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Abstract: Due to their inherent chemical complexity and their refractory nature, the obtainment of
highly dense and single-phase high entropy (HE) diborides represents a very hard target to achieve.
In this framework, homogeneous (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and
(Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 ceramics with high relative densities (97.4, 96.5, and 98.2%, respec-
tively) were successfully produced by spark plasma sintering (SPS) using powders prepared by
self-propagating high-temperature synthesis (SHS). Although the latter technique did not lead to
the complete conversion of initial precursors into the prescribed HE phases, such a goal was fully
reached after SPS (1950 ◦C/20 min/20 MPa). The three HE products showed similar and, in some
cases, even better mechanical properties compared to ceramics with the same nominal composition
attained using alternative processing methods. Superior Vickers hardness and elastic modulus values
were found for the (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2 and the (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 systems, i.e.,
28.1 GPa/538.5 GPa and 28.08 GPa/498.1 GPa, respectively, in spite of the correspondingly higher
residual porosities (1.2 and 2.2 vol.%, respectively). In contrast, the third ceramic, not containing
tantalum, displayed lower values of these two properties (25.1 GPa/404.5 GPa). However, the
corresponding fracture toughness (8.84 MPa m1/2) was relatively higher. This fact can be likely
ascribed to the smaller residual porosity (0.3 vol.%) of the sintered material.

Keywords: high entropy metal borides; spark plasma sintering; self-propagating high-temperature
synthesis; mechanical properties

1. Introduction

As a novel category of the wider family of ultra high temperature ceramics (UHTCs),
high entropy (HE) transition metal diborides, often referred to as HEBs, have immediately
gained a significant interest for their potential applications as structural materials in ex-
treme environments [1]. HEBs basically originate from the combination of five or four
individual diborides (ZrB2, HfB2, etc.) in near-equimolar ratio to give quinary or quater-
nary, respectively, crystalline solid solutions with maximum configurational entropy [2].
Since the pioneering work by Gild and coworkers [1], various studies have been carried out
for the fabrication of these systems in bulk form and the characterization of the resulting
products [1,3–16]. The large majority of these investigations take advantage of the use of
the spark plasma sintering (SPS) technology, which is able to guarantee relatively milder
conditions, particularly shorter processing times, compared to conventional hot-pressing
methods to provide dense materials [17]. Nonetheless, when considering HEB ceramics,
the additional hard target to achieve other than the high consolidation level is represented
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by the obtainment of such complex materials as single-phase. Table 1 summarizes the
processing methods and the related conditions adopted thus far in the literature for the
fabrication of various dense quinary HEBs by SPS. Basically, three approaches are consid-
ered: (1) simultaneous synthesis and densification of the ceramic from untreated [13] or
ball milled [11] elemental precursors; (2) SPS of pretreated individual borides [1,3,12]; (3)
synthesis of HEB-based powders and their subsequent consolidation [4–10,13–16].

Table 1. Quinary high entropy metal borides (HEBs) obtained in bulk form by spark plasma sintering (SPS) with details
on powder pretreatments and corresponding experimental conditions adopted (TD = dwell temperature, P = mechanical
pressure, tH = total heating time to reach TD; tD = dwell time at TD, Pw,max = maximum electric power, CR = charge ratio;
HEBM: high energy ball milling; BR: borothermal reduction; BCR: boro-carbothermal reduction; SHS: self-propagating
high-temperature synthesis; RSPS: reactive SPS; FSPS: flash SPS; n.r. not reported.

