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Abstract: A brief overview is presented of the modified random network (MRN) model in glass
science emphasizing the practical outcome of its use. Then, the configuron percolation theory (CPT) of
glass–liquid transition is concisely outlined, emphasizing the role of the actual percolation thresholds
observed in a complex system. The MRN model is shown as an important tool enabling to understand
within CPT the reduced percolation threshold in complex oxide systems.
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1. Introduction

The modified random network (MRN) model of glasses proposed first by Greaves [1–4]
has been nowadays confirmed by many observations in experiment and modeling. The
molecular structure of a glass controls the glass properties—for example, the chemical
durability—by establishing the distribution of ion exchange sites, hydrolysis sites, and the
access of water to those sites. Therefore, it is imperative to investigate the molecular struc-
ture of glass evidencing the details of medium-range order (MRO) of glasses. The MRN
model involves two interlacing disordered sub-lattices (regions), one of which contains
the well-polymerized silica skeleton (covalent network), while the other is depolymerized
and comprises of large concentrations of network modifiers such as alkalis. The first model
of glass structure was the continuous random network (CRN) model, which became a
classical method of thinking on structures of glasses and melts presenting the molecular
structure of oxide glass formers as a topologically disordered network of corner-sharing
tetrahedra forming rings and cages [5]. Experiments indicated that the CRN model cannot
describe the structure of melts and glasses containing modifying metal cations.

The MRN model accounts that the metal cations such as Na+, K+, Ca2+, Mg2+ break the
inter-tetrahedral bonds and segregate into clusters, which gradually grow so that at higher
concentrations, they eventually become continuous channels once their concentration
reaches the percolation threshold [1–4,6]. Figure 1 is schematically representing the MRN
model of an alkali silicate glass structure [7].

The MRN model allows Al-free silicate glasses and melts to be well described, whereas
aluminosilicate glasses are different. The Al3+ in silicates enters mostly in tetrahedral coor-
dination in the form of negatively charged AlO4

− with apical oxygen atoms presenting
electrical charge deficits. As a result, the metal cations that are present in the melt compen-
sate for this electrical charge deficit as they do in the crystalline state. In most aluminosili-
cate glasses for practical uses, the concentration of metal cations provides almost exactly
the charge compensation of the AlO4

− present, this effect being used to bind radioactive
hazardous nuclides in nuclear waste immobilization [8]. These effects are accounted by the
compensated CRN (CCRN) model [9] by locating compensating metallic ions in the vicinity
of AlO4

−. Thus, the CCRN is essentially a variant of MRN which properly accounts for
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the aluminosilicate case and specifies that cations occupy in well-defined sites in silicate
systems. The MRN involving cations clustering is confirmed by X-ray and neutron spec-
troscopy measurements [1–4,6,9], laser mass spectroscopy data [7], Raman and Nuclear
Magnetic Resonance measurements [10], Molecular Dynamics (MD) simulations [6,10],
and modification of melts viscosity, demonstrating that metal ions nano-segregate into
percolation channels, making this a universal phenomenon of oxide glasses and melts [10].
MD simulations of alkali-silicate glasses strongly support the MRN model of glass: (a)
confirming the existence of silica-rich regions and the clustering of sodium ions in these
glasses [11], and (b) evidencing decoupling the structure into alkali-associated and alkali-
migration-blocking parts [12]. It has been found that the X-ray irradiation damages to some
extent in the Na-containing silicate glasses slightly increased the total bridging oxygen
atoms content of the glass at the expense of NBO, thus increasing the polymerization of the
glass, while polymerization may cause channels to become segmented into unconnected
pockets where ionic species are concentrated [13].

Figure 1. Schematic of modified random network (MRN) model of sodium–silicate glass with
percolation ionic channels formed by alkali cations associated with non-bridging oxygens (NBOs).
Ionic radii are as follows: r(Si4+) = 54 pm, r(Na+) = 116 pm, r(O2-) = 126 pm. The regions comprised
of large concentrations of network modifiers so that alkalis form ionic percolating channels at higher
concentrations—in silicate glasses typically at <67 mol.% of silica, whereas at higher content of silica,
these regions are isolated from each other by the silica skeleton (network regions). The SiO4 tetrahedra
define the network regions, while non-bridging oxygen (NBO) atoms define depolymerized regions
that can form percolation channels. The percolation ionic channels are defined by the NBO atoms at
the edges of the highly ordered network regions, which ionically bond to the alkali, alkaline earths,
or other modifier species in a glass.

