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Abstract: Fly ash or coal fly ash causes major global pollution in the form of solid waste and is
classified as a “hazardous waste”, which is a by-product of thermal power plants produced during
electricity production. Si, Al, Fe Ca, and Mg alone form more than 85% of the chemical compounds
and glasses of most fly ashes. Fly ash has a chemical composition of 70–90%, as well as glasses of
ferrous, alumina, silica, and CaO. Therefore, fly ash could act as a reliable and alternative source for
ferrous, alumina, and silica. The ferrous fractions can be recovered by a simple magnetic separation
method, while alumina and silica can be extracted by chemical or biological approaches. Alumina
extraction is possible using both alkali- and acid-based methods, while silica is extracted by strong
alkali, such as NaOH. Chemical extraction has a higher yield than the biological approaches, but the
bio-based approaches are more environmentally friendly. Fly ash can also be used for the synthesis
of zeolites by NaOH treatment of variable types, as fly ash is rich in alumino-silicates. The present
review work deals with the recent advances in the field of the recovery and synthesis of ferrous,
alumina, and silica micro and nanoparticles from fly ash.
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1. Introduction

Fly ash or coal fly ash (CFA) is a spherical, glass-like, heterogeneous particle produced as a
by-product from the combustion of pulverized coal during electricity production in thermal power
plants (TPPs). Morphologically, fly ash particles are spherical in shape, with sizes varying from
200 nm to several microns, and structurally have ferrospheres, cenospheres, aluminosilicate spheres,
or plerospheres, and irregular-shaped carbonaceous particles [1]. Fly ash has almost all the elements
present in geological samples—that is, metals, heavy metals, and organic contents. Though the major
composition of fly ash almost remains same throughout the world, the composition still varies based
on the source of coal, their geographical origin, furnace temperature, and the operating conditions of
the boiler [2]. As fly ash is derived from coal, which is rich in minerals, fly ash is also rich in silica,
alumina, and ferrous [3], which are the three major contents of fly ash. Besides this, CFA also has minor
oxides, such as rutile, K2O, CaO, Na2O, and phosphorous oxides, as well as traces of Cu, Cr, Zn, Ni,
and Mo oxides [4]. In addition to this, fly ash is also loaded with several toxic heavy metals, such as Al,
Ni, Co, Cr, Cd, Zn, Mo, As, and Hg, which categorizes fly ash into “hazardous materials” [5], and poses
a potential threat to the flora, fauna, and the environment.

Every year, a million tonnes (MTs) of fly ash are produced around the globe, especially in the
USA, China, France, and India [6]. Fly ash is not a serious concern for developed countries, but it
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poses a potential threat for developing countries [7]. This is because the fly ash utilization rate of
some of developed countries is more than 90%; for instance, France utilizes almost 100% of fly ash,
which indicates complete recycling of the fly ash [2]. At the same time, for a developing country,
such as India, the fly ash utilization rate is 50–60%, whereas for other developing countries, it is
below 40%. The more aggravating situation is the production of millions of tonnes of fly ash every
year around the world. Even in the 20th century, 50% of global fly ash is dumped in the vicinity of
TPPs. The dumping of fly ash on fertile agricultural land as landfills deteriorates hundreds of acres of
land every year [8], which will ultimately lead to a negative impact on the environment. Moreover,
the rainfall on piles of heavy metal-loaded fly ash leads to the leaching of heavy metals into the soil,
groundwater, and ultimately rivers and other water bodies [9,10]. This will further lead to water
pollution and also poses a potential threat to the aquatic flora and fauna, owing to the increased
concentration of heavy metals.

The pollution arising from fly ash might be a negative side, but the presence of valuable minerals
(silica, alumina, and ferrous) in higher compositions is the positive side of fly ash [11,12]. As fly
ash is derived from coal, which has a high amount of silica, alumina, and ferrous, these elements
are also common in the fly ash after combustion [3]. Today, with the continuous advancement of
technology and research and development, these fly ashes have found applications in the fields of
ceramics and construction, adsorbents, fertilizers, landfills, geopolymers, and metallurgy [9,10].
In ceramics and construction alone, they are used for making fly ash amended cement, tiles,
pavement blocks, dike preparation, and embankments, among others [10]. Here, however, we are
concerned with the recovery and synthesis of alumina, silica, and ferrous nanoparticles from fly
ash. In the last decade, there has been a tremendous revolution in the field of nanotechnology and
nanoparticles, which has helped it to find applications in the field of catalysis, drug delivery, medicine,
and environmental clean-up [13]. However, as nanotechnology is still in its infancy stage, the synthesis
of nanoparticles involves expensive precursor materials and sophisticated instruments, which makes
the final nanoparticles very costly. Therefore, the nanotechnology replaces the expensive precursor
material with waste materials such as agricultural waste (sugarcane bagasse, rice husk ash, citrus waste)
and industrial waste, such as gypsum waste, egg-shell waste [14], red mud, and fly ash. If nanoparticles
are synthesized from any of the above-mentioned waste, then the final product will be not only
cost-effective, but also eco-friendly thanks to the minimization of the solid waste as pollution.

One such precursor material for the synthesis of silica, alumina, and ferrous nanoparticles is
fly ash. Fly ash is a rich source of ferrous (5–15%), silica (40–60%), alumina (20–40%), and calcium
(0.5–15%), based on the types of coal used, geographical origin, and operating conditions for the
combustion of coal in the thermal power plant [10]. Generally, class F fly ashes are rich sources of
ferrous, alumina, and silica, as they are derived from the higher grades of coal—that is, anthracite and
bituminous—whereas class C fly ashes have a lower content of ferro-alumino-silicate (FAS), as they are
derived from the lower grades of coal—that is, sub-bituminous, lignite, and peat. As silica is present in
the highest concentration in all of the fly ashes, most attempts have been made for the synthesis of silica
nanoparticles (SiNPs) from various parts of the globe. The most preferred method for the synthesis of
SiNPs from fly ash is the alkali dissolution method [15], where the fly ash is treated with 4–16 molarity
of sodium hydroxides or potassium hydroxides at a temperature in the range of 90–100 ◦C for 1–3 h.
Another method for silica nanoparticle synthesis is the alkali fusion method [16], where the fly ash is
mixed with 4–16 M NaOH or KOH and fusion is done at higher temperatures of 600–1200 ◦C for 3–8 h
in a muffle furnace. The high calcination temperature transforms the inert and crystalline minerals of
fly ash into the reactive phase of Al and Si after reacting with sodium and potassium hydroxides [17].
The advantages of such a method is that the new products formed after calcination have high reactivity
with acids and bases, which drastically increases the yield of silica. Further, as Al is amphoteric in
nature, it can react with both acids and bases, and thus it can be extracted by treating the fly ash
with concentrated mineral acids, such as sulphuric acid (H2SO4), hydrochloric acid (HCl), and nitric
acid (HNO3), by keeping 4–16 molarity of acids, at temperatures of 100–130 ◦C for 1–3 h along with
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continuous stirring. Besides this, alumina can be extracted from fly ash by treating it with 4–16 M
NaOH (keeping the solid-to-liquid ratio 1:5) at 90–100 ◦C for 1–3 h along with continuous stirring [18].
These procedures do not involve any pretreatment for the elimination of impurities in the form of Fe,
Al, Na, Ca, etc., which may contribute, to some extent, to the final synthesized nanoparticles and make
them undesirable.

We have reported several pretreatment steps and modifications, in fly ash which has enhanced
the yield and purity of the synthesized nanoparticles. We have provided our results, which report
that, among all three—i.e., Al, Si and Fe—ferrous should be recovered first, followed by Al and Si.
This process minimizes the risk of Fe impurity in the synthesized alumina and SiNPs. The ferrous
fractions can be recovered easily by a simple magnetic separation method [19,20] using a strong
external neodymium magnet. As fly ash is a mixture of several elements, the extracted ferrous has
impurities in the form of Al, Si, Na, K, P, Ca, and carbon, which narrows down its wider application in
the industries, especially where purity is a major concern. Here, we have suggested a series of chemical
methods for the synthesis of highly pure, single-phase iron oxide nanoparticles (IONPs) from the fly ash
extracted ferrous particles. These highly pure IONPs find applications as an adsorbent, environmental
cleanup, medicine, drug delivery, magnetic resonance imaging (MRI), etc. [21]. Further, the ferrous
free residue rich in silica and alumina could be used as a precursor material for the synthesis of silica
and nanoparticles. As alumina is present in inert form, such as mullites in fly ash, it has very little
reactivity with acids and bases and most of the alumina remains unreacted [22]. Hence, the recovery
or synthesis of alumina with acids make the residue material more suitable for the synthesis of SiNPs
and the dried residue, which is rich in silicates, can be used for the synthesis of highly pure SiNPs.
As ferrous and Al has been already removed, there is a minimized risk of impurity in the form of Al
and Fe in the final product. In the end, the non-reacted, aluminates and silicates are present as the final
element in the residue. By optimizing the synthesis conditions, the final Al and Si-rich residue can be
transformed into useable and non-hazardous zeolites [23]. From the above section, we may conclude
that fly ash can be used for the recovery of ferrous, alumina and silica and consequently help in the
minimization of the global solid waste. Additionally, the recovery of value-added minerals from fly
ash makes the approach eco-friendly and economical as the raw material is a waste [24].