Systems Raw Powders
Method/Conditions for

Powders
Synthesis/Activation

SPS Conditions
(TD/tH/tD/P) References

(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2
(Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2

(Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2)
(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2
(Mo0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2
(Hf0.2Zr0.2W0.2Mo0.2Ti0.2)B2
(Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2

Individual metal borides HEBM (CR= n.r./6 h) (2000 ◦C/~20 min/
5 min/30 MPa) [1]

(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2
Metal powders,

B
SHS (few secs) + HEBM

(CR = 2/20–60 min)
(1950 ◦C/10 min/
20 min/20 MPa) [5,13]

(Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2
(Hf0.2Mo0.2Zr0.2Nb0.2Ti0.2)B2
(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2

Metal oxides,
B BR (1600 ◦C/60 min) (2000 ◦C/~13 min/

10 min/30 MPa) [6]

(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2
(Hf0.2Zr0.2Mo0.2Nb0.2Ti0.2)B2
(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2

Metal oxides,
B4C, graphite BCR (1600 ◦C/60 min) (2000 ◦C/~13 min/

10 min/30 MPa) [7]

(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2
Individual metal borides,

graphite
Pre-sintering by SPS

(1600 ◦C/5 min/30 MPa)

FSPS (30%Pw,max/120 s+
50% Pw,max/30 s +
100% Pw,max/90 s)

[3]

(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2
Metal oxides,
B4C, graphite

BCR by SPS
(1700 ◦C/10 min)

(2000 ◦C/~20 min/
5 min/50 MPa) [4]

(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2
Metal powders,

B None RSPS (1950 ◦C/10 min/
20 min/20–70 MPa) [13]

(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2
(Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2

Metal powders,
B, graphite

SHS (few seconds) + HEBM
(CR = 2, 60 min)

(1950 ◦C/10 min/
20 min/20 MPa) [8]

(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2
(Hf0.2Zr0.2Mo0.2W0.2Ti0.2)B2

Metal oxides,
B BR (1600 ◦C/60 min) (2000 ◦C/n.r./

10 min/30 MPa) [14]

(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2
(Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2
(Hf0.2Zr0.2W0.2Mo0.2Ti0.2)B2
(Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2

Metal oxides,
B4C, C BCR (1550 ◦C/90 min) (2000 ◦C/~20 min/

30 min/80 MPa) [10]

(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2
Metal oxides,

B4C, C BCR (1650 ◦C/3.5 h) (2000–2200 ◦C/~23 min/
10 min/50 MPa) [9]

(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2
(Hf0.2Zr0.2375Ta0.2375Nb0.05Ti0.2375)B2

Metal oxides,
B4C, C BCR (1650 ◦C/3 h) (2100 ◦C/~23 min/

10 min/50 MPa) [15]

(Hf0.2Zr0.2Ta0.2Cr0.2Ti0.2)B2
Metal oxides,

B4C, C BCR (1650 ◦C/1 h) (2000 ◦C/~13 min/
10 min/30 MPa) [16]

(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2
(Mo0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2
(Hf0.2Zr0.2W0.2Mo0.2Ti0.2)B2
(Ti0.2Ta0.2Cr0.2Mo0.2W0.2)B2
(Zr0.2Hf0.2Nb0.2Ta0.2W0.2)B2

(Zr0.225Hf0.225Ta0.225Mo0.225W0.1)B2

Metal powders,
B HEBM (CR = 4, 50 min) RSPS (2000 ◦C/~2 h/

10 min/50 MPa) [11]

(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)B2
Individual metal borides,

