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Abstract: The main issue to tune controlled devices by the application of a DC magnetic field comes up
against the high value of the field’s intensity required for their implementation. This work presents an
implementation of magneto-dielectric materials (MDM) specifically manufactured for their integration
in antenna devices operating in VHF band. The twofold objective is: (i) reduction in antenna size,
(ii) frequency tuning of the antenna using a low intensity magnetic control. A notable permeability
variation of MDM samples is observed when the symmetry of the lines of the control field, with an
intensity less than 10 Oe, is consistent with the one of the structures in the magnetic domains. The MDM
allows a miniaturization of 20% of an inverted-F antenna (IFA) antenna structure, and an agility of
about 2.5% for a control field of 1.5 Oe.

Keywords: magneto-dielectric materials; tunable materials; small antennas; reconfigurable antennas;
VHF

1. Introduction

The common use of connected objects these last few years has led to a special need of both
electrically small, cost effective and performing antennas. Antenna miniaturization becomes a real
challenge at UHF and VHF frequency bands, since the wavelength are large at those frequencies.
The designers of electrically small antennas are always facing a tradeoff involving the electrical size of
the antenna, its frequency bandwidth and its radiation efficiency, following the fundamental laws of
physics described in [1–4]. For applications requiring long-range communications, antenna radiation
properties are crucial to achieve a correct link budget. This critical issue particularly arises for airborne
systems industry, where the need of small antennas at VHF frequencies is also justified by a limitation
in weight and aerodynamic drag. In this kind of application, antennas frequency bandwidth is
often sacrificed, in order to achieve small antennas with sufficient radiation properties. A possible
solution to overcome the limited bandwidth issue is to design a frequency reconfigurable antenna
that covers the used communication channel. Classical frequency reconfigurability techniques using
electronic components, such as varactors, digitally tunable capacitors, or switches to tune antenna’s
frequency response, are often used, in order to solve the narrow bandwidth issue of small antennas [5].
These techniques can be used to artificially increase total antenna operating bandwidth, either by
matching the antenna to the required narrow instant band, or by fine tuning the narrow operating
band of miniature antenna that can be sensitive to their close changing environment. The drawback
using those techniques is to introduce additional losses in antenna structure leading to reduce its
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radiation performances. In this work, a frequency agility technique based on tunable polycrystalline
magneto-dielectric material (MDM) is proposed for fine-tuning the frequency response of an electrically
small antenna designed in VHF band. MDM belong to the class of “multiferroic materials”, wherein
magnetic, electric and mechanical responses might be interlinked. A magnetostrictive material,
for example, may exhibit in certain cases a change in magnetization (M) in the presence of an electric
field (E). For instance, [6] focused on composite magnetoelectric structures which associate piezoelectric
substrates and magnetostrictive layers, in order to get a variation of microwave permeability, thanks to
an electric field generated under a voltage of 125 V. However, the required electric voltage is prohibitive
for actual applications. For this reason, the implementation of the magnetostrictive properties of ferrites
have not been retained in this study. Thanks to a relative permittivity (εr) and a relative permeability
(µr) both greater than one, MDM has been used these last few years as suitable materials for antenna
miniaturization [7–10]. A DC biasing current generating a magnetic static field in the MDM is used to
tune antenna’s frequency response. The problem using DC magnetic field comes up against the value
of the fields intensity required for their implementation, due to the importance of the demagnetizing
effects linked to the discontinuities of magnetization, which appear in particular on the surface of the
material. It is established that these effects are weaker when the polycrystalline material has a toroidal
shape, as the magnetic walls adopt the orthoradial symmetry [11]. The permeability is then easily
modified by a magnetic field of the same symmetry, without any noticeable impact of demagnetizing
effects. A fabricated antenna, using samples of polycrystalline MDM specifically designed to meet this
objective is presented.