The present review work is mainly divided into two sections where the first section deals with the
detailed physical, chemical, and morphological properties of fly ash, while the second section deals
with the advancement in the methods or techniques for the recovery of ferrous, alumina, and silica from
fly ash waste. Moreover, in the second section, we have reported all the important landmarks achieved
in the field of recovery of ferrous, alumina and silica and their subsequent conversion or synthesis
into their respective micro and nanoparticles. From all the earlier reported work, it was found that
most of the work dealt with the recovery of one or up to two minerals from fly ash. None of the earlier
reported work focused on the recovery of all the three minerals—i.e., ferrous, alumina and silica from
fly ash. Additionally, none of these works reported the fate of final fly ash residual material left after
the extraction of ferrous, alumina and silica, as it becomes highly reactive after NaOH treatment or
silica extraction, which may pose a potential threat to the environment after disposal. Hence, after the
recovery of all the steps, we have shown advancement in the recovery of all the three minerals with
respect to their yield and purity and also dealt with the fate of the final fly ash residue. We have
suggested the transformation of final alkaline reactive residue into a harmless and useable zeolite
material by altering the parameters. Thus, the current review highlights the work advancement in the
recovery of ferrous, alumina and silica and their subsequent conversion into nanoparticles of high
yield and purity.
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2. Properties and Applications of Fly Ash

2.1. Morphological Properties of Fly Ash

Fly ash is a sphere-shaped, micron-sized (0.01–100 µ) heterogeneous material, having depositions
of mainly Al, Si, Fe and C in variable compositions on its surface, and closely resembles the volcanic
ashes [25]. The fly ash particles can be either rough or smooth surfaced based on the type of depositions
on their surface. Figure 1 show a typical fly ash particle, which is spherical in shape, whose sizes vary
from 0.2 microns to several microns (6 µ). Morphologically, fly ash particles may have differently
shaped particles, which also vary in their elemental composition viz. ferrospheres (ferrous rich
spherical particles) [26], cenospheres or alumino-silicate spheres [27] (Al- and Si-rich particles),
plerospheres [28] (larger spherical particles encapsulate smaller particles), plerospheres, and carbon
nanomaterial [10]—i.e., soots, buck balls [29], fullerenes [30,31] and unburned carbon, including both
organic and inorganic [2]. Figure 1a,b show fly ash plerospheres, which are thick- and thin-walled.
Both the plerospheres have trapped numerous smaller sized spherical particles, along with gases and
minerals. While Figure 1c depicts cenospheres which are spherical in shape, having mainly Al and Si,
along with carbon, on their surface, Figure 1d shows ferrospheres, which have depositions of ferrous on
their surface, due to which they have magnetic properties. The ferropsheres have rough surfaced and
dendritic shape on their surface. In comparison to ferrospheres, cenospheres are lighter in weight [32]
and have high mechanical strength, thermal resistance and have fireproof property [33]. The globular
shape of such microspheres is due to the precipitation of crystalline phases during the cooling of iron
aluminosilicate melt drops of complex composition [34]. The crystallite size and the composition of the
iron-containing phases, that governs the magnetic properties of the microspheres, depend on both
the melt composition and the thermal conditions of microsphere formation [35]. Cenospheres are
more dominant structures in the fly ash [32], followed by the ferrospheres, which are spherical-shaped
ferrous-rich particles, whose sizes fall in the micron range. The ferrospheres have high depositions of
ferrous or Fe, which could be either rough, smooth, elliptical or molten drop-shaped, which are given in
Section 4. Besides cenospheres and ferrospheres there is the third type of micron-sized spherical-shaped
particles, called plerospheres, which are less frequent in fly ash in comparison to the other two forms.
These plerospheres encapsulate several small fly ash particles, minerals and gases inside them during
the formation from the molten slag at high temperature in the furnace [36,37]. Additionally, there are
a large number of carbonaceous nanomaterials, such as fullerenes, graphene, soots and unburned
irregular-shaped carbon particles in fly ash, formed due to the combustion of organic and inorganic
carbon minerals present in the coal [38]. Such irregular or angular-shaped carbon-rich particles are
shown in Figure 2, taken through Scanning Electron Micrograph (SEM), while the bright colored
particles are electron-rich Fe, Al and Si rich region [39].

2.2. Elemental Properties of Fly Ash

The mineralogy and composition of fly ash is not constant, rather it varies from place to place,
parent coal source, operating parameters and temperature of TPPs [42], the extent of coal preparation
and cleaning, furnace design, usual climate storage [43] and handling. The mineralogical properties
determine the crystalline phases of the fly ash, and their composition varies from 15–45% in the fly
ash. Generally, fly ash has silica 40–60%, alumina 20–40% and ferrous 5–15% by weight fractions [44],
and its composition is shown in Table 1. Almost all the fly ash has mullite, quartz, magnetite, hematite
and calcite as the common crystalline minerals [45]. Based on mineral composition and sources of
coal, fly ash is categorized into two classes—class F and class C. The major differences between these
two classes of fly ash are described here. The source of class F fly ash is anthracite and bituminous
coal, whereas for class C it is younger lignite and sub-bituminous coal. The lime content in class F is
less than 20%, while class C has more than 20% of it. Ca in class F is mainly present in the form of
Ca(OH)2, CaSO4 and glassy components, which is 1–12%, and in class C it is 30–40%. Class C has
larger amount of crystalline content—i.e., 25–45%—than the class F, which has only 15–45% of the
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carbon [9,46,47]. The class F fly ash has a higher amount of alkali and sulfate than the class C fly ash.
While, for cementing agent, class F requires Portland cement, hydrated lime and quicklime, whereas
class C has self-cementing properties. Class F generally requires an addition of air entrainer, which is
not required by the class C fly ash. When it comes to the application, class F is used in high SO4

3−

exposure conditions, has high fly ash content concrete mixes and is explored for the structural and HP
concretes. Whereas class C fly ash is not suitable for high sulfate conditions, limited to low fly ash
content concrete mixes are mainly used for the residential construction.
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2.3. Chemical Properties of Fly Ash

The pH of the fly ash tends to vary from acidic to alkaline (4.5 to 12.0), depending on the source
of coal and the number of trace elements in them [48]. Fly ash produced from bituminous coal,
is mostly acidic even though it has higher sulfur content, while alkaline fly ash is produced from the
sub-bituminous coal, which has lower sulfur content, and has higher Ca and Mg content than that
derived from bituminous coal [49]. Similarly the electrical conductivity (EC) of fly ash varies between
0.177 to 14 S/m, which directly corresponds to the quantitative concentration of soluble cations and
anions in the fly ash [2,50]. Likewise, mineralogy and chemical composition too depend on the various
parameters of coal combustion. Chemically, about 90–99% of the fly ash fraction constitutes oxides of
silicon, aluminum, iron, calcium and titanium, (~0.5% to 3.5%), which are made up of oxides of sodium,
potassium, phosphorus, manganese and sulfur [51], and the remaining fractions are the trace elements,
including rare earth and radioactive elements. As per the universal rule, smaller particles with higher
surface areas than the larger ones are also applicable to the fly ash particles—hence, smaller fly ash
particles tend to accumulate a higher concentration of elements (As, Cd, Cu, Ga, Mo, Pb, S, Sb, Se,
Ti and Zn) on their surface in comparison to the larger fly ash particles [52]. Fly ash particles have both
crystalline and glassy amorphous materials. Silicates are present in crystalline form—i.e., sillimanite
and mullite, while most of the silicates are present in the glass form. The average glass content in U.S.
fly ash is 90%, while in Indian fly ash it varies from 49–69% by weight. This indicates that Indian fly
ash has more crystalline content than the U.S. fly ash.

Table 1. Normal range of fly ash chemical composition produced from different coal types
(in wt. %) [7,53,54].

Components Bituminous Subbituminous Lignite

SiO2% 20–60 40–60 15–45
Al2O3% 5–35 20–30 10–25
Fe2O3% 10–40 4–10 4–15
CaO% 1–12 5–30 15–40
MgO% 0–5 1–6 3–10
SO3% 0–4 0–2 0–10

Na2O% 0–4 0–2 0–6
K2O% 0–3 0–4 0–4

Loss on ignition (LOI) % 0–15 0–3 0–5

The chemical composition of the core or interior part of the fly ash is almost masked by the
depositions of elements on the surface layer of fly ash particles [2]. Moreover, these surface layers
get depositions of various elements during volatilization and condensation of molten slag in the
furnace [55]. It has been reported that the concentration of some of the elements on the surface layer
has many more folds than that of parent coal [56]. All fly ashes derived from different coal types,
have oxides of Fe, Al, Si and varying carbon content. The chemical composition of fly ashes derived
from different coal sources is given above in Table 1.

2.4. Physical Properties of Fly Ash

Based on the percentage of unburned carbon, fly ash color may vary from tan to grey or black [7].
The darker the color of fly ash, the higher the carbon content [57]. Based on the above fact, it is obvious
that lower grades of coal (lignite, sub-bituminous) having a lesser amount of carbon, will produce light
—i.e., tan to buff-colored fly ash [58]—while the higher grades of coal (anthracite and bituminous),
being rich in carbon, will produce dark colored fly ash—i.e., grey to black. Moreover, calcium oxide
content too contributes in the color of fly ash, as lower grades of coal have higher calcium content than
the higher grades of coal, and provide white shade to the fly ash [55]. The specific surface area and the
specific gravity of fly ash tend to vary in the range of 2000 to 6800 cm2 per gram and 2.1 to 3.0 g/cm3,
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respectively [9]. Regarding the particle sizes of fly ash, their composition varies from one geographical
area to other, and for instance, the size of sandy particles is 2–0.5 mm and 4.75–0.075 mm in the U.S.
and Indian fly ash, respectively, while the size of silt particles in U. S. fly ash vary from 0.05–0.002 mm
and 0.075–0.002 mm in Indian fly ashes. However, the size of clay particles in both U.S. and Indian fly
ashes are less than 0.002 mm. Sandy particles in U.S. fly ash are sub-divided into very coarse, coarse,
medium, fine and very fine, and their total composition in fly ash is 32.4%, whereas in Indian, fly ash
total composition of sandy particles is 35.69%, which indicates that the Indian fly ashes have 2–4%
more sandy particles than the U.S. fly ashes. The percentage of silty particles in both U.S. fly and Indian
fly ash are more than 60%; however, the U.S fly ash have marginally higher content of silty particles
than the Indian fly ash. The average silty content in U.S. Fly ash is 63.2%, whereas in Indian fly ash it is
62.39%. Clay particles in U.S. fly ash are 4.3% in comparison to Indian fly ash having 1.91% of the clay.
Hence, the U.S. fly ash has a 2–3% higher amount of clay particles than the Indian fly ash [7]. Variation
in fly ash is also seen due to the different structural properties of the particles—i.e., cenospheres [59,60],
plerospheres [61], ferrospheres [62] and irregular- or angular-shaped carbon particles [63], which are
already briefly described in the introduction section. Cenospheres have a bulk density in the range of
0.4–0.6 ton/m3 and constitute up to 5% of the total weight of fly ash [32].

