator Agilent 33220A and the power supply
B&K Precision 1666. The force sensor TW Transducer 9105-TW-MINI58 is also connected
to a PC with an ATI Industrial Automation 9620-05-DAQ. The control algorithm is run on
MATLAB 2013, and the computer has a processor GenuineIntel 7, a RAM of 2 GB, and an
integrated hard disk of 150 MB. Figure 5 shows a picture of the experimental setup, and
Figure 6 shows a diagram of how the system works.

Figure 5. Cartesian robot setup picture.

For performance comparison, the controller proposed by M. L. Corradini in the article
A Robust Sliding-Mode Based Data-Driven Model-Free Adaptive Controller [37] was replicated.
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Figure 6. Cartesian robot setup diagram.

The error metrics presented are the Sum Square Error [SSE] defined as

SSE =
n

∑
k=1

e(k)2, (55)

and the Mean Absolute Percentage Error [MAPE]

MAPE =
1
n

n

∑
k=1

|r(k)− y(k)|
|r(k)| . (56)

The control algorithms are written for MATLAB 2013. Given the type of system, it is
clear that the control laws need to be separated between the direction of the motor and the
pulse speed; the control law information is divided as the motor direction

du(k) =
{

1 u(k) ≥ 0,
0 u(k) < 0.

,

and the frequency sent to the diver

u f (k) = |u(k)|.

This means that if the control law equals u(k) = 5, the motor direction du(k) = 1 will be
moving to the right and the driver will be sent a pulse frequency of u f (k) = 5 kHz. On
the other hand, if the control law equals u(k) = −5, the motor direction du(k) = 0 will be
moving to the left and the driver will be sent a pulse frequency of u f (k) = 5 kHz.

Figures 7–11 show the controller’s performance, and Table 1 shows the metrics results
for both controllers. As is seen in both the figures and the table, the proposed controller
has a more significant tracking error at the beginning than the comparison controller but
has a better performance in the final cycle. The proposed controller has better performance
for the initial and final cycle of the estimation. It can be seen that both controllers have
high-frequency disturbance on both the estimator and the system performance, and the
proposed controller has a slower settling.

Figure 12 shows the PPD estimation ˆg(k) as proposed in comparison with ϕ̂1(k) of
the comparison controller. The PPD is usually approximated as ∂y(k+1)

∂u(k) ≈ ∆y(k+1)
∆u(k) with

∆y(k + 1) = y(k + 1)− y(k) and ∆u(k) = u(k)− u(k − 1). Figure 12 shows the approxi-
mation according to the system performance and controllers. It can be seen that the high
frequency in both controllers causes the estimation to be scattered. Figure 13 shows and
approximation of the PPD of the system with each controller, where it can be seen the
comparison controller produces more sign changes. In contrast, if we think about how the
control direction and the PPD should behave with a smooth input to the system, as shown
in Figures 14 and 15, the direction of the function ĝ(k) has an expected direction during the
simulation, unlike the comparison controller.
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Figure 7. Cartesian robot system performance: [—] desired trajectory, [- -] proposed controller, and
[- · -] comparison controller.

Figure 8. Cartesian robot tracking error: [—] proposed controller and [- -] comparison controller.

Figure 9. Cartesian robot system estimation: [—] proposed controller and [- -] comparison controller.

Figure 10. Cartesian robot estimation error: [—] proposed controller and [- -] comparison controller.
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Figure 11. Cartesian robot control law: [—] proposed controller and [- -] comparison controller.

Table 1. Performance metrics—Cartesian robot.

Proposed Controller Comparison Controller
Ti Tf Ti Tf

MAPE e(k) 28.27% 0.98% 9.89% 2.01%
ê(k) 72.21% 2.50% 163.13% 4.18%

SSE e(k) 5.53 × 104 19.71 1.26 × 104 107.25
ê(k) 4.12 × 103 221.11 1.04 × 105 489.34

Figure 12. Cartesian robot PPD estimation: [—] proposed controller ĝ(k) and [- -] comparison
controller ϕ̂1(k).

Figure 13. Cartesian robot PPD approximation ∆y(k+1)
∆u(k) : [—] proposed controller and [- -] com-

parison controller.
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Figure 14. System performance y(k) and input u(k).

Figure 15. Smooth input PPD approximation ∆y(k+1)
∆u(k) .

6. Conclusions

Our proposed controller and estimator address the challenges posed by unknown
non-affine discrete-time systems with varying control directions. They incorporate novel
cost functions, which play a crucial role in adapting to changes in the control direction
and ensuring system stability. Through rigorous analysis based on Lyapunov theory, we
proved the convergence of these methods, which instills confidence in their effectiveness.

Experimental validation conducted on a force-feedback control system, characterized
by its time-varying control direction, demonstrates the practical utility of the proposed
estimator and controller. The results illustrate the smooth and adaptive nature of the
system’s response to changes in the control direction, highlighting the efficacy of the
proposed methods in real-world scenarios.

While the proposed controller may initially exhibit a slower response compared to
state-of-the-art alternatives, its adaptive nature ultimately enables a remarkable perfor-
mance. By continuously estimating and adjusting the control direction, the system achieves
an impressive tracking accuracy and robustness over time. Other systems can imple-
ment the proposed estimator and controller by acquiring data for estimator training and
spending some time training with the actual system. Additionally, it is worth noting that
due to the MiFREN base of these methods, human knowledge can be transferred into
the system through the initialization of weight vectors, which will be enhanced with the
learning algorithm.
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The following abbreviations are used in this manuscript:

DDC Data-driven control
FREN Fuzzy Rules Emulated Network
IFT Iterative feedback tuning
ILC Iterative learning control
MAPE Mean Absolute Percentage Error
MiFREN Multi-input Fuzzy Rules Emulated Network
PPD Pseudo partial derivative
SSE Sum Square Error
UUB Uniformly ultimately bounded
VRFT Virtual reference feedback tuning
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