graphite HEBM (CR = 2.3, 100 min) (2200 ◦C/~3 h/
10 min/80 MPa) [12]
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As far as the first route is concerned, the one-step reactive SPS (RSPS) process (30 min
duration) from simply blended elemental powders provided a multiphase ceramic [4].
More recently, beneficial effects in terms of product homogeneity and densification arose
with the activation by high energy ball milling (HEBM) (charge ratio (CR) = 4) of starting
reactants combined with a multistep SPS process (duration of about 2 h) [11]. A mechanical
treatment is also used to activate individual boride constituents [1,12]. The main drawback
related to HEBM is, depending on milling intensity and duration, the presence of possible
oxide impurities or other contaminants from milling tools in the resulting powders [1].
On the other hand, a milder milling treatment might require relatively more severe SPS
conditions (2200 ◦C/3 h/10 min/80 MPa) [12] if compared to those adopted in other studies
(Table 1). An alternative proposed approach was the flash SPS (FSPS) preceded by a pre-
sintering SPS step to activate powder mixture of metal borides [3]. In spite of its undeniable
advantage represented by process rapidity, FSPS is a quite difficult process to control.
Therefore, as shown in Table 1, the generally adopted fabrication method typically involves
first the preparation of HEB powders and then their densification by SPS. In this framework,
the borothermal (BR) and the boro-carbothermal reduction (BCR) of metal oxides were
certainly the most utilized synthesis methods [4–7,10,15,16]. The resulting powders were
usually able to provide highly dense and quite homogeneous materials after SPS. However,
these routes present some drawbacks, such as possible presence of unreacted oxides, high
temperatures (1600–1700 ◦C), and long processing times (including non-isothermal heating–
cooling steps). As an alternative method for powder preparation, the self-propagating
high-temperature synthesis (SHS) was utilized for the cases of (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2
and (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 [5,8]. Although the corresponding SHS products did not
consist exclusively of the desired HEB phases, such a goal was successfully achieved with
the subsequent SPS stage. SHS has the main advantage to take place very shortly, within
a few seconds, and to be convenient from the energetic viewpoint due to the capability
of the synthesis process to self-propagate upon local ignition. As a constraint, suitable
precursors have to be identified to provide the due exothermicity required to guarantee
the SHS character to the reacting system. In this regard, the reactions of formation of
transition metal diborides from their elements typically satisfy the latter requirement.
Another advantage associated with the use of the SHS technique is the fact that the related
powders, for instance, zirconium diboride, are observed to display improved sinterability
with respect to those prepared using alternative techniques (furnace, solution methods,
etc.) [18,19]. The higher defect concentration generated in the SHS powders by the extreme
heating and cooling rate conditions established during the propagation of the reaction
front (order of 105 and 103 K/min, respectively) provided a possible explanation for such
a finding [18]. Accordingly, the combination of the SHS and SPS methods was adopted
for the fabrication of a wide variety of UHTCs, including monophasic transition metal
borides [5,8,20–25].

Along these lines, a novel HEB system, namely (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2, was
studied for the first time in the present work according to the latter processing route. Both
the SHS powders and the SPS bulk product were characterized in detail from the composi-
tional and the structural points of view. The results were compared with those relative to
(Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 and (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2 ceramics processed under
the same conditions.

Another crucial aspect concerning HEBs is represented by the lack of literature data
relative to their mechanical properties. Indeed, although preliminary measurements evi-
denced generally superior hardness as compared to individual binary constituents [1], little
information is available on additional mechanical properties. On the other hand, the latter
ones are very important to validate this emerging class of ceramics and finally identify one
or more promising HEB systems for further focus. To this aim, hardness, elastic modulus,
and fracture toughness properties of the optimized dense (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2,
(Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 products obtained by SHS-
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SPS were measured for the first time in this work. A comparison with literature data, when
available, was also carried out.

2. Materials and Methods
2.1. Processing of HEBs

The preparation of (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and
(Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 products, hereto after indicated as HEB_a, HEB_b, and HEB_c,
respectively, was carried out starting from Hf (Alfa Aesar, cod. 00337, particle size < 44 µm,
99.6% purity), Mo (Aldrich, cod 266892, particle size < 149 µm, 99% purity), Ta (Alfa
Aesar, cod 00337, particle size < 44 µm, 99.9% purity), Nb (Alfa Aesar, cod 010275,
particle size < 44 µm, 99.8% purity), Ti (Aldrich, cod 268496, particle size < 149 µm, 99.7 pu-
rity), Zr (Alfa Aesar, cod 00418, particle size < 44 µm, > 98.5% purity), and B (Aldrich,
cod 15580, amorphous, 99% purity) reactants. Metals were combined in stoichiometric
proportions, whereas an excess of boron (B to metal ratio of 2.2:1) was used to compensate
the partial loss of this element during SHS, as explained elsewhere [5,8]. Powders were
first mixed for 20 min in a SPEX 8000 (SPEX CertiPrep, USA) mill using plastic vials and
alumina balls, then cold-pressed to provide cylindrical pellets, which were finally reacted
in argon environment by SHS. Details on the experimental apparatus and the procedure are
reported in a previous work [26]. The obtained porous product was ball milled for 60 min
(ball-to-powder or charge ratio, CR, equal to two) using the milling device mentioned
above and stainless-steel tools. No detectable contamination from milling media was found
under such conditions. To improve product purity and densification, about 1 wt.% graphite
(Aldrich, cod 282863, particle size 1–2 µm) was added to the SHS product before being
mechanically treated. Such a specific amount of this additive was recently shown to be the
optimal one to reduce oxides content and maximize powder consolidation while avoiding
the presence of residual graphite in sintered products [8].