2. Materials and Methods

2.1. Antenna Design Description

The proposed electrically small frequency reconfigurable antenna is designed to work at VHF
band starting from a geometry of an inverted-F antenna (IFA) as described in Figure 1. The IFA is a
compact low-profile antenna proposed in the 1960s by King [12]. Its operating principle is based on a
transmission line section producing a quarter-wave resonator, since it is short-circuited at one end and
open at the other. Frequency agility of this antenna is studied by changing the properties of the short
circuit with the use of MDM. Some miniaturization technics have been implemented to further reduce
the size of this compact antenna.
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Figure 1. (a) Antenna design and (b) schematic view of the antenna with the biasing circuit.

The developed antenna is composed of a conductive strip of 40 × 440 mm2 (λ0/107 × λ0/10)
above a circular ground plane, with a diameter of 1250 mm (~λ0/4). λ0 is the wavelength calculated
at the resonance frequency of 70 MHz. The antenna height is 120 mm, which corresponds to λ0/36.
Ground plane dimensions are chosen according to the targeted application, especially to meet aircraft
reference tests condition. The left side of the conductor strip is bent, and incorporates a capacitive
termination for antenna miniaturization issue. A feeding probe is connected to a metallic strip of
47 × 40 mm2 (λ0/91 × λ0/107), printed on FR4 substrate (εr = 4.3, tan δe = 0.02). This metallic strip forms



Ceramics 2020, 3 278

a metal-insulator-metal (MIM) capacitance of 31 pF with the top conductor of the antenna, assuring
antenna matching to 50 Ω impedance at the frequency of interest.

On the other side, antenna’s strip is bent to be shorted to the ground plane using a vertical strip
for upper part and three conductive wires for lower part. The three wires are loaded with the tunable
MDM (blue cylinders). Three short-circuits are used instead of one following the work described
in [13], due to material’s shape constraint. This previous work has shown that loading the antenna
with MDM around its short circuits, where the currents are strong, is optimal toward miniaturization,
because the antenna is more sensitive to magnetic material’s properties. The MDM loading strategy
must respond to different constraints aimed to substantially miniaturize the antenna, by limiting
its volume and weight for aeronautics application. It is interesting to note that the current control
of loading MDM to ensure antenna’s frequency response tuning can be easily integrated into this
antenna structure, which has short circuits. DC current is injected via the antenna feeding probe and
flows through the short-circuit wires thanks to a RF block inductor of 0.8 µH connected at the strip.
As shown in the schematic view, a bias-tee working below 100 MHz and limited to 5 A currents is
used to introduce the DC current combined to RF feeding of the antenna. The designed antenna is
electrically small with a k.a of 0.2 calculated at the resonance frequency. k is the wave number (k = 2π/λ)
and a is the radius of the smallest sphere enclosing the antenna and its electrical image through the
ground plane. According to the fundamental work proposed in [2], the definition of electrically small
antennas follows the condition k.a < 0.5.

2.2. Structural and Main Electromagnetic Features of MDM Samples

The materials used for this application of small and frequency reconfigurable antenna are
polycrystalline soft ferrites prepared by the Lab-STICC [14,15]. For confidentiality reasons, the presentation
of the materials will not be detailed. They were obtained from chemically synthesized powders. These
powders were placed in a mold, which gives a toroidal shape to the sample by means of uniaxial pressing.
The sample was then subjected to a suitable heat treatment. We present here two samples, called S2 and
S6, which differ both in their chemical compositions and in the applied heat treatments. Volume density
is close to 90% for S6 and lies between 95% and 99% for S2.

Generally speaking, the dynamic permeability of a polycrystalline material is the sum of two
contributions, which are due (a) to magnetic walls displacements, and (b) to spin gyroresonance (Figure 2).
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Figure 2. Walls displacements and spin gyroresonance contributions to the complex permeability
µ = µ’-jµ” of a polycrystal of infinite size (a) Real part µ’ and (b) Imaginary part µ”.