2.5. Applications of Fly Ash

Fly ash has great importance and numerous advantages either in the bulk form or in their separate
natural nanostructured particles, which is depicted in the Figure 3. Besides, the fly ash also has a higher
amount of Si, Al, and Fe that can be used in hydrometallurgy using the environmentally-friendly
approach for the recovery of minerals at an economical cost [64,65]. The bulk form of fly ash can
be potentially used as a biofertilizer, as it contains a rich source of plant nutrients such as, Na, Ca,
K, P, Zn, Mg, Mn, Mo, etc. Moreover, the zeolites synthesized from fly ash can also be used for
the sustained and controlled release of the N, P, K and other minerals to the plants [23,66]. In the
field of agriculture, [67,68] the bulk fly ash can be used for resource conservation, reclamation of
the contaminated sites and restoration of industrial sites [69]. Besides agriculture, the fly ash also
finds application in civil engineering [70] (bricks, tiles, cements, blocks), tiles [71,72], brick making,
cements, geopolymer [73], landfills [74], mining [75], agriculture river embankments [76], fillers [77,78],
panels and composite materials [79] and in metallurgy for the recovery of value-added minerals.
The natural nanostructured form of fly ash—i.e., cenospheres, ferrospheres, carbonaceous particles and
plerospheres, finds applications in nano-ceramics, mechanical engineering, construction of lightweight
materials [80] and wastewater treatment. Besides, individual microspheres are also used for making
thermoset plastics, concrete materials, nylon, material for coating [81], high-density polyethylene
(HDPE), and others. In, hydrometallurgy, the high content of ferrous, alumina and silica in the fly
ash, which is a waste, can possibly be considered as one of the most reliable materials for the recovery
of ferrous, alumina and silica and their derivatives [82]. There are several reports where fly ash has
been used for the synthesis of highly pure alumina and SiNPs, which are discussed below in Section 4.
The recovery of such value-added minerals opens new horizons, as it not only reduces the global
pollution in the form of solid waste but also acts as an alternative material for Si, aluminum and
ferrous [83].
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600 MTs of coal producing 170 MTs of fly ash and out of which 107 MTs of fly ash was used in different
forms by the various industries [7]. This value increased in 2018, where the total TPPs reached to 167
generating an enormous amount of fly ash. In the year 2019, 129 MTs of fly ash was generated, out of
which 70% of the fly ash was utilized and the remaining 30% was dumped in the local vicinity of the
TPPs. In comparison to several European countries and the U.S.A, India is lagging in fly ash utilization,
as these countries have achieved up to 100% utilization of fly ash. Moreover, India still needs a lot of
time for the implementation of bulk utilization of the ash. Despite conducting various research studies
and the development of numerous technologies for fly ash utilization and proper disposal, a consistent
visible trend for utilization has not been obtained. Hence, fly ash management is likely to remain an
important area of national concern.

4. Fly Ash as a Source of Ferrous, Alumina and Silica

Although the qualitative compositions of fly ash generated in different parts of the globe are
almost identical, they differ in their chemical and physical properties [87]. The utilization of major
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fly ash fractions such as magnetic and non-magnetic (alumina and silica-rich) and several other
narrow fractions can significantly increase the scope of the utilization of the fly ash from the thermal
power plant [88]. However, almost all the fly ash, irrespective of their origin, has almost all the
above-mentioned minerals in variable amounts. Based on the mineralogy of fly ash, it can be a reliable
and valuable alternative resource for the generation of ferrous, alumina and silica-based micro and
nanoparticles [23]. Ferrous, alumina and silica generally co-exist in the fly ash (shown in Figure 4)
as either ferro-alumino-silicates (FAS) or alumina, and silica can be present in the form of crystalline
mullite, sillimanite or quartz [89,90]. No doubt, fly ash is a rich source of FAS, CaO and rutile (TiO2),
which is primarily composed of amorphous alumino-silicates and other crystalline minerals such as
mullite, quartz, hematite and magnetite [91]. The recovery of ferrous particles from fly ash is possible by
a simple magnetic separation method, while the residual nonmagnetic fractions rich in alumino-silicates
can be used for the recovery of alumina and silica. Once the ferrous fractions are separated from fly
ash, then the silica and alumina can be recovered by multidisciplinary approaches—i.e., chemical route
(sol-gel) [92], chemical coprecipitation [93], fungal synthesis and bacterial synthesis [94]. The alumina,
being amphoteric in nature, can be extracted from the fly ash by chemical approaches such as acidic
treatment and NaOH treatment [95]. It can be further converted to nano-alumina powders by several
chemical methods, such as thermal decomposition [96], co-precipitation. The major fractions of fly ash
are silica that can be extracted by both chemical (NaOH or KOH treatment) and microbial (bacterial
and fungal) approaches [4].
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Figure 4. Schematic fly ash particle showing major components on their surface.

Silica is extracted from the fly ash in the form of sodium silicate using chemical methods. Further
sodium silicate leachate can be neutralized with dilute HCl, and silica gel can be formed by the sol-gel
method [97]. After extracting ferrous fractions, one can extract alumina and silica as the residue is
rich in crystalline alumino-silicates that are unreacted and non-extractable. It can be processed and
modified further for the synthesis of different classes of zeolites. Ultimately, fly ash may serve as an
important alternative material for the recovery of FAS and zeolites [97], which would consequently
reduce global pollution in the form of solid waste.

5. Ferrous Particles: Properties and Advances in Their Recovery Process from Fly Ash

5.1. Properties of Ferrous Particles Extracted from Fly Ash

Iron is one of the major elements present in the earth crust and is found in all the earthy materials
such as rocks, soils, clay, volcanic ash and coal. The major fractions of iron in coal are present either as
sulfur-bearing or non-sulphur-bearing minerals [98]. The sulphur-containing iron minerals in coal are
pyrite (FeS2) [99], jarosite [KFe3(SO4)2(OH)6] [100], troilite [101] and pyrrhotite [102] (both FeS) [103,104],
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while the non sulphur-bearing iron minerals [105] are ankerite (CaFe(CO3)2) [106–108], illite [109] and
siderite (FeCO3) [110–112]. The generation of ferrospheres occurs in the carbon matrix, which provides
a reducing medium when iron-containing minerals from coal interact with other elements of coal in the
molten form and transform into ferrous oxides. These ferrous oxides are, especially, magnetite, hematite
and maghemite, along with Al, Si, Ca, etc. [62,113]. The extraction and utilization of ferrous materials
from waste fly ash not only makes the whole process greener but, at the same time, it also reduces the
burden from the environment in the form of pollution. The fly ash extracted ferrous particles are mainly
spherical in shape, along with few elliptical, molten-drop, dendritic-shaped particles [55]. The deposition
of ferrous particles is responsible for the magnetic properties of ferrospheres. The deposited ferrous
particles are either angular or spherules shaped. The deposited iron oxide phases vary from magnetite,
maghemite, hematite and goethite. The Fe is always associated with other elements, such as Ca, Al,
Si, Ca, Mg, Na, O, P, etc., and ferrous particles are always associated with elemental oxides of these
elements, and find applications in iron-based industries, which are described below in detail, under
Section 6.1.