SHS powders were loaded in a die (AT101 graphite, ATAL Srl, Italy) of 30 mm external
diameter, 15 mm inner diameter, and 30 mm height to produce bulk samples of about
14.7 mm diameter and 3 mm thickness. Sintering experiments were conducted in vacuum
using SPS equipment (515S model, Fuji Electronic Industrial Co., Ltd., Kanagawa, Japan)
under the following conditions: dwell temperature (TD), heating rate, dwell time (tD), and
mechanical pressure (P) of 1950 ◦C, 200 ◦C/min, 20 min, and 20 MPa, respectively. The
temperature was measured using an infrared pyrometer (CHINO, mod. IR-AHS2, Japan)
focused on the die surface. Heat losses by radiation were minimized by covering the die
with a layer of graphite felt. For the sake of reproducibility, each experiment was repeated
at least twice. The resulting sintered samples were ground to remove residual graphite and
finally polished for their characterization.

2.2. Characterization of HEBs

Phase composition of SHS and SPS products was determined by X-ray diffraction
(XRD) analysis (Philips PW 1830, Netherlands) using Cu Kα radiation over a range of
scattering angles 2ϑ from 20◦ to 130◦ in steps of 0.05◦ with 15 s acquisition time per angle.
XRD patterns were analyzed using the Rietveld method to quantitatively evaluate, using
the MAUD (Material Analysis Using Diffraction) program [27], phases amount (wt.%) and
the related structural parameters.

Particle size distribution of ball milled SHS powders was determined by a laser light
scattering analyzer (CILAS 1180, Orléans, France).

Densities of polished samples were measured by Archimedes’ method, using distilled wa-
ter as immersing medium. Relative densities were finally calculated using the theoretical values
of 8.67, 8.52, and 7.37 g/cm3 for (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and
(Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2, respectively. The presence of graphite was accounted for by
considering the additive amount initially introduced in the mixture and the density value
of 2.26 g/cm3, as described elsewhere [8].



Ceramics 2021, 4 112

A high-resolution scanning electron microscopy (HR-SEM, mod. S4000, Hitachi,
Tokyo, Japan) equipped with an UltraDry EDS (Energy Dispersive Spectroscopy) detector
(Thermo Fisher Scientific, Waltham, MA, USA) was used to examine samples microstructure
and elemental distributions. To evaluate residual porosity in sintered samples, SEM
micrographs were processed using the open source software ImageJ (version 1.54a for
Windows, 64 bit, National Institutes of Health, Bethesda, MD, USA) [28].

Mechanical properties of samples were determined by means of the micro-indentation
technique using a depth-sensing instrumentation. Measurements were made with the
Open-Platform equipment (CSM Instruments, Peseux, Switzerland) with a Vickers indenter
tip. Samples were embedded into epoxy resin and then lapped and polished. Such a
technique was employed to obtain both Vickers hardness and Young’s modulus, setting a
load equal to 250 mN with a load/unload rate of 500 mN/min. At least 15 measurements
were performed for each sample, and the average values were then calculated. For each
indentation, the load–penetration depth curve was automatically acquired. The Young’s
modulus was calculated from the unloading part of the load–depth curve according to the
Oliver and Pharr method [29]. Measurements were then repeated using a load of 500 mN
with a load/unload rate of 1 N/min to test the reproducibility of the measure and the
eventual effect of the applied load.