Thus, the MRN model has two interlacing topologically disordered sub-lattices: the
network sub-lattice and another lattice with regions comprised of large concentrations of
network modifiers in form of clusters that form percolation channels. It has been found
that for small length scales, the percolation channels have fractal geometry with Hausdorff–
Bezicovich dimensionality (D) in the range from 1.5 to 2.0, whereas on macroscopic scales,
the D rapidly increases to 3. The fractal structural feature of oxide glasses explains the
well-known mixed alkali effects in glasses as caused by the blocking by immobile unlike
cations. It has been revealed that the blocking effect is highly effective namely due to low
dimensionality of pathways on local length scales (D is less than 3) [14]. A mixed alkali
effect (conductivity) is caused by the blocking by immobile unlike cations, and the blocking
effect is highly effective due to low dimensionality pathways on local length scales. It
has been also revealed that the developments in alkali cluster formation in compensated
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aluminosilicate melts are responsible for the anomalous substantial rise in melt viscosity
when one metal ion is replaced by a larger one [10].

The cationic percolation channels can be visualized as they act as ion-exchange paths
for elements that are less well bonded in glasses. Indeed, cations being bound to the NBO
result in the fact that the ion exchange occurs along percolation channels that exist in
the glass structure. The percolation channels have been experimentally observed at the
glass–gel interface when the leached layer was removed [15]. Ion exchange occurs along
percolation channels that exist in glass, and the dissolution appears to follow percolation
channels. It has been revealed that on fracturing, the alkali-silicate glasses form fresh
surfaces that are enriched in alkalis and so supporting the MRN model of glasses (Figure 2).

Figure 2. Crushing of complex oxide glass samples creates new surfaces enriched in alkali.

Mass spectrometric analysis of newly formed surface on breaking sodium borosilicate
glasses revealed that newly formed surfaces are significantly enriched with sodium. They
have also a slightly higher content of boron and are depleted in Mg, Ca, Al, Ti, and Mo
compared with the initial glass surface [7].

2. CPT of Glass Transition

The configuron percolation theory (CPT) of glass transition [16–19] specifies that
although glasses are isotropic and homogeneous macroscopically, the structure of glasses
comprises the following features: (i) at the atomic size, the short-range order (SRO) with
molecular-type units such as tetrahedral structures in silicates, (ii) at a larger size range,
the medium-range order (MRO) extends from second and third-neighbor environments to
percolating and fractal structures, and (iii) at macroscopic sizes, the disordered state (DS) is
homogeneous and isotropic.

The SRO in oxide glasses and melts is represented by polyhedral structural units
such as tetrahedral and octahedral structural units with typical sizes about 1.6–3 Å. The
SRO structural groups in commercial glasses are usually tetrahedral Si, B, Al, Fe, and P
surrounded by four oxygen atoms (tetrahedral coordination) or B surrounded by three
oxygen atoms (trigonal coordination). The tetrahedra and trigonal species in glass link
to each other via bridging oxygen (BO) bonds. The remaining non-bridging oxygen
atoms (NBOs) effectively carry a negative charge and ionically bond positively charged
cations such as Na+ or Ca2+. The regions are comprised of large concentrations of network
modifiers so that alkalis form ionic percolating channels at higher concentrations—in
silicate glasses typically at about 67 mol% of silica, whereas at higher content of silica, these
regions are isolated from each other by the silica skeleton (network regions). NBO are
located at the interface between the ionic channels and the covalent network and BO are
located within the network regions [15,20]. The SiO4 tetrahedra define the network regions,
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while NBO atoms define depolymerized regions that can form percolation channels. The
percolation ionic channels are defined by the NBO atoms at the edges of the highly ordered
network regions, which ionically bond to the alkali, alkaline earths, or other modifier
species in a glass (Figure 1). The MRN model is indeed associated with the structural
heterogeneity in glass. For example, Moesgaard et al. [21] provided the direct, strong NMR
evidence for the structure heterogeneity at medium-range scale in silicate glasses, i.e., the
existence of less polymerized Ca-Si-O domains (corresponding to the percolation floppy
domain in MRN) and fully polymerized AlO4-SiO4 domains (rigid domains). Moreover,
the fragile region and strong region coexist in glass, as reported in [22].