5.2. Advances in the Recovery of Ferrous Particles from Fly Ash

The ferrous particles extracted from fly ash can be used as the precursor material for the synthesis
of various types of pure IONPs [114]. Moreover, they also act as an alternative source for different iron
oxide-based industries [115], such as steel and steel-based industries. Conventionally, ferrous particles
are extracted either by wet magnetic separation method or by dry magnetic separation method [116].
Both the methods apply an external magnetic field, but one is extracted in the slurry form, while the
other is extracted in their dried form, as shown in Figure 5. In the dry form, it can be extracted by
using conveyor belts with a magnetic effect at one end, while in wet slurry it can be extracted by using
a strong external magnet [82]. There have been several advances in the extraction of ferrous particles
from fly ash in the last three decades and these are highlighted here in chronological order.
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Olga et al. [117] isolated and studied the composition and morphology of the magnetic
microspheres from two different fly ash samples from Russian thermal power plants. About eight
fractions of ferrospheres in a range of sizes from 0.4 to 0.02 mm were recovered from high-calcium
fly ash and studied using the scanning electron microscope—Electron diffraction spectroscopy
(SEM-EDS) analysis of ferrospheres and ferrospheres composition. Shoumkova et al. [118] reported the
physicochemical characterization and magnetic separation of coal fly ashes from the various regions of
Russian TPPs [119]. The fly ash magnetic concentrates were isolated by wet high gradient magnetic
separation using a laboratory-scale solenoid separator of SALA type. Besides this, they also studied
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the comparative properties of magnetic and non-magnetic fractions. Xue and Lu, [120] studied the
microstructures of ferrospheres in fly ashes with their detailed SEM, Energy Dispersive X-Ray (EDX)
and Environmental Scanning electron microscope (ESEM) analyses. Here, the magnetic ferrospheres
were isolated by magnetic separation technique and the various phases found in the fly ash were
magnetite and hematite. The extracted ferrospheres contained Al, Si, S and Ca and were reported as
having morphological structures in the form of smooth, polygonal, dendritic, granular and molten drop
characteristics. Oliveira et al. [121] reported the extraction and characterization of spinel magnetites
from the silico-aluminous fly ash from TPPs of a French region using SEM-EDS, X-ray Diffraction
(XRD), TEM, Mossbauer spectroscopy and Variable sample magnetometer (VSM). It was concluded
that Mg substituted Fe in the magnetite structure and the formula was closer to MgFe2O4 than Fe3O4.
Apart from this, there was Mn, Ca and Si at lower percentages. Fomenko et al. carried out the phase
composition of magnetic microspheres isolated from Russian TPP and performed a Mossbauer study
in six narrow size ranges of magnetic microspheres isolated from power plant fly ash. It was found
that Al, Mg and Ti are the major phases in the isolated magnetic microspheres. They reported that
the magnetic properties of magnetic microspheres depend on the Fe content and the distribution
pattern of the cation over the spinel sites [122]. Fulekar and Yadav [50] extracted ferrous particles
from the fly ash slurry using an external magnet in conjunction with an ultrasonicator, where slurry
was fed to the ultrasonicator fitted with a strong neodymium magnet. The sonication causes the
lysis of larger particles into several smaller particles, which in turn releases the trapped ferrous
particles, and consequently has an enhanced effect on the recovery of ferrous particles. It was further
purified by stirring on a magnetic stirrer without using a magnetic bead. The ferrous particles respond
to the magnetic field of the stirrer where ferrous particles adhere to the center, while non-ferrous
particles adhere at the periphery of the Petri plate. Finally, the dried ferrous particles were analyzed
using UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), VSM, dynamic light
scattering (DLS), particle size analysis (PSA), XRD, Field Emission Scanning electron microscopy
(FESEM) and TEM. The analyses revealed that the particles were spherical in shape, whose sizes varied
from 200 nm to 7 microns, and had mixtures of different iron oxide phases. Fulekar and Yadav [50]
treated ferrospheres with acid and used the ferrous rich solution to synthesize ferrous carbonate,
maghemite, magnetite and hematite of high purity at nanoscale, using a chemical precipitation and
calcination method by optimizing environmental parameters. The purity of transformed IONPs varied
from 93–97% [50]. Further, the synthesized IONPs were used for the heavy metal removal from fly
ash-based simulated wastewater.

From the above-mentioned work it can be concluded that, to date, investigators have only
recovered ferrous fractions from fly ash by applying either wet magnetic separation or dry separation
methods. Further, almost all of them have characterized the extracted ferrous fractions from fly ash by
using FTIR, VSM, DLS, PSA, XRD, FESEM and TEM. The investigators concluded that the extracted
ferrous particles are rich in Fe, and spherical-shaped ferrospheres have either rough or smooth surfaces.
Rough surfaced ferrospheres are due to the deposition of large spherules or angular deposition on the
surface of preformed cenospheres, whereas the smooth-surfaced ferrospheres have even distribution of
ferrous on their surface. The shape of the deposited iron oxide particles on the aluminisilicate spheres
are angular, rectangular, and mostly present in the mixed phases of hematite, magnetite and maghemite.
Rough surfaced ferrospheres have a strong magnetic property in comparison to the smooth-surfaced
ferrospheres. Smooth-surfaced ferrospheres have fewer depositions of ferrous particles on their surface
so they have weak magnetic properties. Besides rough and smooth-surfaced ferrospheres, there were
few of elliptical, molten-drop, or dendritic shape [55].

From, all the reported works, it was found that Fe was always associated with other elements,
such as Ca, Al, Si, Ca, Mg, Na, O, P, etc. [39], and hence the ferrospheres were never free from such
elemental oxides. Such impure fly ash ferrospheres have been used as fillers in nanocomposites,
coke, smelting [12], steel production and other iron and iron-based industries [123]. Additionally,
the ferrospheres also find their application in catalysis—i.e., for profound oxidation and oxidative



Ceramics 2020, 3 395

coupling of methane (OCM) [124], thermolysis of heavy oil and petroleum residue [114], magnetic
carriers for the separation of recombinant proteins [125], and composite sorbents.

Specifically, it was shown that small amounts of ferrospheres containing 87.5% Fe2O3 and 2.0 wt. %
MnO are catalysts for the oxidative coupling of methane [126], while narrow fractions of ferrospheres
with a lower iron content are effective catalysts for the CH4 deep oxidation [127,128]. The purified
ferrous particles can be applied in the field of in medicine and drug delivery—i.e., in MRI, radionuclide
therapy, medical diagnosis, cancer-hyperthermia, magnetic storage, magnetic ink printing, a biosensors
and for bioseparation for portable devices [21].

Thus, here in our ferrous recovery we have reported a method for the elimination of elemental
impurities from ferrospheres by acidic treatment—i.e., concentrated HCl treatment of ferrospheres
in 1:20 ratio, under sonication at 70–80 ◦C for one hour. Further, the ferrous rich acidic leachate
was used for the synthesis of four different types of IONPs (ferrous carbonate, magnetite, hematite
and maghemite) under optimized conditions. The purity of such single phased IONPs varied from
86–97% and their purity was cross-checked with the commercially available nanoparticles in the
market. This method has suggested the transformation of ferrous particles into highly pure IONPs.
The summarized tabulated form of various ferrous recovery approaches is highlighted below in Table 2.

Table 2. Ferrous fractions, their properties, and extraction from fly ash.

Authors Ferrous Particles Instruments Impurities and Findings

Gomes et al. [129] Magnetite

Scanning Electron
Microscope-Electron Diffraction
Spectroscopy (SEM-EDS), X-ray
Diffraction (XRD), Transmission

Electron Microscope (TEM),
Mossbauer spectroscopy and

Vibrating sample magnetometer
(VSM)

Mg has substituted Fe in the
spinel structure

Bayukov et al.
[35] Mossbauer spectroscopy Al, Mg and Ti were the

major phases

Shoumkova et al.
[118]

Studied the comparative
properties of magnetic and

non-magnetic fractions

Olga et al. [40] SEM-EDS

Ferrospheres of sizes 0.4 to
0.02 mm were recovered

from high-calcium fly ash,
SEM-EDS study

Feng and Gao
[120]

Magnetite and
hematite SEM-EDX and ESEM analysis

Studied the microstructures
of ferrospheres in fly ashes

with their detailed SEM,
EDX and ESEM analysis.

Yadav and
Fulekar [130]

Magnetite and
hematite

TEM, Fourier transform infrared
(FTIR) and Particle Size Analyzer

(PSA)

Reported the nanosized,
magnetic particles in class F
fly ash from Gandhinagar,

Gujarat, India.

Fulekar and
Yadav [50]

Magnetite,
hematite

TEM, XRD, SEM-EDS, Raman,
FTIR, VSM, PSA

Studied the morphological,
elemental and mineralogical
properties of class F fly ash

Fulekar and
Yadav [50]

Synthesized:
Ferrous carbonate,

Magnetite,
Hematite,
magnetite

TEM, XRD, SEM-EDS, Raman,
FTIR, PSA

Synthesized ferrous
carbonate, magnetite,

maghemite and hematite by
using extracted ferrous

particles with high purity.
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6. Extraction and Synthesis of Alumina Nanoparticles from Fly Ash

Aluminum is the third largest element in the earth crust, and is a constituent of soil, rocks and
minerals, such as bauxites and clay. Aluminum, being amphoteric in nature [131], can leach out from
the source material either by strong alkali hydroxides or strong mineral acids. Generally, aluminum
is present in the crystalline form, such as alumina in fly ash [132]. Mullite is one such mineral in fly
ash, which has a high composition of alumina [133]. Mullites are mostly present in the matrix part of
fly ash [134,135], which makes it a very difficult task to leach out alumina in higher concentrations
into the solution. Until now, numerous investigators have successfully extracted the alumina by
means of both acidic treatment and NaOH treatment. High-alumina coal fly ash is a potential starting
material for the preparation of Al(OH)3 [136]. Techniques of the aluminum extraction from coal fly ash
can be classified into acidic [136], alkali [136] and acidic–alkali method [137,138]. The acidic method
requires acid-resistant and airtight processing equipment. The acidic–alkali method is a complicated
process [24] with a series of procedures [136], including sintering [139], silica–alumina separation,
purification [140], precipitation [141,142] etc. The alkali dissolution method is a promising method for
avoiding calcinations of the coal fly ash at a higher temperature (more than 800 ◦C) and lower energy
cost [136,143]. Several investigators previously reported alumina extraction methods, out of which a
few of them are described below.

6.1. Alkali-Based Extraction

Park et al. reported that the synthesis of alumina from fly ash derived highly pure alum using
NH2Al (SO4)2 [96]. It was achieved by mixing CFA with ammonia in the water at controlled pH
followed by the successive crystallization. The effect of heating (conventional and microwave) was
observed on the decomposition of the alum. Alumina extracted from the microwave-assisted-derived
alum was a fine powder with a high surface area. Fly ash-based ultrafine Al(OH)3 was synthesized
by the NaOH dissolution method by Su, Yang [138]. It was reported that silica was extracted by 8 M
NaOH at 90–95 ◦C for 150 min and the extraction efficiency of silica was 40%. In the next step, alumina
was extracted at 260 ◦C for 60 min by mixing fly ash with white lime and 20 M NaOH. The alumina
extraction efficiency was about 89% and the final product was aluminum hydroxide instead of alumina,
which can be further converted into alumina by calcination at a high temperature. Li et al. extracted
Al2O3 from fly ash by the mixed-alkaline hydrothermal process [137]. Here, alumina leaching was
done using a solution of NaOH and calcium hydroxides by a hydrothermal process, and further
alumina leaching in accordance with temperature, solid to liquid ratio and Ca/Si ratio was observed.
The Ca effect on the alumina leaching was seen with increased temperature, calcium-silicon ratio
and solid-liquid ratio. Under optimal conditions, alumina extraction reached to 91.3%. Wang et al.
reported a technique “NH4HSO4 roasting technology” for the recovery of aluminum and iron from fly
ash [144]. It is a two-step procedure, wherein Al and Fe were leached out from fly ash and the leached
Al, and Fe were precipitated with the NH4HCO3 solution. Again, it was leached with a NaOH solution,
and finally there was the carbonation-based decomposition of the NaAl(OH)4 solution. Hence, it is a
novel method for the extraction of alumina from fly ash. The study comprised of thermodynamics and
kinetics of Al recovery from fly ash and reported Al extraction efficiency up to 90.5% by optimizing
conditions at CFA: ammonium hydrogen sulfate, 1:8 mole at 400 ◦C for 60 min.