Finally, fracture toughness was evaluated for the three systems using a load of 1 N
in order to make cracks propagate from the indent tips. Fracture toughness was then
calculated based on the crack lengths according to some well know equations available in
the literature [30,31], namely:

KIC= 0.0824 P
c3/2 (Evans and Charles, E&C)

KIC= 0.0515 P
c3/2 (Lawn and Fuller, L&F)

KIC= 0.079 P
a3/2 log

(
4.5a

c

)
(Evans and Wilshaw, E&W)

KIC= 0.0363
(

E
Hv

) 2
5 P

a1.5

( a
c
)1.56 (Lankford, L)

where KIC is the fracture toughness, P the load, c the average crack length measured from
the indentation center, a the indentation average half diagonal, E the elastic modulus, and
Hv the Vickers hardness.

3. Results and Discussion
3.1. Powders Synthesis and Characterization

The three reacting systems considered in the present work for the synthesis of
(Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2
from their elements displayed a self-sustaining character upon ignition. The reaction behav-
ior was similar to that observed when considering the combustion synthesis of standard
metal diborides from their elements. The very high reaction enthalpies for the formation
of these compounds, particularly HfB2 (335.98 kJ/mol), ZrB2 (322.59 kJ/mol), and TiB2
(323.80 kJ/mol) [32], were clearly responsible for such a finding.

The compositions of HEB_a and HEB_b products obtained by SHS are reported and exam-
ined in detail elsewhere [8,13]. On the other hand, the synthesis of (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2
by SHS was carried out for the first time in this work. The XRD experimental pattern (black
rhombohedral) and the best fit (red line) relative to the corresponding SHS product are
shown, on a log scale, in Figure 1. A multiphase product was obtained after the synthesis
process, which agreed with the results obtained with the other HEB systems previously
investigated, i.e., of HEB_a [5] and HEB_b [8]. Rietveld analysis was performed using
(Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2, (Hf0.5Ti0.5)B2, (Zr0.5Ti0.5)B2 and NbB2 as a starting model
according to Barbarossa et al. [8] for a similar system. The excellent degree of matching of
the model with the experimental data was established by the low R-factor (Rwp = 6.43%)
achieved for this analysis. Table 2 summarizes structural and microstructural parameters
obtained from the Rietveld analysis applied to the pattern reported in Figure 1.
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Figure 1. X-ray diffraction (XRD) pattern and related Rietveld refinement of (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 product obtained
by SHS from elemental powders.

Table 2. Microstructural parameters and relative amounts of each phase estimated by the Rietveld analysis performed on
the as-recorded pattern of the HEB_c product obtained by SHS (Figure 1). R.m.s.: Root mean square.

Phase Space Group a (Å) c (Å) V(Å3) Cryst. Size (Å) R.m.s. Strain Phase (%)

(Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2
Hexagonal
(P6/mmm) 3.0975 3.4136 28.364 507 9.6*10−3 27

(Hf0.5Ti0.5)B2
Hexagonal
(P6/mmm) 3.1222 3.4488 29.115 >2000 4.0*10−3 40

(Zr0.5Ti0.5)B2
Hexagonal
(P6/mmm) 3.0710 3.2840 26.822 >2000 3.8*10−3 18

NbB2
Hexagonal
(P6/mmm) 3.0951 3.3158 27.508 1033 1.3*10−3 15

Quantitative analysis revealed that (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2, (Hf0.5Ti0.5)B2,
(Zr0.5Ti0.5)B2 and NbB2 were present in the mixture in percentage by weights of 27%,
40%, 18%, and 15%, respectively.

