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Abstract: The energy transition from the incineration and gasification of fossil fuels to the incineration
and gasification of biomass refractory linings is being held up by a severe corrosion issue, caused by
high alkali contents and the wide variety of biomass sources. Incinerators optimized for fossil fuels are
commonly lined with mullite, AlO3-Cr or SiC-based refractory products; however, those materials
are not always suitable for the use of organic fuels. Hibonite (CaO-6Al,03)-based refractory products
have shown promising performance because of their high resistance against alkali attacks. Indeed,
previous works have shown that the reaction between calcium hexa-aluminate and an alkali does
not lead to the strong volume expansion observed with other mineral phases, such as corundum or
andalusite. The present work aims to describe the reactions kinetics occurring between hibonite-based
raw materials and biomass ashes. Therefore, the three main oxides contained in an average biomass,
namely, CaO, SiO, and K,O, were selected to examine the high temperature reactions with a calcium
hexa-aluminate matrix. The resulting phase composition and microstructure were compared with
the performance of an alumina matrix through, respectively, X-ray diffraction (XRD) analysis and
scanning electron microscopy (SEM). The post-mortem observations show a higher extent of reaction
for the alumina than for the calcium hexa-aluminate. Moreover, the microstructure of the alumina
matrix suffered a strong chemical spalling, while the calcium hexa-aluminate microstructure remained
undamaged after the corrosion.

Keywords: refractory; calcium hexa-aluminate; alkali bursting

1. Introduction

The use of biomass fuels challenges the refractory producer in two ways. On the one hand,
products used for the incineration and gasification of biomass have to withstand a wide variety of
chemical compositions due to the different origins of organic fuels. On the other hand, they also
have to be resistant to alkalis, since biomass ashes can contain up to 60 wt.-% of K,O [1]. Chrome
alumina, andalusite and mullite are the oxide products currently used to line biomass incinerators [2].
Unlike alumina, calcium hexa-aluminate has already proven to have high stability when exposed to an
alkali, avoiding catastrophic volume expansion known as “alkali bursting.” This property is due to its
crystal structure being able to accommodate alkaline atoms. Moreover calcium hexa-aluminate has
a similar density to the products formed during the reactions with K,O or Na,O; hence, no volume
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variation occurs during the reaction. However, the chemical resistance against liquid slag at higher
temperatures was hardly tackled [3,4], despite the relevance for incineration and gasification processes,
wherein the remaining mineral contents of fuels tend to melt locally and dissolve the refractory
components at the lining interface. Beyond the high resistance to alkali bursting, the possible
advantages of calcium hexa-aluminate must be defined regarding its stability to molten oxides, in order
to consider this refractory phase as an alternative to alumina in refractory products designed for new
energy applications. The corrosion behavior of calcium hexa-aluminate and alumina matrix against the
main oxides of biomass composition (CaO, SiO, and K,O) must be better understood for the design
of incinerators linings. This work emphasizes the microstructural features of two types of matrix,
alumina and calcium hexa-aluminate-based ones, and their influences on the corrosion behavior.

2. Materials and Methods

2.1. Refractory Materials

Two types of matrix from refractory castables with comparable microstructures and different
mineral compositions were targeted. This allowed us to isolate the effect of calcium hexa-aluminate as a
refractory component regarding its potential to replace alpha alumina for specific biomass applications.
The alumina and calcium hexa-aluminate matrices were formulated with the same grain size and
comparable open porosity, but different chemistry and bonding.

To obtain two different chemistries for the matrix, two different binding systems were used.
The binding of the calcium hexa-aluminate matrix was provided by calcium aluminate cement and
reactive alumina in order to react with CA4 during the sintering, and the weight ratios were adjusted
to obtain the stoichiometry of the targeted phase. The alumina matrix was bonded with boehmite
gel which irreversibly transforms into x-alumina during sintering. The alumina gel was prepared
from a commercial boehmite powder (AIO(OH)) containing acetate. After dissolving the powder in
80-85 °C hot water, the dispersion was stabilized through the addition of nitric acid and vaporized
to a specific amount. The formulations of the matrices were developed through the optimization of
the Andreasen packing coefficient and of the rheological behavior. Then, the proportion of the water
was adjusted to obtain the required rheology to cast the samples, but also to obtain comparable open
porosity after sintering (Table 1). The raw materials for the castable samples were provided by FIRE
C2 partners: the reactive alumina was supplied by Alteo; the tabular alumina and calcium aluminate
cement by Imerys; and the calcium hexa-aluminate raw material by Almatis. The dispersant used for
the deflocculation was supplied by BASE.