The transition of a glass to a liquid (the glass transition) on increase of temperature of
glasses demonstrates clear thermodynamic origins [23–27], although the transformation is
kinetically controlled so that the temperature of glass transition (Tg) depends weakly (loga-
rithmically) on the heating rate [28,29]. Figure 3 shows schematically the most prominent
changes that occur at glass to liquid transitions.

Glass-forming liquids vitrify on cooling down at the Tg, so the amorphous materials
become typically brittle, although the drastic changes of materials properties at the glass
transition make the structural changes of a vitrifying liquid extremely difficult to reveal
directly. This became possible on utilizing sophisticated atomic force microscopy (AFM)
techniques [33], analysis of fifth-order susceptibility [34], and analysis of X-ray pair dis-
tribution function [29], whereas the theoretical treatment in terms of structural changes
is mainly dealt in works that consider the association of atomic and molecular species
forming glasses i.e., clustering behavior [16–19,35–37]. Structural changes become most
evident on analyzing the bond system of materials as first proposed by Angel-Rao [38].
The bond lattice model which was proposed by Angel and Rao aimed to replace the set of
atoms by a congruent structure of weakly interacting bonds—the congruent bond lattice
(CBL). In the CBL, the system of weakly interacting chemical bonds denoted congruently
replaces the initial system of strongly interacting ions such as Si4+ and O2− in SiO2. Thus,
the system of N strongly interacting particles (Si4+ and O2− for silica glass) is replaced by
a system of N’ = NZ weakly almost non-interacting bonds where Z is the coordination
number (Z = 4 for silica glass). In the case when atoms are not bonded via bridging atoms
(such as oxygen in silica), which is typical for metallic glasses—for example, for glassy Ni,
then N’ = NZ/2.

We have used the set theory, which is a branch of mathematical logic that studies
abstract sets as collections of objects [39]. In our case, we applied the set theory to the set of
chemical bonds which can be either intact or broken due to thermal fluctuations. In such a
way, we are dealing with a typical two-level system that is well developed theoretically as
a tool to describe amorphous materials and the glass transition [40,41]. Focusing on just
broken bonds termed configurons reveals that at absolute zero T = 0, there are no broken
bonds in the glass, whereas at finite temperatures, broken bonds are formed by thermal
fluctuations. The configurons at low temperatures are point-like objects and do not form
extended associations (clusters). The situation changes drastically when a macroscopic
cluster made of broken bonds (configurons) is formed for the first time, which penetrates
the whole bulk of an amorphous material. That occurs at the temperature Tg found from
the condition of formation of the percolation cluster made of broken bonds.

The system of bonds of CBL is a set of contacting although practically not interacting
objects which we do represent as equivalent spheres [16–19]. If a certain fraction p of
spheres is conducting and the rest are non-conducting, then what is the value of critical
fraction pc at which long-range conduction first occurs? Conducting spheres in our case
are equivalent to broken bonds (configurons) whereas intact bonds are equivalent to non-
conducting spheres. We assume that the radii of broken bonds in first approximation
are equal to radii of unbroken bonds, although generically, an account should be paid on
increase of radii on bond breakage. An important development in the understanding of
percolation thresholds in disordered (randomly distributed) systems was the introduction
of the critical volume fraction (θc) by Scher and Zallen [42]. For regular lattices of any objects
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such as spheres with uniform nearest-neighbor bond lengths of unity, they considered
placing spheres of unit diameter at each vertex with a fraction of space occupied by spheres
giving the filling fraction f. Multiplying this quantity by the site percolation threshold pc
yields θc = pcf. For the three-dimensional systems that were studied, it was found that the
θc falls in a narrow range of 0.144–0.163. Generically, it is considered that the invariant
occurs for the critical volume fraction θc = 0.15 ± 0.01, and this fraction is termed the
Sher–Zallen invariant [42,43]. It is important to note that in contrast to the free-volume
model of liquid–glass transition [44], the CPT operates with the volume of configurons,
which is a characteristic of chemical bonds only and does not represent the overall free
(non-occupied) volume of the material [16–19]. Melting of an amorphous material i.e., the
transition from glassy to molten state occurs when broken bonds form a percolation cluster
that penetrates the entire bulk of the material and so changes macroscopically the rigidity
of system. The concentration of configurons can be calculated as a function of temperature
using an equivalent two-level system that consists of unbroken (ground level) and broken
(excited level) bonds [16,17]. The fraction of configurons φ(T) = Cd/C0 where Cd is the
concentration of broken bonds and C0 is the total concentration of bonds in the CBL as a
function of temperature:

φ(T) =
exp(−Gd/RT)

1 + exp(−Gd/RT)
, (1)

where Gd is the configuron formation Gibbs free energy Gd = Hd − TSd, Hd is the en-
thalpy, Sd is the entropy of formation of configurons, and R = 8.314 J/K mol is the gas
constant. The condition when a fraction content of broken bonds φ(T) = Cd/C0 equalizes
the percolation threshold φc determines the first time a percolation cluster made of broken
bonds—configurons—is formed. Thus, it gives the temperature of glass transition as:

Tg =
Hd

Sd + Rln[(1−φc)/φc]
. (2)

Thus, Tg is dependent on quasi-equilibrium thermodynamic parameters of bonds that
are related to the enthalpy (Hd) and entropy (Sd) of formation of bonds (configurons) at
given conditions which do not necessarily need to be equilibrium conditions but rather
adiabatically follow the temperature of the system. At temperatures above Tg, the material
contains configurons at concentrations that exceed the threshold φc; therefore, the broken
bonds form a percolation cluster with fractal geometry changing the state of material
from solid-like (glass) to liquid-like (melt). Equation (2) provides exact data for Tgs of
SiO2 and GeO2 glasses when the threshold φc = θc = 0.15± 0.01 [16,17], whereas more
complex substances acquire smaller thresholds φc << 0.15 [18,19]. The glass-transition
temperature although being a thermodynamic parameter is kinetically controlled and
depends on the thermal schedule used for several reasons: (i) a part of the material is
inevitably crystallized during thermal treatment, (ii) configurons need a certain time to
relax to their equilibrium sizes, and (iii) the enthalpy of configuron formation depends on
the overall state of amorphous material including its quenched density.

The glass–liquid transition in the CPT shows typical features of second-order phase
transformations so that derivatives parameters such as the thermal expansion coefficient
and specific heat capacity diverge at Tg. Namely, the isobaric heat capacity of glasses
Cp(T) on the scanup of temperature at T close to Tg has the following temperature depen-
dence [16–19]:

Cp(T) =
C0∣∣T − Tg
∣∣1−β

, (3)

where the critical index β for the three-dimensional space is β = 0.41 [42,43]. This is due to
the formation of a percolation cluster made of configurons. The vitrification of melts is not
accompanied by configuron clusters formation; thus, there cannot be discontinuities in the
temperature dependence of Cp on temperature downscan and just a gradual decrease of it
on cooling down of melts.
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Figure 3. The main characteristics of glass–liquid transition that demonstrate the thermodynamic
origin and structural changes behind transformation. (a) The temperature (T) dependences of the
isobaric heat capacity (Cp) by differential scanning calorimetry (DSC) during the heating of a glass at
a typical rate of 10 K/min. The glass−liquid transition during upscan is always featured by a Cp

jump, whereas the vitrification (liquid−glass transition) on cooling during downscan is reflected
by a gradual Cp drop [30]. (b) The temperature dependence of the first sharp diffraction minimum
(FSDM) value of pair-distribution function (PDFmin) on the scattering of incident neutron or X-rays
indicating that at the Tg there is a substantial change of slope due to structural changes at the glass
transition [31]. (c) The temperature dependence of the first temperature differential of FSDM value
d(PDFmin)/dT indicating that at the Tg, there is a stepwise change of slope due to structural changes
at the glass transition [31]. (d) The temperature dependence of the Hausdorff–Besicovitch dimension
D = dimH(broken bonds) of the set of broken chemical bonds at the glass transition changes suddenly
as change the material properties. The set of broken bonds termed configurons has D = 0 below the
Tg, and D = 2.55 ± 0.05 above it [32].