Virendra Yadav [50] reported a method where the fly ash was added to concentrated sulphuric
acid of 2–8 M, (but most preferably at 8 M) by keeping a solid–liquid ratio of 1:5 in a 100–200-mL
round-bottom flask in a reflux condenser. The reaction was carried out for 60–90 min at 90–260 ◦C with
continuous stirring at 400–500 rpm. After the completion of the reaction, the leachate was collected by
centrifugation at 5000–7000 rpm for 5–10 min. The alumina leachate obtained in the form of aluminum
sulfate was directly calcinated in a muffle furnace at 800 ◦C for 6 h in a quartz crucible. The properties of
the synthesized nanoparticles were analyzed by sophisticated instruments, such as FTIR, Raman, PSA,
XRD, FESEM and TEM. Further, the ferrous-free fly ash, was separately mixed with 8 M concentrated
sulphuric acid, nitric acid and hydrochloric acids by maintaining a solid–liquid ratio of 1:5 at 125 ◦C
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with continuous stirring at 400–500 rpm for 90 min in a 100-mL round-bottom flask fitted with a reflux
condenser. All three acids were analyzed for their leaching efficiency of Al. It can be concluded that
HCl had maximum leaching efficiency. Further, the alumina leachate was converted directly to solid
alumina by calcination at 600–700 ◦C for 56 h in a quartz crucible. The summarized form of extraction
of Al and synthesis of alumina and its derivatives by alkali-based dissolution from fly ash are given
below in Table 3.

Table 3. Acid-based dissolution of Alumina from fly ash.

Authors/
References

Operating
Conditions

Leaching
Agent Product Findings Efficiency

%

Park et al.
[145]

CFA with
ammonia in

water at
controlled pH
followed by
successive

crystallization

NH4Al (SO4)2 Alumina/alum

Alumina derived from
the microwave assisted
derived alum was finer
powder with a high
surface area

-

Su, S. et al.;
Su, Yang

[136]

Alkali-
dissolution

process

Ultrafine
aluminum
hydroxide

2 steps:
(1) Silica extraction by

NaOH by 8 M for
150 min at
90–95 ◦C,
efficiency 40%;

(2) Second alumina
extraction at
260 ◦C for 60 min
by mixing fly ash +
white lime +
20 M NaOH

~89%

Huiquan
Li et al.
[137]

Mixed-alkaline
hydrothermal

method

Alumina
leaching was

done by mixed
hydroxides of

NaOH and
Ca(OH)2

through the
hydrothermal

methods

Alumina

Al leaching was seen
with increased
temperature,
calcium–silicon ratio and
solid–liquid ratio.

91.3%
(optimized
conditions)

Wang et al.
[146]

NH4HSO4
Roasting

technology

Aluminum
hydroxide,
Alumina

A two-step procedure in
the first step Al and Fe
was extracted while in
the second step leached
Al and Fe was
precipitated with
NH4HCO3 solution

-

Wang et al.
[146]

Ammonium
hydrogen

sulfate roasting
technology

Alumina

Studied
thermodynamics and
kinetics of alumina
extraction from fly ash.
It was achieved when
the CFA: ammonium
hydrogen sulfate ratio
was 1:8 mole at 673 K for
60 min

90.5%
(optimized
conditions)
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6.2. Acid-Based Extraction

Matjie et al. [138] reported the recovery of Al2O3 from bituminous coal-derived fly ash of South
African TPPs where the calcium aluminate was obtained by mixing CFA with CaO and then calcinated
at 1000–1200 ◦C. It was further treated with sulphuric acid and about 85% alumina extraction was
reported using this approach. Nayak and Panda (2010) reported sulphuric acid-based extraction of
alumina from Talcher (Odisha) TPPs fly ash and proposed that lower sulphuric acid molarity and
ambient heat is not suitable for the recovery of a higher amount of alumina and the same can be
achieved only at a higher solid-to-liquid ratio [147]. Shi et al. prepared coarse alumina nanoparticles
from fly ash using sulphuric acid as a leaching agent [148,149] and the extraction efficiency of alumina
was 87%. Bai et al. achieved alumina extraction of up to 85% by concentrated sulphuric acid-based
thermal decomposition, where calcination at 300 ◦C converted most of the alumina into aluminum
sulfate [150]. Wu et al. reported the leaching of Al from the fly ash using concentrated H2SO4 along
with pressure. They also reported the effect of coal size, experiment timing and temperature on Al
leaching from fly ash. They concluded that pressure and the smaller size of fly ash particles have
positive effects on the Al extraction from fly ash. Al extraction efficiency reached up to 82.4% under
optimal conditions [151]. Shemi et al. reported several processes for aluminum recovery and, in one of
the methods, they used 6M sulphuric acid at 250 ◦C for 6 h along with acetylacetone in the gas phase
for the facilitation of the alumina extraction [152].

From all the above-reported methods for alumina extraction, it was found that sulphuric acid was
employed for the leaching of Al or alumina extraction from fly ash. The Al extraction efficiency varied
from 82.5% to 92.2%. It was observed that the molarity of acids, base and temperature also play an
important role. The high molarity of either acids or base at high temperatures can increase the yield of
alumina extraction from the fly ash. Here, Al was extracted using sulphuric, nitric and hydrochloric
acids, but alumina was synthesized by only sulphuric acid-treated leachate. The Al leachate obtained
was directly converted to alumina powder by the calcination of leachate at a temperature above 600 ◦C.
The summarized form of extraction of Al and synthesis of alumina and its derivatives from fly ash by
the acid-based treatment method is given below in Table 4.

Table 4. Alumina extraction from fly ash by acid-based method.

Authors/
References Operating Conditions Leaching

Agent Product Findings

Matjie et al.
[138]

Mixing CFA with CaO
and then calcinated at

1000–1200 ◦C

CaO, sulphuric
acid

First calcium
aluminate,

Second alumina

Firstly, calcium
aluminate was

produced, further
treated with sulphuric
acid, and ~85% Al was

extracted

Nayak and
Panda 2010

[147]

Sulphuric acid based
extraction of alumina

and leaching behaviors
from the fly ash

collected

Sulphuric acid Alumina

Reported: Not possible
to get high recovery of
alumina by direct acid

leaching at low acid
concentration and

ambient temperature.
Higher extraction of
alumina is possible

only at a higher solid:
liquid ratio. Leaching
of metals also depends

on the nature of
leaching medium,
solid: liquid ratio,
temperature and

leaching time.
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Table 4. Cont.

Authors/
References Operating Conditions Leaching

Agent Product Findings

Shi et al. [149] Sulphuric acid Coarse alumina
nanoparticles Al extraction rate-87%

Bai et al. [150]

Thermal
decomposition—Fly
ash + concentrated
sulphuric acid and

calcined at 300 ◦C, due
to this, most of

alumina is converted
to aluminum sulfate

Sulphuric acid Alumina
Aluminum sulfate Al extraction up to 85%

Wu et al. [151]
concentrated sulphuric

acid + along with
pressure

Alumina

Reported effect of coal
size, reaction time and
temperature on the Al
leaching from fly ash.

Pressure as well as
smaller size have

positive effects on the
Al extraction.

Al extraction efficiency
was 82.4% under

optimal conditions.

Shemi et al.
[152]

Al extraction by 6 M
sulphuric acid by

using acetylacetone in
the gas phase. Temp:

250 ◦C for 6 h for
optimum yields

Acetylacetone Alumina

Application of
acetylacetone in gas
phase for alumina

extraction.

Fulekar and
Yadav [50]

Al extraction by 4–8 M
using sulphuric acid.
Temp: 125 ◦C for 90

min with stirring

Sulphuric acid

Alumina,
Aluminum sulfate

Aluminum
hydroxides

Aluminum extraction
was 40%. Obtained
mixtures of alumina,

aluminum sulfate and
aluminum hydroxides
with low Al content—

i.e., below 15%.

6.3. Acid-Alkali Based Extraction

Several studies report the use of both acidic and alkaline treatment applied subsequently in order
to increase the yield of alumina leachate and ultimately the extraction of alumina particles from fly
ash. Aluminum, being amphoteric in nature, dissolves in both acids and bases, but the extraction of
Al with strong mineral acids alone is not that effective as the alumina (mullite and sillimanite) in fly
ash is mainly crystalline and inert. Both of these sources of alumina can readily react with a strong
alkali, such as NaOH. The application of both the strong acids and bases along with heating may
facilitate the conversion of the retractile, crystalline and inert material to react and ultimately make
them available into the solution. To date only a countable number of attempts have been made in this
field, which necessitates further extensive research work.