Table 1. Formulations of the matrix samples: (a) gel bonded matrix A; (b) cement-bonded matrix CAg.

Matrix A [wt. %]
2) Tabular alumina 0-0.045 mm 30.0
Reactive alumina PFR 27.5
Tabular alumina 0-0.5 mm 41.0
Boehmite gel 14.0
Matrix CAgq [wt.%]
Reactive alumina PFR 20.0
b) Tabular alumina 0-0.045 mm 25.0
sl gosmm o
CA cement Secar71 15.0
Dispersant FS65 0.15

Water 11.0
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After the casting, the gel bonded matrix was kept under ambient conditions, while the
cement-bonded matrix was placed in a climatic chamber for 48 h at 25 °C with a relative moisture
content of 95%. Afterwards, both types of samples were kept in a drying chamber at 110 °C for an
additional 24 h. The sintering was performed at 1700 °C for 6 h, with an additional dwell time at
500 °C for the cement-bonded matrix to enable the dehydration without damaging the sample due to
gas release. The sintering temperature was chosen as a compromise for the calcium hexa-aluminate
formation and the obtention of comparable microstructure for both types of matrix. The obtention of a
calcium hexa-aluminate matrix was more challenging, because of the difficulty of fully reacting Al,O3
and CaO to form CAg. The precise adjustment of the chemical composition and the high sintering
temperature permit one to obtain a matrix sample containing 99% CAg¢ according to XRD measurement
and Rietveld quantification.

The characterization of the matrix porous network was based on different standard techniques.
The open porosities of the massive matrix samples were measured according to the European standard
for refractory samples 993-1. Samples were subsequently grounded down to <63um to determine
pore size with mercury porosimetry using the Autopore IV 9500 Series from Micromeritics and to
assess the density of the refractory by means of helium pycnometer using the Ultrapyc 1200e from
Quantachrome. The permeability to gas was determined using a permeameter, as described in the
standard ISO 8884 with the outlet maintained at atmospheric pressure. While the ISO standard advises
expressing the permeability of the refractory material as the average of permeability measurements
calculated from three different flow rates, in this work the intrinsic permeability was estimated based
on Klinkenberg’s model plotting the apparent permeability according to the reciprocal mean pressure
to extrapolate the intrinsic permeability value. To address the influence of the porous network of
the calcium hexa-aluminate matrix on the dissolution rate, additional samples with enhanced open
porosity were produced by adding different amounts of water to the dry composition during the
elaboration of the matrix samples.

2.2. Slags

The variety of biomass sources results in a wide range of chemical compositions for the residual
ashes. This makes it difficult to adress corrosion testing without restricting the conclusions to a few slag
compositions. To provide statements extendable to different types of organic fuels residuals, this study
was conducted in two steps:

- Quantitative analyses of the reaction extent using a simplified slag composition narrowed down
to the three main components, SiO,, CaO and K,O—based on chemical compositions reviewed
in [1].

- Visual observations of the spalling comparing the effect of synthetic slag composition with natural
wood ash (Figure 1) to validate the correlation.
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Figure 1. Average composition of wood ash from [1] compared with the chemical composition of the
wood ash used in the present study.
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To isolate the influences of the main oxides contained in biomass ashes, SiO,, CaCO3 and K,COs3
powders were mixed (all reagent grade) to obtain 5i0,-CaO-K;,O in weight ratio 2:2:1. The ternary
slag CSK was decarbonated at 1000 °C for 12 h and melted at 1400 °C/1 h for a final homogenization
prior to quenching in water and grinding.

2.3. Corrosion Testing

To examine the matrix reactions, 0.9 g of the synthetic slag was mixed with a few drops of ethanol
for uniaxial pressing to parallelepipedic dimensions (5 X 5 X 25 mm) to be deposited on a slice of
refractory matrix (5 X 10 X 30 mm). The corrosion couple was introduced in a resistive furnace at
1400 °C for different time periods and quenched in water prior to X-ray diffraction analysis.