Cell parameters of the high entropy phase in the HEB_c SHS powders were very close
to those obtained in the literature for similar ceramics produced by the same route [5,8].
For instance, a = 3.099 Å and c = 3.390 Å were obtained for (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2
when considering the HEB_b SHS product [8]. In addition, NbB2 cell parameters found
in this work were in good agreement with the literature (a = 3.086 Å; c = 3.306 Å) [33],
while (Hf0.5Ti0.5)B2 and (Zr0.5Ti0.5)B2 differed significantly from the values reported for
the nominal phases ((Hf0.5Ti0.5)B2: a = 3.085 Å; c = 3.368 Å; (Zr0.5Ti0.5)B2: a: 3.098 Å;
c = 3.390 Å) [34]. This evidence suggests that the latter two phases may have contained
a variable amount of the other elements of the mixture, particularly Mo, which were
responsible for the observed discrepancies in cell parameters.

The obtained SHS products were also examined by SEM and EDS before being me-
chanically treated. The corresponding results are shown in Figure 2. From the elemental
maps, it was apparent that, in agreement with the XRD analysis, the five metal elements
were not homogeneously distributed across each grain. Nevertheless, a reasonably good
level of mixing was achieved for all three systems after SHS, which was extremely impor-
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tant, as discussed later, to promote the formation of a single-phase product during the
sintering step.
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The ball milled powders to be consolidated by SPS were also characterized in terms of
particle size. The resulting data measured by laser light scattering analysis are summarized
in Table 3. The three sets of powders displayed similar particle size, with an average
diameter (dav) in the range of 2.7–3.7 µm. Slightly finer powders were observed for the
case of the HEB_b system.

Table 3. Particle size characteristics, as determined by laser scattering analysis, of HEB powders
obtained by SHS after the ball milling treatment (CR = 2, 1 h).

System d10 (µm) d50 (µm) d90 (µm) dav (µm)

HEB_a 0.16 1.13 11.69 3.69

HEB_b 0.25 1.29 8.49 2.93

HEB_c 0.19 1.29 10.84 3.46

3.2. Spark Plasma Sintering and Structural Characterization of Dense Products

The three groups of SHS powders described above (Table 3) were sintered by SPS
under the same conditions (1950 ◦C/20 min/20 MPa). It should be noted that the lat-
ter ones as well as the graphite amount used as additive were selected on the basis of
systematic studies performed in previous works [8,13]. In this regard, it is important to
highlight the beneficial effect produced by the introduction 1 wt.% graphite to the SHS
powders for the removal of oxide impurities and densification improvement of SPS prod-
ucts [8]. This fact is clearly confirmed by this study. Indeed, as reported in Figure 3, the
XRD patterns of bulk samples indicated that single-phase ceramics were formed after SPS
with hardly detectable oxide contaminants or other secondary products for the three HEB
systems. Therefore, it can be stated that the multiphase SHS powders were successfully
converted into the desired (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and
(Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 by SPS. In this context, the latter process should be, then, more
properly considered as reactive sintering instead of a “simple” powder consolidation step.
As mentioned in the Introduction, the direct synthesis and the concurrent densification
starting from elemental powder resulted in multiphase products [13]. Thus, the SHS step
was strictly required to properly activate the powders and finally obtain a monophasic ce-
ramic by SPS. The final densities of the obtained sintered samples are listed in Table 4 along
with the lattice parameters evaluated by Rietveld analysis. For comparison, the related
values reported in the literature for the same systems are also indicated in Table 4. Rietveld
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analysis also provided an estimate of the average crystallite size of the high entropy ce-
ramic phases, namely 811, 693, and 1532 Å for the cases of (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2,
(Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2, respectively. It is important
to note that the HE system which displayed relatively larger crystallite size was HEB_c, i.e.,
the one free of Ta. It is then presumable that the presence of the latter highly refractory ele-
ment could play a role in making relatively finer microstructrures. Three SEM micrographs
and the corresponding EDS elemental maps of SPS products are shown in Figure 4. The
obtainment of nearly full dense samples was confirmed, particularly when considering the
HEB_c product. In this regard, the residual porosity values estimated by image analysis
for HEB_a, HEB_b, and HEB_c specimens were 1.2 ± 0.2, 2.2 ± 0.2, and 0.3 ± 0.1 vol.%,
respectively. In addition to the high densification level achieved by SPS, it is also important
to evidence the satisfying elemental distribution observed across the sample. Additionally,
in this case, the HEB_c ceramic was characterized by the best compositional homogeneity.
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Table 4. Density and lattice parameters of the three HEB products obtained by SPS in this work. The
corresponding values reported in the literature for the same systems are also included.