Valeev et al. reported a method where Al-chloride solution obtained by leaching coal fly ash
can be further processed to extract sandy grade alumina, which is essentially suitable for metallic
aluminum production. They reported the formation of amorphous alumina via the calcination of
aluminum chloride hexahydrate obtained by salting-out from acidic Al-Cl liquor. This step was
followed by the alkali treatment with further Al2O3 dissolution and recrystallization as Al(OH)3

particles, and a final calcination step was employed to obtain sandy grade alumina with minimum
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impurities. The major advantage of this novel approach is that the process does not require expensive
high-pressure equipment and also reutilizes the alkaline liquor and gibbsite particles from the Bayer
process, which significantly reduces the production cost of the sandy grade alumina [153].

6.4. Microbial Leaching of Alumina from Fly Ash

Certain fungi and bacteria have a capability of Al or aluminum leaching from bauxite, fly ash, kaolin
and red mud, as they produce several mineral and organic acids along with numerous carbohydrates,
which has been reported earlier by numerous investigators. Bacteria, such as Thiobacillus spps [154],
Acidithiobacillus bacteria [155–157] sulfate reducing bacteria (SRB) [158] and others, produce dilute
sulphuric acid, that acts as an extractant for the aluminum and other metals from fly ash and other
similar sources of alumina. As acids are produced in milli mols quantities, the Al leaching efficiency
with these bacteria is not as effective as it is with the chemical method.

While fungi, such as Aspergillus niger [159], Penicillium notatum [160] and Penicillium chrysogenum [161]
produce citric acids, gluconic acids and several other weak organic acids that act as the main lixiviants
for Al leaching from the fly ash. These weak organic acids are also responsible for various metabolic
activities in the fungi [162]. A. niger is ubiquitous in nature and thrives in the air, soil and indoor
environments. The citric acids also take part in the leaching of metals from several metallic samples.
A. niger strains are used in the industries for the commercial production of citric acids [163]. Previously
this strain was used to leach out Al and Fe from the bauxite, kaolin and fly ash, but no attempt has yet
been made for the synthesis of alumina. This fungus produces citric acid as a major metabolite in the
sucrose growth medium that leaches out alumina and other metals such as Fe. Nevertheless, the yield is
very low due to the lower citric acid generation in the medium. Few investigators have used Penicillium
and A. niger for the alumina extraction from bauxite, red mud, kaolin and fly ash [164]. Some of the
previous work done in the field of bioleaching and the biosynthesis of alumina is highlighted below.

Xu and Ting described the effect of bioleaching on the fly ash by A. niger [165]. They conducted
a study to find optimal parameters for metal bioleaching by varying fly ash pulp density, spore and
sucrose quantity and the timing of fly ash addition [166]. The Al and Fe leaching was reported to be
12.3 ppm, which was far lower than the Zn, which was reported as 77.6 ppm. The acids responsible
for the leaching were citric acid and gluconic acid. Again, the same group of investigators in 2009
reported the A. niger-based bioleaching of Al, including other metals from fly ash [167]. They showed
that the leaching concentration of metals was directly related to citric acid productions. Krishna et al.
reported alumina extraction from the bauxite red mud by using numerous extremophiles bacteria [168].
A. niger was used for the initial bioleaching of Al from ferrous free fly ash residue and then for the
further synthesis of alumina from the leachate. Fulekar and Yadav [50] carried out the Al leaching
from fly ash using Asp. niger (grown in sucrose medium) supernatant, and wet mycelia in an incubator
shaker at 200 rpm and at 28 ◦C for 48–72 h. Fly ash was mixed with supernatant and 10 g of wet
mycelia and the solid-to-liquid ratio 1:5 was maintained. The leachate was obtained by filtration using
Whatman filter paper no. 42 under sterile conditions in both of the experiments. The leachate was
dried in a rotary evaporator; the obtained powder was analyzed by UV-Vis, PSA and FESEM-EDS.
The summarized form of fungi mediated the extraction and synthesis of alumina and its derivatives
from fly ash, which are given below in Table 5.
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Table 5. Aluminum leaching by from fly ash by fungi.

Authors/
References

Operating
Conditions Fungus Used Product Findings

Xu and Ting
[165]

Citric acid,
Gluconic acid Aspergillus niger Al in the medium

Reported that the optimal
parameters for bioleaching of
metals by varying CFA pulp
density, spore concentration,
sucrose concentration and
time of addition of CFA.

Leaching of Al and Fe was
12.3 ppm, which was far lower

than the Zn, which was
77.6 ppm. The responsible
acids for the leaching were

citric acid and gluconic acid.

Xu and Ting
[166] Aspergillusniger Al in the medium

Showed that the leaching
concentration of metals was
directly related to the citric

acid productions.

Fulekar and
Yadav [50] Citric acid Aspergillus niger Al, Al2(SO4)3

Showed that the lesser yield of
alumina present in mixtures of

alumina, aluminum sulfate
and Al(OH)3

6.5. Properties and Applications of Alumina Nanoparticles

Alumina occurs in numerous meta-stable phases, which include gamma [γ]-, epsilon [η]-, delta [d]-,
theta [θ], kappa [κ]- and χ-alumina. Among all these phases of alumina, the [a] phase is the most stable,
while the gamma phase is the most important and widely used nanosized alumina material. Gamma
alumina is widely used in petroleum and automobile industries as a catalyst and catalyst substrate;
in ceramics [169] and glasses. It is used as an adsorbent, for spacecraft materials, microelectronics,
thermal resistant materials, biomedical purposes [170], as a coating material for thermal wear and
abrasive optoelectronics and in metallurgy [171]. Ultrafine aluminum hydroxide is an important
green flame retardant inorganic material with multi-functions of retarding, suppressing smoke and
filling [172]. The various important properties of alumina and alumina nanoparticles [173–175]
are given below in Figure 6. The fly ash based extraction of alumina can be considered as an
environmentally-friendly approach and is important from a scientific point of view as it focuses not
only on the disposal of waste but also acts as a substitute for aluminum source [138].
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7. Synthesis of SiNPs from Fly Ash

The synthesis of SiNPs from fly ash has been reported using chemical and biological methods.
The chemical methods initially involve the extraction of sodium silicate from the fly ash using strong
hydroxides followed by neutralization by sol-gel technique, whereas microbial synthesis has been
carried out using Fusarium oxysporum under optimized conditions. Both approaches are mentioned
below for the recovery and synthesis of SiNPs from fly ash.

7.1. Silica Extraction from Fly Ash by Chemical Method

It is possible to extract silica from fly ash either by alkali-dissolution [176] or by the alkali-fusion
method [177]. The alkali-dissolution based silica extraction is done at 90–100 ◦C, for a duration of
90–150 min with a variable stirring speed and molarity of NaOH, shown in Figure 7. In the alkali
dissolution method, the silicates from fly ash react with the NaOH in the aqueous phase to form
sodium silicate. Further, the sodium silicate is treated with dilute HCl or sulphuric acid to form a silica
gel by sol-gel technique. In the alkali fusion method [178] (shown in Figure 8), fly ash is mixed with
NaOH or KOH and calcinated at a higher temperature to obtain a new fused silicate product. Further,
the recovery of silicate from the silicate material is done by acidic treatment. However, fly ash has
several acid-soluble elements such as Na, K, P, Mg, Ca, and Fe [18,179], which can be present in the
obtained silicate in a minute quantity [20].

Therefore, these alkali and other metals can be eliminated by dilute HCl treatment at above 100 ◦C
for 2–3 h. It is a conventional Bayer’s process for the silica extraction from the silicate-rich material.
Previously, numerous researchers have reported silica extraction from fly ash by alkali-dissolution
methods. A few of them are highlighted below in chronological order.

Falayi et al. leached out silica from fly ash by KOH by varying the stirring rpm, size of fly ash,
extraction temperature and solid-to-liquid ratio [180]. The optimum extraction parameters include
time 6 h; 3M KOH; solid-to-liquid ratio 1:25 temperature 100 ◦C; rpm 500. However, there was no
attempt made for the synthesis of SiNPs from the leachate further. Similar, work was also carried out
by Wang et al. who studied the kinetics of silica and alumina extraction from fly ash by concentrated
NaOH and observed the effect of temperature, stirring speed and mass ratio of sodium hydroxide to
silica, on silica extraction rate [144]. The silica extraction was found to be 95.6% under the optimized
conditions. Piekos and Paslawska (1998) investigated the leaching of Si element from fly ash, which was
carried using distilled water, seawater and synthetic seawater with variable ratios of water and fly
ash [181].