In this corrosion test, the quantity of slag is low and might limit the reaction once the slag is saturated
with the refractory. Moreover the testing is static, i.e., absent movement of fluid, avoiding erosion
effects and lowering the transport rates. The temperature distribution is considered homogeneous
across the sample volume and the matrix samples are not pre-heated. It can be considered that they
undergo a severe thermal shock as they are introduced in the furnace at 1400 °C. However, the influence
of this microstructural damage is assumed to be negligible on the resulting phase composition.

For the comparison with the wood ash, cylindrical samples of matrix (H10 mm x D50 mm) are
covered with a pressed tabled of 5 g of ash. The samples are heated in a resistive furnace with 2 K/min
and kept 2 h and 24 h at 1550 °C before cooling naturally down to room temperature.

The testing temperatures were adapted to the melting temperatures of the synthetic and biomass
slag, respectively 1224 °C and 1430 °C, measured with hot stage microscopy according to the European
standard 51730.

2.4. X-ray Diffraction

Two types of X-ray diffraction (XRD) analysis were conducted:

- Space-resolved XRD to consider the influence of the microstructure on the reaction depth.
- Quantitative XRD to evaluate the extent of reaction.

Space-resolved XRD was performed after sectioning the corroded samples perpendicularly to the
refractory/slag interface. The sample was placed on the XYZ stage of the diffractometer. A collimator
was mounted on the incident X-ray beam using a snout of 1 mm diameter, and three XRD measurements
were performed at a given distance from the interface before adding the recorded signals to obtain a
diffractogram corresponding to a surface of 2.4 mm?. The scan was performed from 5° to 90° [20] with
step of 0.02° and 384 s/step. The XRD patterns were recorded on a Bruker D8 automated diffractometer
using Ni-filtered Cu-Ko1 radiation (A = 1.5406 A).

The influence of matrix porosity on reaction extent of CAg samples was evaluated using quantitative
XRD. After reacting with 0.9 g of synthetic slag for different durations, the samples were ground
<63 microns with vibrating disc mill. The XRD patterns were collected in the Bragg—Brentano (8-20)
geometry between 5° and 90° (26) in 0.01° steps at 96 s.step™" and A = 1.5406 A.

Based on the recorded XRD patterns, a quantification by Rietveld refinement with the software
TOPAS from Bruker using the fundamental parameters was performed to determine the amounts of
the coexisting phases. The preferred orientation of calcium hexa-aluminate was considered in the
structure card of CAg

It is assumed that the amorphous content (X_a) of the ex situ sample should relate to the amount
of high temperature liquid phase due to the rapid cooling. The direct method of degree of crystallinity
(DOC) is used to quantify the liquid phase that forms in the reaction with the synthetic slag. This method
calculates the amorphous phase amount by relating the area under the crystalline peaks to the area
under the amorphous bump (Equations (1) and (2)):

DOC = (Crystalline area)/(Crystalline area + Amorphous area) D)
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X a=1-DOC ()

To further reduce the uncertainty of the amorphous quantification, the liquid amount yield by the
reaction is determined by subtracting the amorphous content calculated for the uncorroded sample.

Lig = A(X_a) = X_a (Corroded) — X_a (Uncorroded) 3)

This method was used to quantify the liquid formed in matrix samples of CAg with different
open porosities after 2 h and after 24 h. Both Rietveld and DOC quantifications enable the calculation
of the CAg4 content remaining in the matrix sample. The decrease of the CA4 content was used to
estimate the dissolution progress. The extent of dissolution was calculated based on the decrease of
CAg content according to reaction duration. The values are expressed in an arbitrary unit of calcium
hexa-aluminate loss per hour (%/h), while considering that the samples all have the same contact area
as the slag; namely, 5 X 25 mm?.

3. Results

3.1. Characterization of the Porosity

For the resistance against slag infiltration, some microstructural properties of the matrix are
relevant, such as the open porosity, the pore sizes and the permeability to gas. The rheology of matrix
CAg requires lower amounts of water during the mixing of the raw materials. However, the resulting
open porosity is slightly higher than for matrix A. This might be due to the poorer tendency for
densification of calcium hexa-aluminate reported in the literature, leading to higher open porosity
compared to alumina [5]. Although comparable amounts of open porosity were achieved for both
matrices, the porous network seems to exhibit different features. The use of a colloidal binder led to a
greater average pore diameter of 3.0 um, while the deflocculated cement binding resulted in a lower
average pore diameter of 1.0 um (Figure 2).
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% Open porosity (Hg) 19.7 %
g 02 Matrix CAs Median pore diameter 3.2 m
s Open porosity (H20) 215 % Average pore diameter 3.0 ym
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Figure 2. Pore size distribution after sintering at 1700 °C/6 h.