Magnetic walls displacements phenomenon is very sensitive to the presence of a static magnetic
field. With regard to the second contribution, in the general case, the spin resonance occurs in the
effective field, which is the sum of the anisotropy field Ha and the applied field Hext. In the present study,
Hext is much lower than Ha. With this hypothesis, and in contrast to the magnetic wall’s contribution,
the spin resonance is insensitive to Hext. In the study presented here, the mobilization of the domain
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walls by a static field plays a key role. Moreover, in the frequent case where the material is of finite size,
the permeability is also sensitive to demagnetizing effects. These are caused by discontinuities in the
magnetizing flux, which can occur at the physical boundaries of the sample (shape effect), as well as at
the grain level due to porosity (internal effects). These demagnetizing effects can be detrimental, because
their presence requires, when permeability has to be changed, the application of a strong magnetic field
proportional to the magnetization. As an example, the initial magnetic state of a soft ferrite depends on
two parameters, which are: the magnetocrystalline anisotropy field and the demagnetizing field, this one
is being related to the spontaneous magnetizing flux. Since the former intensity is lower that the latter
one, it plays a much smaller role in the domain walls organization. Thus, while the magnetocrystalline
anisotropy field is of the order of 300–800 Oe, the demagnetizing field related to the shape of the sample
can reach 1300 Oe (in the case of a spherical sample).

In ideal polycrystalline materials, the shape demagnetizing effects are minimized by the formation
of magnetic walls showing orthoradial symmetry, which allow the closure of the magnetizing flux
in the sample. This is the concept of the “magnetic torus” (Figure 3), developed by Globus [11].
The application of a static magnetic field of orthoradial symmetry leads to the displacement of the
magnetic walls in the sample, thus varying its permeability. In addition, ferrimagnetic polycrystalline
materials obtained by powder sintering usually show natural porosity (Figure 3).
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Figure 3. (a) The concept of the magnetic torus. (b) General aspect of the microstructure of a polycrystalline
ferrite, with intragranular and intergranular porosity.

The porosity acts as a brake in the displacement of the walls, as well as in the generation of
internal demagnetizing effects. An example of internal demagnetizing effect is given in Figure 4,
showing that the presence of a non-magnetic phase in a heterogeneous magnetic material leads
to discontinuities of the magnetizing flux lines (areas framed in red), generating demagnetizing
effects. Consequently, it significantly influences the magnetization processes by displacement of walls,
and therefore permeability. Porosity is an adjustment parameter for permeability, which is therefore
important to control as well as possible.
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There are usually two distinct contributions to porosity, and, thus, to internal demagnetizing
effects, the proportions of which vary according to the firing temperature of the ceramic. These are:
(i) intragranular porosity that consists of a multitude of small pores (Figure 3). This determines the
movement of the walls on which it acts as a brake. Its influence is greatest on the small reversible wall
movements (initial permeability). This porosity can be pushed back to the limits of grain boundaries
during the material synthesis, by applying a higher firing temperature; (ii) intergranular porosity that
is distributed in more or less large pores pushed back to the limits of the grains during their growth.

Finally, the dispersion of the walls with respect to the orthoradial symmetry, due to the presence
of porosities, has a strong influence on the variation of permeability as a function of frequency
(Figure 5). It was demonstrated in [17] that the permeability of a ferrite torus depends on whether it is
non-defective or porous. The distribution of the walls is orthoradially symmetrical in the first case,
while the walls are dispersed in the second case [17].
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Figure 5. The permeability of a ferrite torus depends on whether it is non-defective or porous. The related
wall pattern is orthoradial in the first case, and dispersed in the second case (figure adapted from [17]).

3. Results

3.1. Measurements of Sample’s Permeability Dynamics as a Function of an Applied DC Magnetic Field

At first, the real part of the permeability of the toroidal samples was measured at f = 10 kHz,
by the transformer method (Figure 6), using a hysteresis meter with lock-in amplifier. The maximum
change in permeability obtained when the DC field is varied between zero and its maximum value
is called the permeability dynamic ∆µ. Orthoradial symmetry common to the polarization field H
(generated by a control current I) and to the microwave field h respects the symmetry of the sample,
thus avoiding the creation of demagnetizing effects other than those related to grain boundaries and
porosity. The measurement results (Figure 6) show for samples S2 and S6 a dynamic ∆µ close to 70 and
30, respectively, for a static field varying between 0 A/m and 526 A/m (mean value calculated over
the volume of the sample), i.e., 6.6 Oe, corresponding to a maximum current of 9 A. However, these
first results do not give any information on the imaginary µ” part of the permeability and have to be
confirmed in the working frequency band of the antenna.