The Hausdorff–Besicovitch dimension D of the set of broken bonds at the glass
transition changes suddenly as change the material properties (Figure 2). The Hausdorff–
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Besicovitch dimension in our case is equivalent to the Minkowski–Bouligand dimension
based on box-counting, which is defined as the limit:

D = lim
ε→a

logN(ε)

log(1/ε)
, (4)

where N(ε) is the number of boxes of side length ε required to cover the set of broken bonds
(configurons). When N(ε) grows proportionally to 1/εD as ε tends to zero, then we conclude
that the set has the Hausdorff–Besicovitch dimension D. In the counting procedure, we
start with macroscopic large lengths, diminishing them step by step to microscopic scales
(Figure 4).

Figure 4. Schematic of finding Hausdorff–Besicovitch dimension D of the percolation cluster made
of a set of connecting sites representing configurons on a planar square lattice of bonds. Blue dots
are configurons, and the percolation is evidenced by the connecting pathway from the left to right
sites of the square. The theoretical result for two-dimensional square lattices is D = 1.896, and the
percolation threshold pc = 0.59, meaning that 59% of bonds shall be broken in order for percolation
via broken bonds to occur [43].

In mathematics, the limit in Equation (4) is formally drawn to zero, whereas we
account that the minimal length in physical systems is equal to the bond size, which is
half of the interatomic distance. The percolation cluster made of configurons is a typical
macroscopic fractal. The set of broken bonds has D = 0 below the Tg, and D = 2.55 ± 0.05
above it [32].

The bonds set with bonds intact is characterized by Hausdorff–Besicovitch dimension
D = 3. This conforms to the known result that the Euclidian space Rn has a Hausdorff–
Besicovitch dimension D = n. Moreover, whether the distribution of bonds is ordered
or disordered is unimportant; in both cases, the three-dimensional bond structures have
the same D = 3. Thus, in both cases of glasses and crystals, we have the same Hausdorff–
Besicovitch dimension D of the bonds set and therefore the same mechanical behavior.
Two types of topological disorder characterized by different symmetries can be revealed
in an amorphous material as a function of temperature based on the analysis of the set
of broken bonds (Figure 3d). (i) The first is the 0-dimensional set, which occurs at low
temperatures when the configurons are uniformly distributed within the bond structure
with no macroscopic clusters are formed. The bonds can be characterized as point-like
defects of CBL. (ii) The second is the D = 2.55 ± 0.05-dimensional fractal set, which occurs
at the glass transition temperature when the percolation cluster made of broken bonds is
formed with preferential pathways for configurons which are mobile and can jump from
one to another CBL site.
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The characteristic linear scale that describes the branch sizes of dynamic clusters
formed by configurons near Tg is the correlation length ξ(T). It gives the linear dimension
above which the material is fully homogeneous so that a material with sizes larger than
ξ(T) has on average uniformly distributed configurons. However, at sizes equal or smaller
than ξ(T), the material is dynamically inhomogeneous and is characterized by the fractal
geometry [43,45] because of the formation of the percolation cluster, which is fractal by
its structure. It means that the glass loses at glass–liquid transition the invariance for
the Euclidian space isometries such as translation and rotation on length scales smaller
than ξ(T). The liquid near the glass transition is dynamically inhomogeneous on length
scales smaller than ξ(T) and remains unchanged for a fractal space group of isometries.
At temperatures far from the Tg, the correlation length is small, whereas at temperatures
approaching Tg, it diverges:

ξ(T) =
ξ0

|φ(T)− φc|ν
, (5)

where ξ0 is a certain elementary length of the order of the bond length, and the critical
exponent ν in the three-dimensional space is ν = 0.88 [43]. As a result of that, if the sample
sizes L are smaller than ξ(T), the amorphous material is dynamically inhomogeneous and
has a fractal geometry. Finite size effects in the glass transition are described as a drift to
lower values of Tg when sample sizes L decrease [16,17]:

Tg(L) = Tg(bulk)
[

1−
(αcpt

L

)δ
]

, (6)

where Tg(bulk) is the glass transition temperature for large-size samples when L >> ξ(T),
αcpt = ξ0[7.843RTg(bulk)/Hd]ν, δ = 1/ν, and ν = 0.88 is the critical exponent. This equation
conforms well with experiments and theory [46] and are also applicable to thin polymeric
films [47].