The permeability to liquid was determined by a multi-point measurement of gas permeability to
determine the intrinsic permeability. The exploitation of the results is based on Dranchuk interpretation
reported in [6] and its application to refractory products is described in [7,8].

The alumina matrix exhibits a permeable microstructure with an intrinsic permeability of 22.7 mD
against 4.9 mD for the calcium hexa-aluminate matrix (Figure 3). The permeability value represents
the interconnected open porosity and is a relevant parameter for the resistance to infiltration.
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Figure 3. Permeability of alumina and calcium hexa-aluminate matrix.

3.2. Resistance to Structural Spalling

After reacting at 1400 °C with CSK slag for 24 h, the matrix samples revealed strong differences in

their geometries (Figures 4 and 5). The samples were kept massive for space-resolved XRD using an
XYZ table as the sample holder.
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Figure 4. Space-resolved XRD of matrix A after 24 h in contact with CSK slag at 1400 °C and quenching
in water.

At the surface of the alumina matrix, which was covered with slag, alumina (A) was present with
high amounts of calcium hexa-aluminate (CAg), potassium f3-alumina (A) and amorphous phase.
The measurement performed at 5 mm from the interface shows an attenuated presence of the reaction
products. The gradient in the mineralogical composition between the interface and the core of the
sample is strongly marked. The difference of volume between the reaction products and the alumina
leads to the curved shape of the sample after cooling and the cracking observed in Figure 4.
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Figure 5. Space-resolved XRD of matrix CA6 after 24 h in contact with CSK slag at 1400 °C and

quenching in water.

While the alumina sample shows a strong deformation after corrosion (Figure 4), the calcium
hexa-aluminate matrix remains dimensionally stable (Figure 5). The XRD measurements show the
main phase to be calcium hexa-aluminate, and traces of Gehlenite (C, AS) and Grossite (CA;) show the
low reactivity of the calcium hexa-aluminate matrix. The silica-containing phase was only present at
the interface. Since the extent of reaction at the interface is low, only a slight difference was observed
in the XRD measurements of the surface and of the core of the sample. At a distance of 5 mm from
the interface, calcium hexa-aluminate was present with traces of calcium di-aluminate. The density
variations were measured on the ground samples with helium pycnometer (Table 2).

Table 2. Density measurements of the matrix samples.

[g/cm®] Before Corrosion with CSK 1400 °C/24h  After Corrosion with CSK 1400 °C/24h
Matrix A 4.0 3.4
Matrix CAg 3.7 34

The starting density for matrix A was higher, with a value of 4.0 g-em ™3, than for matrix CAs,
with a value of 3.7 g-cm‘3, in agreement with the theoretical densities. After corrosion, both matrix
samples exhibited the same density of 3.4 g-cm™. The density measured after corrosion is the sum of
all the single contributions of the different phases coexisting in the sample. The reaction with CSK slag
generates low density products, which require a greater volume than the original phase. The density
gradient was lower in the case of the matrix CAg, and the reaction products could expand in the open
porosity without macroscopic volume expansion.

The observations after corrosion with the model slag are compared with the resulting sample
geometry after corrosion with wood ash (Figure 6)

Figure 6. Matrix samples after corrosion with wood ash at 1550 °C: (a) matrix A after 2 h; (b) matrix A
after 24 h; (c) matrix CAg after 24 h
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In the case of the alumina matrix, a strong structural spalling is visible after corrosion with wood
ash, while calcium hexa-aluminate seems to react without volume variations, and hence, without
damaging the initial microstructure of the refractory product.

The volume variations are calculated based on geometry measurements after the natural cooling
of the corroded samples (Figure 7).

mMatrix A % Matrix CA6
40

20

10

Relative volume expansion [%]

0 V77 s
After 2h After 24h

Figure 7. Post-mortem volume expansion after corrosion with wood ash at 1550 °C.