Subsequently, the variation of permeability in the VHF frequency band under the action of a DC
magnetic field controlled by a current limited to 5 A, was measured. The measurement set-up consists
in a vectorial network analyzer (VNA), two ETL TEEBX 4013 bias tees (1 MHz–5430 MHz/up to 5 A
and 48 V DC), an APC7 coaxial transmission line, a DC power supply and an Ampere meter, to control
the static current travelling in the coaxial line. In this measurement cell, a static current travelling in
the inner conductor generates a static magnetic field orthoradial to the toroid axis, thus, in the same
direction than the dynamic magnetic field (Figure 7) [18].
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Figure 7. APC7 measurement cell loaded with a ferrite toroidal sample. Both DC and AC magnetic
fields have orthoradial symmetry (only HDC is represented).

As in the transformer measurement method, the configuration of fields in this transmission line
allows avoiding shape demagnetizing effects to occur. This specific measurement set-up was calibrated
in order to take into account the variations of S-parameters as a function of applied DC current when
no sample or a dielectric sample is characterized, and thus to ensure that measured variations come
from a change of sample’s permeability. The results, obtained with a maximum DC current of 5 A
which produced an average field strength equal to 296 A/m (i.e., 3.7 Oe, mean value calculated over the
volume of the sample) are presented in Figure 8a,b. In the frequency range 10–80 MHz, the permittivity
and the dielectric loss tangent remained almost constant. For S2 and S6 the following values (ε’, tgδε)
were measured: (16, 0.025) for S2, (14.5, 0.03) for S6, which testified to the high electrical resistivity of
the materials. These results confirm for both samples the existence of permeability dynamics in the
VHF band (with relative variations equal to 14% for S2, and 7% for S6), which can be exploited to tune
frequency response of the IFA antenna.Ceramics 2020, 3 FOR PEER REVIEW  7 

 

 

Figure 8. Permeability variations of (a) S2 sample and (b) S6 sample as a function of the frequency of 
the HF field, for two intensities of the DC field (insert: the values of the averaged DC field over the 
sample, limited here to 3.7Oe, i.e., 296 A/m.) Real and imaginary parts are full and dashed lines, 
respectively. 

3.2. Frequency Agility Potential of IFA Loaded with S2 MDM 

According to Figure 8, the S2 type MDM shows a better potential toward antenna 
miniaturization and frequency agility compared to S6 material, since it exhibits a higher permeability 
with a higher dynamic range of tunability in the frequency band of interest (10 MHz to 100 MHz). 
For these reasons, the S2 material has been selected for our application to load the IFA antenna in 
VHF band.  

The input impedance of the antenna at the vicinity of resonance frequency and the 50 Ω reflection 
coefficient obtained with a full 3D electromagnetic (EM) simulator are respectively plotted in Figure 
9a and Figure 9b, with a biasing current varying from 0A to 5A. The frequency agility observed on 
the resonance frequency is 6%. The resonance frequency is considered where antenna’s real part 
impedance reaches a maximum amplitude. The antenna’s operation frequency, with an agility of 
8.2%, achieves a frequency bandwidth of 26 MHz from 40 MHz to 66 MHz, with respect to −7 dB 
reflected power. The antenna’s operation frequency is defined at the minimum value of |S11|, with 
the lowest reflections at the input of the antenna. This frequency agility obtained with the MDM S2 
is lower than 10%, mainly due to the limited quantity of MDM used for practical reasons. This first 
demonstration of agility presents a not wide enough frequency excursion for multi-frequency 
antennas applications, but it offers a suitable opportunity for our application looking for a fine tuning 
of electrically small antenna’s frequency response shifted with the close changing environment.  