System ρt
(g/cm3)

ρ
(%)

Lattice Parameters
a(Ȧ), c(Ȧ) Reference

HEB_a

8.67 97.4 ± 0.3 3.087, 3.316 This work

8.67 92.2 3.082, 3.279 [1]

8.61 95.0 3.082, 3.307 [6]

8.61 98.5 3.082, 3.281 [7]

HEB_b

8.52 96.5 ± 0.7 3.092, 3.368 This work

8.52 92.4 3.080, 3.316 [1]

8.37 99.9 3.092, 3.366 [10]

HEB_c

7.37 98.2 ± 0.9 3.099, 3.374 This work

7.37 92.3 3.092, 3.345 [1]

7.29 97.7 3.093, 3.353 [6]
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3.3. Mechanical Properties of Sintered Samples

The results of the mechanical properties in terms of Vickers hardness, Young’s modu-
lus, and fracture toughness are summarized in Table 5 for the HEB_a, HEB_b, and HEB_c
sintered samples along with the available literature data.

The highest elastic modulus was achieved for the HEB_a system. Even though no such
data are reported in literature for this system, the values determined for the hardness were
consistent with the ones reported previously [7]. Moreover, values of fracture toughness
were comparable with the one reported in the same work, even if the HEB_a samples
prepared in this work displayed slightly higher values.

On the other hand, HEB_b had a lower elastic modulus compared to HEB_a but had a
remarkably high value of hardness, being also the hardest of the three systems.

HEB_c, which corresponded to the greatest relative density (see Table 4), showed
lower values of hardness and elastic modulus compared to HEB_a and HEB_b; however,
this system displayed the best fracture toughness. The very good KIC can be ascribed to
the higher degree of densification achieved.
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Table 5. Mechanical properties of the three HEB products obtained by SPS in this work. The corresponding values reported
in the literature for the same systems are also included. E&C: Evans and Charles; L&F: Lawn and Fuller; E&W: Evans and
Wilshaw; L: Lankford. n.r.: not reported.

System
Conditions

(Load, Loading Time,
Loading/Unloading Rate)

Hv
(GPa)

Young’s Modulus
(GPa)

KIC
(MPa m1/2)

Method
Reference

HEB_a

0.25N, 15 s, 0.5 N/min 28.1 ± 3.5 538.5 ± 49.9 -

This work

0.5N, 15 s, 1 N/min 27.8 ± 2.2 546.3 ± 20.1 -

1 N, 15 s, 2 N/min - -

7.06 (E&C)
4.41 (L&F)
4.49 (E&W)

10.31 (L)

1.96 N, 15 s, n.r. 22.5 ± 1.7 n.r. n.r. [1]

1.96 N, 15 s, n.r. 25.9 ± 1.1 n.r. n.r. [6]

1.96 N, 15 s, n.r. 27.0 ± 0.4 n.r. 4.47 ± 0.40 (E&C) [7]

HEB_b

0.25 N, 15 s, 0.5 N/min 28.08 ± 1.6 498.1 ± 28.3 -
This work

0.5 N, 15 s, 1 N/min 29.7 ± 1.9 514.8 ± 41.5 -

1 N, 15 s, 2 N/min - -

4.31 (E&C)
2.69 (L&F)
3.82 (E&W)

5.84 (L)

1.96 N, 15 s, n.r. 19.1 ± 1.8 n.r. n.r. [1]

1.96 N, 15 s, n.r. 24.9 ± 1.0 n.r. n.r. [10]

HEB_c

0.25 N, 15 s, 0.5 N/min 25.1 ± 3.8 404.5 ± 57.8 -

This work
1 N, 15 s, 2 N/min - -

8.84 (E&C)
5.53 (L&F)
5.12 (E&W)