After corrosion with wood ash, the calcium hexa-aluminate sample showed a low expansion of
2 Vol.-% which remained constant after different testing durations. On the contrary, the alumina matrix

exhibited a strong volume expansion of 16 Vol.-% after 2 h at 1550 °C, which increased up to 36 Vol.-%
after 24 h.

3.3. Influence of the Porosity

In order to test the influence of the matrix’s porosity on the corrosion behavior, different matrixes
were cast with different amounts of water. The open porosity was measured with water according to
the European standard 993-1 and with mercury porosimetry (Figure 8).
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Figure 8. Open porosity of matrix CA¢ after sintering at 1700 °C/6 h according to the amount of water
added for casting.

The open porosity measured with water yielded slightly higher porosity values than mercury
porosimetry. Since the mercury measurements were carried out on ground samples with a more
intrusive fluid, only micropores were reached, unlike water measurements comprising both micro-
and macroporosity. The dense refractory matrices were mainly composed of microporosity, explaining
why the differences between both methods were low. The open porosity increased linearly with the
amount of water added during the mixing of the matrix components. No significant variations of the
pore diameter were measured with the mercury porosimetry, and the values are shown in Table 3.
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Table 3. Average pore diameter of matrix CAg after sintering at 1700 °C/6 h measured with mercury
porosimetry.

Water Amount [wt.%] 10 11 12 13 14
Median pore diameter [um] 1.9 2.5 2.5 2.6 3.7

Average pore diameter  [um] 0.6 1.0 1.3 1.3 1.8

The different samples were corroded with 0.9 g of slag CSK to determine the rate of dissolution of
calcium hexa-aluminate after 2 h and after 24 h. The values are compared in Figure 9, expressed in an
arbitrary unit of calcium hexa-aluminate loss per hour (%f/h), while considering the samples all had the

same contact area with the slag; namely, 5 x 25 mm?.
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Figure 9. Rate of dissolution of matrix CAg in CSK slag at 1400 °C according to the open porosity
expressed as the decrease in CAg4 content of the sample per hour.

After 2 h in contact with CSK slag, the rate of dissolution was strongly influenced by the open
porosity of the matrix. The original matrix CAg compared previously with the alumina matrix exhibited
an open porosity of 21.5%, and the dissolution rate after 2 h was —2.7%/h. The matrix with 28% open
porosity, showed after 2 h a dissolution rate of —5.9%/h, with a linear increase of the dissolution rate
according to the open porosity. After 24 h, the further dissolution rate was close to zero, and the open
porosity did not have any influence anymore. The open porosity influences the rate of dissolution at
the beginning of the corrosion process, with lower dissolution rates for lower open porosity. As the
reaction advanced, the dissolution slowed down strongly due to the saturation of the liquid phase
declining the impact of the open porosity. That is consistent with the literature, confirming that the
rate of dissolution increases linearly with the percentage of apparent porosity [9].

3.4. Morphology of Calcium Hexa-Aluminate

As mentioned in the introduction, the calcium hexa-aluminate phase can exhibit different types
of morphology. The Rietveld refinement can also determine qualitatively the shape of the calcium
hexa-aluminate crystallites. A tool is proposed in the TOPAS interface to assess the preferred orientation
of one phase in the quantification of the crystalline compounds. The quantification can indeed be
distorted if the texture is not considered for the refinement [10]. A coefficient is then attributed
to the (0 0 1) direction planes, indicating the degree of texture. A coefficient close to one refers to
randomly-oriented crystallites, while a coefficient smaller than one indicates the preferred orientation
of plate crystallites (Figure 10).
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Figure 10. Coefficient of preferred orientation for the calcium hexa-aluminate phase obtained from the
Rietveld refinement performed after corrosion with CSK slag at 1400 °C.

The coefficient indicates two types of orientation for the calcium hexa-aluminate phase, according
to the two types of growth:

The sintered calcium hexa-aluminate obtained either as sintered aggregate or from the sintering
between calcium aluminate cement and reactive alumina. Those calcium hexa-aluminate crystals
present in the matrix CAg were randomly oriented with a coefficient close to one (Figure 10).

The precipitated calcium hexa-aluminate obtained from the dissolution of alumina matrix in
the slag CSK. Those crystals were textured, and the coefficient lower than one indicates an oriented
platelet morphology (Figure 10). The platelet morphology was observed on the crystals grown in the
intergranular melt examined with SEM as well (Figure 11).