It is important to notice that the frequency agility of the antenna is different from the dynamic 
range of tunability expected from the MDM. The link between the two is not direct, and can be 
explained qualitatively, since it depends on antenna topology (see electrical antenna model from 
[19]), and on the material’s location inside the antenna geometry, as shown in [10]. The MDM 
dynamic range Δµ is driven by the static current intensity flowing on shorting wires and the induced 
magnetic field in the material. The antenna’s frequency response is governed by the resonance 
conditions of the transmission line [19]. The MDM is present on a small portion of the antenna, and 
mainly modifies the short-circuit conditions of the antenna (its inductance). The increase of MDM 
permeability is synonymous with higher equivalent shorting post inductance, which then reduces 
the resonant frequency of the antenna, but with a dilution effect.  

(a) (b) 

Figure 8. Permeability variations of (a) S2 sample and (b) S6 sample as a function of the frequency of the
HF field, for two intensities of the DC field (insert: the values of the averaged DC field over the sample,
limited here to 3.7 Oe, i.e., 296 A/m.) Real and imaginary parts are full and dashed lines, respectively.



Ceramics 2020, 3 282

3.2. Frequency Agility Potential of IFA Loaded with S2 MDM

According to Figure 8, the S2 type MDM shows a better potential toward antenna miniaturization
and frequency agility compared to S6 material, since it exhibits a higher permeability with a higher
dynamic range of tunability in the frequency band of interest (10 MHz to 100 MHz). For these reasons,
the S2 material has been selected for our application to load the IFA antenna in VHF band.

The input impedance of the antenna at the vicinity of resonance frequency and the 50 Ω reflection
coefficient obtained with a full 3D electromagnetic (EM) simulator are respectively plotted in Figure 9a,b,
with a biasing current varying from 0 A to 5 A. The frequency agility observed on the resonance
frequency is 6%. The resonance frequency is considered where antenna’s real part impedance reaches a
maximum amplitude. The antenna’s operation frequency, with an agility of 8.2%, achieves a frequency
bandwidth of 26 MHz from 40 MHz to 66 MHz, with respect to −7 dB reflected power. The antenna’s
operation frequency is defined at the minimum value of |S11|, with the lowest reflections at the input of
the antenna. This frequency agility obtained with the MDM S2 is lower than 10%, mainly due to the
limited quantity of MDM used for practical reasons. This first demonstration of agility presents a not
wide enough frequency excursion for multi-frequency antennas applications, but it offers a suitable
opportunity for our application looking for a fine tuning of electrically small antenna’s frequency
response shifted with the close changing environment.Ceramics 2020, 3 FOR PEER REVIEW  8 
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Figure 9. The antenna’s frequency agility with a tuning current between 0 A and 5 A on (a) input
impedance and (b) reflection coefficient.

It is important to notice that the frequency agility of the antenna is different from the dynamic
range of tunability expected from the MDM. The link between the two is not direct, and can be
explained qualitatively, since it depends on antenna topology (see electrical antenna model from [19]),
and on the material’s location inside the antenna geometry, as shown in [10]. The MDM dynamic
range ∆µ is driven by the static current intensity flowing on shorting wires and the induced magnetic
field in the material. The antenna’s frequency response is governed by the resonance conditions
of the transmission line [19]. The MDM is present on a small portion of the antenna, and mainly
modifies the short-circuit conditions of the antenna (its inductance). The increase of MDM permeability
is synonymous with higher equivalent shorting post inductance, which then reduces the resonant
frequency of the antenna, but with a dilution effect.

3.3. Antenna’s Frequency Agility Measurement

The fabricated IFA antenna loaded with S2 MDM is shown in Figure 10a. A preliminary measurement
is carried out on the antenna without MDM in order to validate the design. The antenna’s frequency
response obtained by simulation without MDM meets measurement results, as shown in Figure 10b.
This preliminary result is important, as it leads to avoid any interrogation about antenna design during
agility characterization with the material. A comparison between the antenna’s operation frequency
measurement with and without MDM is also plotted on Figure 10b. This figure shows that the use of
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MDM to load the IFA antenna leads to a miniaturization factor of 27%, as observed on the operation
frequency shift between 90 MHz (without MDM) and 66 MHz (with MDM-0A).
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Figure 10. (a) Fabricated inverted-F antenna (IFA) antenna loaded with magneto-dielectric material
(MDM) S2, (b) measurement of the resonance frequency shift with and without MDM.