12.0 (L)

1.96 N, 15 s, n.r. 21.9 ± 1.7 n.r. - [1]

1.96 N, 15 s, n.r. 26.3 ± 0.7 n.r. - [6]

1.96 N, 15 s, n.r. 26.3 ± 1.8 n.r. 3.64 ± 0.36 (E&C) [7]

Some additional considerations can be made regarding the generally lower mechanical
properties displayed by the (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 product, in spite of the fact that a
relatively higher densification level was achieved compared to the other two HE ceramics
obtained in this work. First, it should be noted that both HEB_a and HEB_b contained
tantalum, while such an element was not present in HEB_c. Fully dense Ta-based UHTCs
are generally quite difficult to obtain, thus the introduction of suitable sintering additives is
needed to achieve such a target. For instance, the use of the SHS-SPS approach to produce
bulk TaB2 led to poor relative density, i.e., 93.9 ± 0.3% [21]. On the other hand, highly
dense products (98.5 ± 0.3%) were obtained under the same operating conditions when
processing ZrB2. In contrast, the corresponding measured hardness values were 17.5 (TaB2)
and 11.0 (ZrB2) GPa, respectively. Product microstructure was also relatively finer in the
first case, with average grain sizes of 7 and 20 µm, respectively [21]. All these outcomes
are consistent with the results obtained in this work to testify that the presence of Ta in
the HE borides makes the obtainment of fully dense products more difficult, whereas the
corresponding ceramics exhibit a finer microstructure and improved mechanical properties.

4. Conclusions

In this work, three quinary HE diborides were successfully obtained in dense form
by SPS using powders preliminarily prepared by SHS from elemental precursors. Detailed
XRD analysis coupled with the Rietveld analytical procedure evidenced that reactants
were only partially converted by SHS into the desired HE phase, while other individual
(NbB2, etc.) and binary ((Hf0.5Ti0.5)B2, (Zr0.5Ti0.5)B2, etc.) diborides were also found in the
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synthesized product. However, secondary phases were completely transformed into the
nominal HE ceramics during the subsequent SPS stage conducted for 20 min at 1950 ◦C
and 20 MPa. The introduction of 1 wt.% of graphite to the SHS powder before their consoli-
dation was beneficial to improve the resulting product density and purity. The estimated
average crystallite sizes for (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2, and
(Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2 in the sintered ceramics were about 800, 700, and 1500 Å,
respectively. Highly dense and homogeneous ceramics were correspondingly obtained, par-
ticularly when considering (Hf0.2Zr0.2Nb0.2Mo0.2Ti0.2)B2. The Vickers hardnesses of 28.1 and
28.08 GPa measured for the (Hf0.2Nb0.2Ta0.2Mo0.2Ti0.2)B2, and (Hf0.2Zr0.2Ta0.2Mo0.2Ti0.2)B2
materials, respectively, were superior with respect to value obtained for the third ceramic
(25.1 GPa). This holds also true when considering the Young’s moduli, i.e., 538.5, 498.1, and
404.5 GPa, respectively. The presence of the highly refractory Ta element in the first two
systems likely played a role in this regard, albeit the corresponding products displayed
relatively higher residual average porosities, i.e., 1.2, 2.2, and 0.3 vol.%, respectively. Al-
though only a few mechanical properties data have been reported in the literature for this
emerging class of ceramics, the comparison with them, when available, evidenced that the
three HE ceramics prepared in this work display similar and, in some cases, slightly better
Hv and fracture toughness values.

In summary, it is possible to conclude that single phase HE diborides characterized
by high density and promising mechanical properties could be attained under rather
advantageous processing conditions by combining the SHS and the SPS techniques. An
important role is played by the use of combustion synthesis route, which can provide very
shortly highly activated powders, where the elemental constituents are finely distributed
to suitably promote the formation of the HE phases during the consolidation (and reactive)
SPS step.
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