Virendra Yadav (2019) extracted sodium silicate from ferrous free fly ash using 8 M NaOH by
keeping the solid-to-liquid ratio at 1:5 at 95 ◦C for 90 min along with stirring at 400–500 rpm. Silica gel
was obtained by neutralization with 1M HCl and, finally, dried powder was treated with 1M HCl at
110 ◦C for 3 h to remove the trace elements in the form of impurities. The obtained precipitate was
initially oven dried at 40–60 ◦C, followed by calcination at 400 ◦C for two hours. The purity of the
obtained SiNPs was more than 92%, as confirmed by the EDS [50]. Virendra Yadav (2019) reported the
synthesis of amorphous SiNPs from Gandhinagar (Gujarat, India), thermal power plant using the alkali
dissolution method. The ferrous and alumina extracted fly ash residue was treated with 8 M NaOH,
at 95 ◦C, in a round-bottom flask under reflux systems for 90 min by maintaining a solid-to-liquid
ratio of 1:5. The leachate of sodium silicate was obtained by centrifugation at 7000 rpm for 10 min.
The residue was discarded while the sodium silicate was used for the synthesis of SiNPs by sol-gel
method. Further, about 40 mL of sodium silicate was titrated with dilute 2N HCl at room temperature.
A white gel formed near pH 10, which ceased to form on the further addition of dilute HCl. The gel
was left undisturbed for 24 h for ageing. Further, the mixture was centrifuged at 5000–7000 rpm for
10 min to obtain the white precipitate. The white precipitate was dried in an oven at 60 ◦C for 4–6 h
and was finally calcinated at 400 ◦C for 4 h in a muffle furnace by slowly increasing the temperature by
10 ◦C/minute until the temperature reached 400 ◦C. The final synthesized SiNPs were characterized
using FTIR, PSA, FESEM-EDS, TEM and XRD. It was found that the sizes of SiNPs ranged between
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40–80 nm, they wre spherical in shape, and were fused together to form a floral-shaped aggregated
structure. The SiNPs were amorphous in nature and a broad hump was observed in the 2-theta region
at 15–30◦, having peaks centered at 21–22. FTIR also reveals the three characteristic bands of SiNPs
in the region of 400–1200 cm−1. The EDS revealed the purity of SiNPs, which was 80–95%, and had
impurity in the form of Na, Al and C due to the improper washing of SiNPs [50].Ceramics2020, 3 FOR PEER REVIEW  20 
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Further, Yadav et al. reported the synthesis of SiNPs from the fly ash tiles from Okhla, New Delhi,
TPPs. Here the tiles were crushed into powder using a mortar pestle and it was mixed with sodium
bicarbonate in the ratio of 1:3 in a platinum crucible and calcinated at 1000 ◦C for 30 min. After the
completion of fusion, the mixture, along with crucible, was dipped in a boiling mixture of dilute HCl
and H2SO4 in a beaker. Heating was done until the complete dissolution of the lumps. Finally, the
mixture was filtered through Whatman filter paper no. 42, where the supernatant was discarded and
the solid powder was retained. The filter paper along with the powder was calcinated at 400 ◦C for two
hours. After the analysis of SiNPs by instruments, it was found that the particles were spherical shaped,
fused and highly aggregated together to form large particles. The EDS revealed the purity, as there
were only peaks for Si and O, mainly along with minor peaks of trace elements. The FTIR revealed the
three characteristic bands in the region of 400–1200 cm−1 and XRD revealed broad humps with a peak
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centered at 2-theta 22◦, which confirms the amorphous nature of the SiNPs [182]. The summarized
form of the chemically-mediated extraction and synthesis of silica from fly ash are given in Table 6.Ceramics2020, 3 FOR PEER REVIEW  21 
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Table 6. Silica leaching and synthesis from fly ash by chemical approaches.

Authors/
References

Operating
Conditions Leaching Agent Product Findings

Falayi et al.
[180]

Optimum leaching
parameters were

time 6 h, Molarity of
KOH = 3M, rpm 500,

25 S/L ratio,
temperature: 100 ◦C

Leaching of silica
by KOH silica leachate

Found the optimal
conditions of silica
leaching for time,

temperature, molarity
of KOH
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Table 6. Cont.

Authors/
References

Operating
Conditions Leaching Agent Product Findings

Wang et al.
[144]

Concentrated
NaOH

Studied the kinetics of
silica and alumina
leaching from the

extracted slag of fly ash.
Studied the effect of

leaching temperature,
stirring speed and mass
ratio of NaOH to SiO2,
on silica leaching rate.

The silica leaching was
95.6% under the optimized

conditions

Piekos and
Paslawska [181]

Distilled water, sea
water, synthetic sea

water with the
variable ratios of
water and fly ash

Leaching of assimilable
silicon species from fly ash

Fulekar and
Yadav [50]

Temp: 90–95 ◦C
Time: 90 min

Stirring:
300–500 rpm

4–16 M NaOH
Clustered

silica
nanoparticles

Amorphous, nanosilica,
aggregated to form a

cluster of size 20–80 nm
with 90–97% purity

7.2. Microbial Leaching of Silicon and Silica Syntheses from Fly Ash

Microbial methods can be used for the leaching of silica from the fly ash by fungi and bacteria.
These microbes produce different acids, enzymes and other metabolites that initially leach out Si from
the fly ash and then transforms the leached Si from the medium into SiNPs. Microbial-based silica
synthesis has advantages over chemical methods, as there is no need for toxic chemicals. However,
microbial methods are time-consuming in comparison to chemical methods. Bacteria also have a
tendency to dissolve the silica from various minerals. A group of bacteria called “Phosphate solubilizing
bacteria” [183] has a tendency to leach out silica from the silicates [184]. Bacteria belonging to this group
are Bacillus circulans, Bacillus mucilaginous, Bacillus edaphics [185]. These bacteria show a significant
effect in mineral solubilization, and are mainly phosphates, as well as silicates in the soil for the proper
uptake of the nutrition by the plant. These bacteria have certain enzymes—polysaccharides—that
have a valuable role in silica leaching wherein mucopolysaccharide [186] is the main lixiviant for
the silica. Previously, Zhan et al. used the three different Bacillus strains and studied the leaching
of silica from the bauxite ores by individual bacteria as well as in co-operation [187]. The mixed
culture leached more silica from the solution in comparison to the individual microbe. Among fungi,
only Fusarium oxysporum has been used for the synthesis of SiNPs from fly ash, where the purity of
silica was up to 40% and impurities in the form of carbon 50% were present [188].

Bacillus circulans is Gram-positive, rod-shaped, endospore-forming bacteria that has the potential
to desilicate the silica-enriched media [189]. They are a chemo-organoheterotrophic bacterium that
leaches out silica from silicates by attacking the alumino-silicate bonds [190]. It is generally used
as a bio-fertilizer as they have a tendency to dissolve the K and Si from soil [191]. They are also
called “siliceous bacteria” as they can destroy the silica-rich minerals [192]. These heterotrophic
bacteria can grow at temperature, ranging between 5–20 ◦C or 30–37 ◦C, but most optimally at
30–37 ◦C. They produce an extra-cellular polysaccharide, capsular slime and other metabolites such
as organic acids 2-Keto gluconic acids, ammonia and various other amino acids which play a role
in silica leaching [193]. Silica removal from fly ash by silicate bacteria B. circulans is due to the
production of mucilaginous capsules containing exopolysaccharides (EPS) [194]. Here, in our approach,
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it produces mucopolysaccharides (MPS) that attacks the Na-silicate bonds and leach out soluble silica
in the medium.

Virendra Yadav [50] synthesized porous silica nanosheets of size 80–120 nm by using B. circulans
MTCC 6811 supernatant and fly ash-extracted sodium silicate. The silica was synthesized after the
incubation of the fungal supernatant and sodium silicate mixture at optimized conditions. The optimum
ratio was 4:1 of supernatant to the extracted sodium silicate by volume. Fulekar and Yadav synthesized
spherical shaped aggregated clusters of SiNPs of size 40–80 nm by incubating the Fusarium oxysporum
supernatant and sodium silicate at optimized ratio—i.e., 3:2 in an incubator shaker at 28 ◦C for
48–72 h [50]. Here the Si was leached from the sillimanite and mullite of fly ash by the hydrolytic
enzymes of F. oxysporum. The leached Si from the fly ash forms water-soluble SiNPs which was further
dried and silica powder was obtained using the rotary evaporator. Khan et al. [188] also reported
the leaching of Si from these two minerals of fly ash and the formation of water-soluble SiNPs which
were recovered using the rotary evaporator. The summarized form of fungi-mediated leaching and
synthesis of silica/silicon from fly ash are given below in Table 7.

Reactions:

Al6Si2O6
Hydrolytic enzymes
−−−−−−−−−−−−−−−→Silica nanoparticles (water souluble) (1)

Al2SiO5
Hydrolytic enzymes
−−−−−−−−−−−−−−−→Silica nanoparticles (water souluble) (2)

Table 7. Microbial leaching of silica and synthesis of SiNPs from fly ash.

Authors Operating
Conditions Leaching Agent Product Findings

Zhan et al.
[187]

Muco-polysaccharides Soluble silica in
the medium

Studied the leaching of silica
from the bauxite ores by
individual bacteria as well as
in co-operation.
Mixed culture leached more
silica from the solution in
comparison to the individual.

Khan et al.
[188]

Synthesized silica
nanoparticles from fly ash by
using fungus F. oxysporum.
The purity of the biologically
synthesized silica was up to
40% only with more than 50%
as carbon

Fulekar and
Yadav [50]

Incubation at
required

temperatures

F. oxysporum: oxalic
acid

B. circulans—EPS, MPS

Synthesized amorphous
30–80 nm, aggregated,
clustered silica nanoparticles
using F. oxysporum
supernatant and sodium
silicate from fly ash
Synthesized amorphous
60–120 nm porous nanosheets
by using B. circulans
supernatant and sodium
silicate from fly ash

7.3. Properties and Applications of SiNPs

SiNPs have always been light for their use in the field of research, industries and medicine
owing to their innumerable technological and biomedical applications. SiNPs are specifically used
for resins, silica-based catalysts, molecular sieves and several other materials [195]. Until now,
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their application has been most exploited in biology and medicine as drug carriers [196]. Recently,
biocompatible [197], bio conjugated [198] and doped SiNPs [199] have gained huge attention in cancer
therapy— i.e., cancer cell imaging [200,201], DNA and microarray detection [202], barcoding tags
separation [203], drug delivery [204] medicine [205] and the purification of biological molecules
and cells [196]. Bulk silica is a conventional adsorbent that has been used for a very long time to
remove odor. However, nowadays SiNPs have replaced conventional bulk silica and is used as a
conventional adsorbent for wastewater treatment—i.e., purification of wastewater [206], removal
of pollutants inorganic (heavy metals), organic pollutants (pesticides) and ultrasensitive single
bacterium detection [207]. Their compounds and composites in the form of zeolites are also used for
water purification.