The heat capacity per mole of configurons involved in the percolation cluster near the
Tg was found as [16,17]:

Cp,con f = R
(

Hd
RT

)2
φ(T)[1− φ(T)]

(
1 +

βP0∆HT1−β
1

Hd
∣∣T − Tg

∣∣(1−β)

)
, (7)

where T1 = RT2
g /φc(1− φc)Hd, P0 is a numerical coefficient close to one e.g., when φc =

θc = 0.15± 0.01, we have P0 = 1.0695, and ∆H << Hd is the enthalpy of configurons in the
percolation cluster. At T → Tg Equation (7) reduces to (3), demonstrating second-order
phase transformation-like behavior with heat capacity diverging near the transformation
temperature Tg.

Recently, liquid glasses were discovered experimentally in suspensions of ellipsoidal
colloids that similarly to liquid crystals demonstrate glass-like properties before being
melted [48]. It is well known from earlier investigations that emulsions exhibit fractal
structures at small sizes [49]; however, structural imaging at high concentrations has
been limited to systems composed of spherical colloids. The authors of [48] revealed that
suspensions of ellipsoidal colloids form an unexpected state of matter, a liquid glass in
which rotations are frozen while translations remain fluid. The nematic precursors were
characteristic structural elements of this state, and the mutual obstruction of these ramified
clusters prevented liquid crystalline order. Thus, we can generalize the state of matter
schematic proposed in [50] as a function of connectivity and ordering (Figure 5).

The discovery of liquid glasses and liquid crystals suggest that the dimensionality of
structures forming a material are important for the analysis of phase transformation. Table 1
shows data from percolation theory [43,45] on the critical most important parameters at
glass–liquid transition.
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Figure 5. Schematic of phase state as function of ordering and connectivity between building
blocks (molecules) of materials. GCMs are glass composite materials containing both crystalline and
vitreous phases.

Table 1. Critical parameters for 2 and 3-dimensional structures (sets).

Dimension of System, d 3 (Bulky) 2 (Planar)

Scher–Zallen critical density (invariant), θc 0.15± 0.01 0.44 + 0.02
β 0.41 0.14
ν 0.88 1.33

Fractal dimension D = d − β/ν 2.55 ± 0.05 1.896

Indeed, from Equation (2), we can see that because the critical density θc in the 2-
dimensional systems is much larger compared with 3-dimentional structures, their Tg
values are higher; i.e., the melting (glass–liquid transition) for planar-type liquid glasses
will occur much later that for 3-dimensional glasses. Thus, first, 3-dimentional glasses will
melt, and then some remnant 2-dimensional glasses will melt if any.

Finally, we note that the CPT provides the bases for the viscosity of amorphous
materials being described by the Sheffield model of viscosity [51,52]. The two-exponential
Sheffield equation of viscosity:

η(T) = A·T·exp(Hm/RT)]·[1 + C·exp(Hd/RT)], (8)

where A, Hm, C, and Hd are material specific constants, gives a correct description of
viscosity with two exact Arrhenius-type asymptotes both for melts much above the Tg, and
glasses much below the Tg. Within the low temperature, the activation energy of viscosity
is high QH = Hd + Hm, whereas at high temperatures, the activation energy is low QL = Hm.
The Arrhenius behavior of viscosity at low and high temperatures is a known experimental
result tested for glass forming liquids and ancient glasses and denying low-temperature
diverging predictions of other models [53–55].