11 Apr2018 FF-06-933 20.00kV GHI 11 Apr 2018 FF-06-934 20.00 kV oBsD | p

Figure 11. Micrographs of calcium hexa-aluminate formed in matrix A after corrosion with CSK slag at
1400 °C/150 h and quenching in water.

The morphology of the calcium hexa-aluminate as a reaction product is visible in Figure 11.
The platelets precipitate from an intergranular liquid phase in the vicinity of the tabular alumina
being dissolved. The EDX #3 reveals a chemical composition close to the stoichiometry of calcium
hexa-aluminate, while the EDX #1 and #2 comprise calcium hexa-aluminate and the liquid phase
composed of the slag elements, depleted in potassium and enriched in alumina and sodium (Table 4).
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Table 4. EDX measurements from Figure 11.

[wt.%] Na,O Al,O3 SiO; K,O CaO
Partial surface 0.5 75.2 11.3 0.9 12.2
1 1.9 38.3 34.7 35 21.7

2 1.6 54.5 24.3 2.5 17.2

3 - 914 - - 8.6

4. Discussion

Different amounts of water were added during the mixing to the dry composition of the calcium
hexa-aluminate matrix in order to determine the influence of the capillary network on the corrosion.
The resulting open porosity after sintering of the matrix is correlated to the additional amount of water
(Figure 8). After testing the corrosion with CSK slag, it was observed that the enhanced open porosity
increased, linearly, the rate of dissolution (Figure 9). The objective of this trial was to determine the
contribution of the matrix’s microstructure to the dissolution rate values, to assess whether the better
performance of matrix CAg could be attributed to the lower permeability and smaller pore sizes of the
microstructure. However, the addition of water to increase the open porosity does not lead to any
significant increase of the pore size (Table 3). The comparison with the microstructure of matrix A was
not achieved, and the influences of the microstructural features on the high corrosion resistance of
matrix CAg remains+ undefined.

Two types of morphologies could be observed for the calcium hexa-aluminate phase. The sintered
calcium hexa-aluminate exhibits a random orientation in its crystalline structure, while the precipitated
calcium hexa-aluminate is textured and exhibits a platelet morphology (Figure 10). The equiaxed grains
observed in matrix CAg after sintering are not representative of the morphology usually obtained in a
calcium aluminate cement-bonded castable. According to literature [11], this could be attributed to the
enhanced sintering temperature of 1700 °C, leading to the growth of platelets into equiaxed grains.

The plate-like morphology was observed in the alumina matrix, after undergoing a strong volume
expansion. The structural spalling was not attributed to the alkali reaction from the potassium
contained in the slag, but rather to the reaction with the calcium (Figure 4). The expansive formation
of calcium hexa-aluminate was due to the lower density of the phase formed. The volume increase
from corundum to calcium hexa-aluminate can be calculated as follows:

6Al, 03 (S) + CaO (llq) — CaAl15019 (S) (4)

AV — VCLIAlqu - 6VA1203
6V AL,0,

= +14.7% (5)

Considering for alumina 102g/mol, 3.99g/cm? and for calcium hexa aluminate 668g/mol, 3.79 g/cm?3

Though the theoretical volume increase is lower than the one caused by alkali reaction
(+26.5% from [12]), the volume expansion for the transformation of alpha alumina into calcium
hexa-aluminate is considerable. Since calcium hexa-aluminate exhibits a low density and a low
reactivity, no structural spalling was observed after corrosion in matrix CAg, either with the model
slag, or with the wood ash.

5. Conclusions

The advantages of hexa-aluminate, compared to alumina as a matrix of castables, for the
applications of biomass incineration or gasification, have been enriched in this paper. While the
chemical stability of calcium hexa-aluminate is attested to, both against dissolution with lime silicate
slags and against alkali-bursting [12], this work has shown that the advantages of this refractory
mineral can be microstructural as well. The comparison of a calcium hexa-aluminate matrix provided
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by calcium aluminate cement and reactive alumina and an alumina matrix bonded with boehmite
sol-gel show that the calcium hexa-aluminate matrix presents:

- Alower permeability and a lower average pore diameter.
- Abetter resistance to structural spalling induced by calcium aluminate precipitation.
- Alower reactivity in contact with biomass ashes.

Thus, hibonite (CaO-6Al,03)-based refractory castables show promising performances for the
incineration and gasification of biomasses.
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