8. Role of Nanotechnology: Nano adsorbents for Heavy Metal Removal

Nanotechnology involves the understanding and control of objects with dimensions ranging
between 1–100 nm [208]. Nanotechnology is the science and art of matter that is manipulated
on an atomic and molecular scale. According to the national nanotechnology initiative (NNI),
nanotechnology was defined as “anything smaller than 100 nm with novel properties” [209].
The important features of nanotechnology and nanoparticles are attributed to their shape, size,
surface characteristics and surface energy. As the nanoparticles have infinite size, the surface area
is relatively large and consequently has higher reactivity and sorption capacity in comparison to
several heavy metals [210]. These nanotechnology-based features allow the nanoparticles to become
chemically more reactive by changing its strength and other properties. Hence, concerning the
fortification of the environment, nanotechnology embraces the assurance of providing new and
inimitable improvements [211]. Nanoparticles are used in several fields viz. wastewater treatment [212],
medicine for drug delivery, electronics [213], etc. In wastewater treatment, nanoparticles are used
as an adsorbents (activated carbon, silica gel, and alumina), which are generally obtained from the
commercial precursors of respective nanoparticles that make them expensive, thereby making the
whole adsorption mechanism cost intensive.

However, the production of the nanoadsorbents from waste materials, such as red mud [214],
fly ash [215] and rice husk [216,217], makes them significantly cheaper, greener and environmentally-
friendly. However, cost analysis, easy availability, non-toxicity and recyclable nature are important
factors for the selection of an adsorbent for the wastewater treatment and heavy metal removal that
control the total expenditure of the adsorption process. If adsorbents are derived from the waste, such as
fly ash, then the adsorbent cost will definitely be low and, ultimately, so will the cost of the adsorption
process. Thus, nanoparticles synthesized from waste, such as fly ash, bauxite rice husk, etc., may act
as potential candidates as precursors for nanoadsorbents. Nanoparticles may serve as an efficient
adsorbent for the removal of heavy metals from wastewater due to their high surface area, enhanced
adsorption sites and the functional groups that are present on their surface [213]. Nanomaterials have
a wide range of applications regarding the technological and environmental challenges for wastewater
treatments. Numerous works have been reported based on metal oxides, as they are very effective and
efficient adsorbents in the clean-up of environmental contaminants [218–220] owing to their small size,
which permits them to penetrate into the contamination zone [221,222] where other bulk adsorbents
and micro particles cannot.

Though the fly ash derived nanoparticles have immense potential as nanosorbents for the
remediation of heavy metals from wastewater, very few works are available where such nanoparticles
derived from fly ash have been used for the remediation of pollutants or heavy metals. Thus,
here several examples have been provided where IONPs and SiNPs have been used for the remediation
of heavy metals. Out of both IONPs and SiNPs, the former has numerous advantages over SiNPs,
as it can be easily manipulated under the influence of an external magnetic field and can exhibit
superparamagnetism [223–226]. Moreover, due to the presence of unpaired electrons in their 3D
shell, they have Fe2+, Fe3+ ions, and form either ferrimagnetic or ferromagnetic particles [227,228].
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The magnetic properties make their recovery very easy at the end of the reaction, and they are
recyclable and lower in cost. In general, IONPs exists in various forms (magnetite, maghemite,
and hematite) [229–231] which are commonly used for the remediation of heavy metals from wastewater.
These IONPs remediate heavy metals by adsorption techniques, which is one of the most effective
techniques in comparison to precipitation [232,233], coagulation [232–234], chemical reduction [235,236],
ion exchange [235,237,238] and low expenditure. Some of the examples where IONPs have been
applied, for the wastewater-based remediation of heavy metals, are cited below.

Chang et al. synthesized monodisperse chitosan-coated magnetite nanoparticles with the average
size of 13.5 nm and utilized them for the remediation of Cu2+ ions. Cu2+ removal efficiency was above
pH 2 [235]. Yantasee et al. [239] synthesized magnetite, functionalized with thiol, with a size of 40 nm,
and applied it for the remediation of Hg, Ag, Pb, and Cd. Similarly, Song et al. [240] used (γ-Fe2O3)
encapsulated with polyrhodamine for the removal of Mn2+, Cr2+, Cd2+, Hg2+— here heavy metals
were removed from the aqueous solution and it was concluded that the solution pH, initial metal
ion concentration, contact time and species of metal ions influence the uptake of heavy metal ions.
Chou and Lien., (2010) applied dendrimer-conjugated magnetite nanoparticles for the remediation
of Zn at acidic and alkaline pHs [241]. Predescu and Nicole., (2012) synthesized and used 10 nm
maghemite nanoparticles for the remediation of Zn, Cu and Cd at 2.54 pH from wastewater by
adsorption [242]. Better adsorption capacity was obtained for metal ions, especially in the case of
maghemite, into the cationic resin (γ-Fe2O3-R-H), and a higher adsorption tendency for hexavalent
chromium in comparison to other metal ions. From the above work, it was concluded that, in all the
cases, capped magnetic nanoparticles were synthesized from the iron precursors and further applied
for the heavy metal removal.

In comparison to IONPs, SiNPs are used to a much lesser extent for the remediation of heavy
metals from wastewater. They are mainly used for providing support to the nanoadsorbents or as a
carrier for them. A few examples are given below where the investigators used silica either in bulk form
or powder form for the removal of heavy metals, dyes, and pesticides from wastewater. Some of the
selective works, cited below, focuses on the remediation of heavy metals from wastewater using SiNPs.
Sheet et al. performed a study where nanosized graphite oxide, silica/graphite oxide composites and
SiNPs were applied for heavy metal ion remediation from aqueous solutions using a batch adsorption
method [243]. The nanosized graphene oxide-based remediation of heavy metals was in the following
order: nickel>zinc>lead>cadmium>chromium. The results suggested that the optimum efficiency
for heavy metal remediation is when the adsorbents (silica/graphite oxide composite) are in the ratio
of (2:3). Karnib et al. comparatively studied the remediation of Cd, Pb, Zn, Cr, and Ni in a batch
experiment by using activated [Ac] carbon, SiNPs and a composite of silica-Ac carbon. Ni exhibited
the maximum removal percentage by Ac-Carbon at all concentrations, whereas the percentage removal
reduced with an increase in the concentration of heavy metals [244]. Kong et al. reported the selective
removal of heavy metals (Pb2+, Cu2+, Hg2+, Cd2+, and Zn2+) from the aqueous solutions using silica
fume waste-derived SiNPs with different functional groups on their surface [245].

Yadav and Fulekar 2018 reported the biogenic synthesis of IONPs from iron precursors (salts of
ferrous sulphate heptahydrate and ferric chloride), by the co-precipitation method. Here, all the
solutions were prepared in the aqueous leaf extract of Tridax spps, which was used as a capping
agent for IONPs. The synthesized IONPs were further characterized by sophisticated instruments.
The synthesized IONPs ranged between 15–60 nm and were spherical in shape, but they also showed
higher aggregation. The XRD and Raman revealed the mixed phases—i.e., magnetite and maghemite
in the IONPs. Finally, the synthesized IONPs were used for the remediation of Pb and Cr from the 20%
fly ash aqueous solutions in a batch experiment at fixed, temperature, pH, and dosage. The removal
efficiency of Pb and Cr was up to 85 and 96%, respectively [21].

Yadav et al., 2020, reported the synthesis of 18–60 nm amorphous IONPs by using sonochemical
methods, which were characterized by the sophisticated instruments and assessed their potential for
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the remediation of fly ash heavy metals—mainly Pb and Cd in a batch adsorption study. The Pb and Cr
ions were remediated up to 97.96% and 82.8%, respectively, from 20% fly ash aqueous solutions [246].

9. Conclusions

Fly ash is considered as one of the major pollutants and one million tonnes is produced every year
around the globe. The disposal of fly ash into ash ponds requires a huge amount of land that, in turn,
leads to water and soil pollution. Additionally, fly ash is loaded with several toxic heavy metals,
which impose a potential threat to living organisms. At present, in developing countries, such as India,
where the utilization rate of fly ash is only 40–50% in the form of bricks, types of cement, tiles, etc.,
half of the fly ash remains unutilized every year. Fly ash is rich in ferrous, alumina and silica and
can be successfully used in the recovery of valuable minerals which not only reduces the pollution
but also provides an alternative source for ferrous, alumina and silica for the industries. Therefore,
in the present review, emphasis has been given to the advancement in the methods for the recovery
of ferrous, silica and alumina nanoparticles with the latest technology and instruments. Fly ash is a
spherical-shaped particle constituting elements like Al, Si, and have either Mg or Ca, S on their surface,
as revealed by the EDS. The ferrous particles are generally spherical in shape, whose sizes vary between
nanometers to several microns. The magnetic fractions are easily extracted by the magnetic separation
method. Among non-ferrous materials—i.e., silica and alumina—they comprise major fractions of
fly ash. Silica, being insoluble in acids, was preferably extracted with alkali by chemical method and
microbial synthesis using F. oxysporum and Bacillus spps. These microbes produce specific proteins and
enzymes that initially leach the Si into the aqueous medium and bio transform the SiNPs. Alumina in
fly ash is present in crystalline form, so it is relatively inert. Al, being amphoteric, reacts with both
strong alkali and mineral acids and leaches out Al into the solution, which is processed further for the
synthesis of alumina nanoparticles by chemical and microbial methods. From all the above-reported
methods, the Al extraction efficiency varied between 82.5%–92.2%; it was observed that the molarity of
the acids and base and temperature play an important role. The high molarity of either acids or base at
high temperature may increase the yield from the fly ash. Fly ash may serve as a potential, reliable
and alternative material for the ferrous-, alumina- and silica-based industries. Fly ash, deriving such
nanoparticles, find reliable applications in wastewater treatment and environmental clean-up. In the
future, fly ash derived nanoparticles can be used in the fields of electronics, ceramics, glass foundries,
drug delivery, and agriculture, and in food industries, based on their purity.
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