3. The MRN in the CPT

Broadbent and Hammersley have first introduced the percolation model on the exam-
ple of a porous stone immersed in water where they were looking on the probability that
the center of the stone is wetted [56]. The flow of water in the porous stone was named
percolation because the fluid flow into the maze resembles coffee flowing through the
grounds in a percolator [45,57]. Applications of percolation theory include many useful
practical cases such as the spread of forest fires, oil and gas exploration, electrical properties
of disordered media, gelation, polymerization, etc. The general formulation of percolation
theory considers elementary geometrical objects such as spheres, squares, or sticks placed at
random in a d-dimensional lattice or continuum [43,45]. These objects have a well-defined
connectivity radius λ0 so that two objects are considered communicating if the distance
between them is less than λ0. A cluster is simply a group made of communicating objects.
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Cluster sizes can change, and therefore, an important question is when the clusters become
infinite. This is controlled by the density of objects n0 in the space of dimensionality d or by
the dimensionless density (filing factor), which is defined as η = n0·(λ0)d. The percolation
threshold ηc is defined as such a density η = ηc when the clusters made of communicating
objects span the space. Although ordered lattice formulation of the percolation theory is
very convenient, most natural systems are disordered rather than have a perfect lattice
structure. It was found that independently of lattice type for each dimension d, the per-
colation occurs at an invariant critical fraction of space occupied by spheres of the bond
length diameter positioned in the occupied sites of the lattice θc [42]. The critical space
occupational probability is θc = 0.44 ± 0.02 for d = 2 and θc = 0.15 ± 0.01 for d = 3 (Table 1).
However, this is the case of simplest systems of monodisperse objects. Meanwhile, local
heterogeneity can have a major effect on percolation threshold. For example, anisotropic
communicating objects such as rods can more easily connect to each other and percolate at
much lower volume fractions (space occupational probability) φc � θc [45]. In contrast to
that, the polydisperse spheres have a higher threshold volume fraction for percolation that
can reach units, which means that they can practically fully fill the space without forming
percolating clusters [58]. Equation (2) with φc = θc for complex glass-forming liquids
overestimates the Tg values by about 20% [18]. It shows that complex materials made
of more complex molecular units are characterized by significantly smaller percolation
thresholds [18], e.g., soda lime silica glass 70SiO2 21CaO 9Na2O has an effective percolation
threshold φc = 0.049 θc, whereas the vitreous anorthite has φc = 2.25 10−5 θc (Table 2).

Table 2. Percolation thresholds.

Amorphous Material Tg, K φc

Vitreous silica (SiO2) glass 1475 0.15
Vitreous germania (GeO2) 786 0.15

Soda–Lime–Silica glass (mass%): 70SiO2 21CaO 9Na2O 777 7.42 × 10−4

Vitreous B2O3 580 9.14 × 10–5

Vitreous diopside (CaMgSi2O6) 978 6.35 × 10–7

Vitreous anorthite (CaAl2Si2O8) 1126 3.38 × 10–7

An explanation was suggested in [18,19,32] that significantly lower percolation thresh-
olds for broken bonds can be due to the structure described by the MRN model of complex
oxide systems which are typically fragile. Indeed, the MRN model holds namely for com-
plex materials that comprise network-modifying cations distributed in channels (Figure 1).
Complex materials are typically fragile where Angell interpreted strong and fragile behav-
ior of liquids in terms of differences in the topology of the configuration space potential
energy hypersurfaces [59]. However, Doremus has emphasized that the implication of
strong-fragile classification was that strong fluids are strongly and fragile are weakly
bonded, which is misleading [60]. Examples are binary silicate glasses that are strong
although they have many non-bridging oxygens. Other examples are anorthite and diop-
side, which have very high activation energies being quite strongly bounded but are very
fragile [60]; therefore, the strength of CBL is characterized by the free Gibbs energy of
configurons formation Gd or the enthalpy of formation of configurons Hd rather than the
fragility ratio.

The bond lattice model of amorphous materials [38] replaces the system of strongly
interacting ions by a congruent set of weakly interacting bonds; hence, we are dealing in
the CBL of complex oxide systems with a porous system of contacting spheres rather that
with a well compacted system of contacting spheres (Figure 6).