The measurement results of the impedance and operation frequency of IFA antenna loaded with
S2 material are compared to the simulations with the same biasing condition, and are plotted in
Figure 11a,b, respectively.Ceramics 2020, 3 FOR PEER REVIEW  9 
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Figure 11. (a) Real part of impedance measurement and simulation comparison in the same biasing
condition, and (b) simulated and measured antenna operation frequencies with 5 A bias current.

As shown in Figure 10a, the measured frequency agility is about 2% around 75 MHz. This frequency
agility is lower than the values of 6% expected from the EM simulations (Figure 9). This difference is
related to the experimental conditions using a bias tee supporting currents limited to 5 A. As a result,
the maximum current biasing MDM on each of three short-circuit is 1.67 A for the experimentations.
In the simulation (Figure 9), the maximum potential of agility has been considered with 5 A on each
antenna’s short-circuit (the MDM has been designed to provide maximum tunability with this DC
current value). The comparison of antenna’s real part input impedance between measurement and
simulation considering the 5 A biasing current split is plotted in Figure 10b. The frequency agility
obtained in simulations considering the limited current measurement conditions is 2.5%, which is
comparable to measurement results. These results confirm the frequency agility of the MDM S2
and its decent model of permeability dynamics used in simulation tools and extracted from material
characterization [18]. Nevertheless, a frequency shift of 19% is observed, considering impedance
measurement and simulation results at a biasing current of 0 A (Figure 11a). The same phenomenon is
observed in Figure 11b, which shows a frequency shift of 26% on the antenna’s operation frequencies,
with a biasing current of 5 A. This difference is probably due to MDM model inaccuracy in terms of
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permittivity and permeability properties, which can be readjusted in the simulator, in order to fit with
measurement results.

3.4. Measurement Results of IFA’s Radiation Properties Loaded with S2 MDM

Radiation properties of the fabricated IFA loaded with MDM S2 has been characterized in VHF
anechoic room at CEA-Leti. Two orthogonal cut planes have been considered for the measurement of
antenna’s radiation pattern (Figure 12a,b). Simulated and measured gain patterns in H plane and E
plane are plotted at their respective resonance frequencies 62 MHz and 72 MHz, for a biasing current of
0 A in Figure 12c,d. Given the limited experimental frequency agility of the antenna, gain patterns are
not plotted for other biasing currents as similar results are obtained. The gain measurement level has
appeared higher than the simulated one and possible uncertainties regarding the material’s magnetic
losses have been readjusted in a simulation to the value of tan δm = 0.17 (instead of 0.65 [18]), in order
to fit the measured radiated field level of the antenna.Ceramics 2020, 3 FOR PEER REVIEW  10 
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Figure 12c,d show a good agreement of antenna gain patterns between the simulation and
measurement with a maximum gain of −20 dBi. This low value of gain is partially impacted by
the high value of magnetic losses of the MDM. Nevertheless, this low gain value associated with the
bandwidth (quality factor) is quite in accordance with fundamental limits of electrically small antenna
(k.a = 0.2) [2].

4. Conclusions

This work has demonstrated the frequency agility of a miniaturized IFA, thanks to a particular
loading technique using a specific tunable magneto dielectric material S2. The fabricated IFA has been
measured in VHF band achieving a frequency agility of 2% around 70 MHz, in agreement with the
simulation results. Improving the biasing circuit, the model and quantity of the used material will
offer a better potential for antenna frequency tunability in VHF band.

5. Patents

The deposit of an international patent describing the chemical process of a reconfigurable magneto-
dielectric material fabrication for tunable antenna applications has been undertaken in 2020 (in progress).
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