Topological descriptions are essential for the description of structures lacking long-
range translational and orientational order; moreover, Hobbs et al. emphasized that the
structural freedom required to form aperiodic networks is directly related to the connectiv-
ity, and the range of allowable structural possibilities can be enumerated using combinato-
rial geometry [61–63]. Thus, the diminishing values of configuron percolation thresholds
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φc in complex oxide systems can be interpreted in terms of equivalent configuron size or its
effective delocalization, which can be effectively much larger than the bond size. An exam-
ple of such delocalization can be data obtained for the extremely fragile liquid ZrO2 where
the details of the chemical bonding explain the extremely low viscosity of the liquid, and
the absence of a first sharp diffraction peak and the variety of large oxygen coordination
and polyhedral connections with short Zr–O bond lifetimes, induced by the relatively large
ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which
leads to an increased delocalization in the ionic Zr–O bonding [64]. The higher the fragility
ratio, the larger the effective configuron radius and its delocalization [32], because the
liquid–glass transition occurs in fragile materials at lower percolation thresholds compared
to strong liquids. The effective configuron radius, rc, can be assessed as:

rc = rd(θc/φc)
1/3, (9)

where rd is the bond radius (half of bond length). Therefore, the effective volume of a
configuron is given by Vc = Vdθc/φc, where Vd is the volume of an instantaneous or
non-relaxed configuron, θc is the universal critical density in the 3D space (Scher–Zallen
invariant), and φc is found by comparing the actual glass transition temperature with
that given by Equation (2). Materials such as amorphous silica and germania have small
effective radii configurons localized on broken bonds, and because of that, they show a
smaller dependence on thermal history, which conforms with experimental findings [65].
In fragile materials, the effective configuron radii considerable exceed bond radii, rc�rd.
For example, vitreous B2O3 has rc = 11.79rd, which is due to its specific structure. Indeed,
both crystalline and vitreous boron oxide consist of planar oxygen triangles centered
by boron, most of which accordingly to X-ray diffraction data are arranged in boroxol
rings [22]. The two-dimensional nature of the B2O3 network means that the third direction
is added by crumbling of the planar structures in a three-dimensional amorphous boric
oxide, which results in effective large-size configuron compared bond length. This results in
percolation thresholds φc dependent on the geometry of involved entities and the relatively
large radii of configurons which are considered spherically symmetric. Boron-containing
silicate glasses are also characterized by their specific structure dependent on the boron
coordination, which changes with composition [66]. Additional value can be also brought
by analyzing the actual MRO structure of glasses such of the facets of clusters formed
in the glass transition process analysis based on X-ray diffraction patterns [67]. There
is a link between fragility and internal structural changes observed on cooling of some
liquids [64,68–70]. Synchrotron X-ray scattering studies have shown an increasing degree of
short- and medium-range order that develops with increased supercooling, and the analysis
of the atomic and electronic structure of the alloy in liquid and glassy states revealed the
formation of chemical short-range order in the temperature range corresponding to such
a non-Arrhenius behavior [68]. It was demonstrated for several metallic glass-forming
liquids that the rate of this structural ordering as a function of temperature correlates
with the kinetic fragility of the liquid, demonstrating a structural basis for fragility [69].
Moreover, it was shown that the fragility is a sign of instability of short and medium
range order in liquids with molecular dynamic simulation supporting observed structure
variation [70]. Thus, the glass transition although being a kinetically controlled process [28]
is nevertheless linked to structural rearrangements [31] and has thermodynamically related
features and similarity to second-order thermodynamic phase transformations [71].
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Figure 6. Schematic of congruent set of weakly interacting bonds of a sodium–silicate glass with per-
colation ionic channels formed by alkali cations and chains of intact Si-O-Si bonds. Three configurons
are explicitly shown. Chains formed by chemical bonds resemble a system of rods and can percolate
at a much lower volume fractions φc � θc than the system of compacted spheres that percolate at
φc = θc.

4. Conclusions

The MRN model of complex oxide glasses is confirmed by experimental techniques
and computer simulations. Its utilization enables the understanding of glass properties
observed such as glass mechanical and chemical durability by establishing the distribution
of weakly bonded glass modifiers, ion exchange sites, hydrolysis sites, and access of water
to those sites. The MRN model has also found its place in the CPT of glass transition
enabling understanding of the reduced percolation threshold in complex oxide systems.
Thus, the results given by the MRN model may be useful for understanding the nature
and criteria of glass transition, including additional arguments to macroscopic percolation
clusters observed at glass transition and theoretical interpretations of glass transition.
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